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ABSTRACT. The Model-Driven Development (MDD) method has been proposed to solve
the problem of high error rates in the conventional manual implementation of software.
This paper focuses on the modeling of a common framework for an Automatic Train
Protection (ATP) system with an MDD method, which includes interface, architecture
and function models. The purpose of this approach, which combines the source file and
template, is to perform automatic code generation. The source file is generated based
on the model that is established using the MDD method; thus, its logic is guaranteed to
be correct and the template is customized according to the coding style of the model. A
toolkit to automatically generate code for an ATP system is also developed, which allows
the entire development process to be automated.

Keywords: Automatic train protection, Model-driven develop, State machine, Code
generation, XML, XSLT

1. Introduction. In recent years, urban rail transit develops rapidly; however, the tech-
nologies of signaling systems of this field in China are far behind the developed countries.
The Automatic Train Protection (ATP) system is a key system for ensuring the safety
and high-efficiency of the urban rail transit. The safety of such software is critical for us,
especially when failures may lead to catastrophes where people die or economics are lost.
Therefore, we propose an automatic development method to ensure the safety.

The ATP system is characterized by the extensive use of control mode logic and mes-
sage analysis algorithms. The key issue of the development is to guarantee the safety
by verifying correctness of ATP logic. Additionally, it is also a main concern to control
the development costs and promote the efficiency. Thus, many researchers have con-
tributed to these. Some studies concentrate on using model-based tools [1] with safety
verification to ensure high quality development in ATP systems. Currently, the Unified
Modeling Language (UML) based model approach [2] is commonly used for development
in safety-critical fields, but because the requirements change continuously, it is hard to
ensure synchronization between the UML models and the implementation. Other studies
concentrate on applying formal methods such as B Method [3], state flow [4] or finite state
machine [5] to verify the correctness of ATP logic. However, formal methods are difficult
to master because of the complex semantics. Recently, there are also some researchers
devoted to automation development methods [6-10]. These approaches not only avoid
coding errors but also substantially shorten the development time. There are already
some commercial software packages applied in some safety-related areas. These methods
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are more rigorous in semantics or automatic than traditional develop methods, but they
cannot guarantee the logic to be correct. Moreover, the commercial software can only
generate code with a fixed format, and it is rather expensive. For these reasons, it has
not been widely used in the development of ATP systems.

However, an approach which is able to not only increase developing efficiency but
also guarantee correctness of ATP logic is still lacked. Based on the previous work, an
automatic code generation approach based on the Model-Driven Development (MDD) is
proposed to solve these problems. This innovation approach combines the models and the
implementation, and enables developers to focus on model design instead on programming.
As long as the models are correct, the generated code will be accurate and precise. In
this way, the development efficiency is also increased by intergradations directly from the
model and automatically codes generating.

In this method, a common framework model for an ATP system is established according
to the function features, which includes interface models, architecture model and function
models. Then, the Extensible Markup Language (XML) model files can be generated
from these models. Combining the model files and code template customized according
to the coding style or specification, the target source codes can be generated automatically.
Also, a toolkit is developed to implement the processes of this method proposed in this
paper. The practical results based on the data of Shenyang metro line 1 show that the
source codes of ATP software generated by the toolkit well satisfied the needs of urban
rail transit system.

2. Design of an ATP Model. According to the current definition of a Communication
Based Train Control (CBTC) system [11], a deployment diagram of a Carborne Controller
(CC) subsystem of a CBTC system is shown in Figure 1(a). The CC system, which is
composed of an Automatic Train Operation (ATO) and ATP system, has the responsibil-
ity of determining the position of the train, monitoring train speed, assuring appropriate
braking sequences, managing the control mode, and responsible for safe movement of the
train within Movement Authority Limit (MAL) provided by the Zone Controller (ZC)
[11,12)].

2.1. Main functions of the ATP system. As the key subsystem of the CC system, the
external interface of the ATP system is shown in Figure 1(b). The ATP system calculates
the train speed with the Optical Pulse Generator (OPG), obtains the train position via a
Transponder Interrogator Antenna (TTA) by reading the trackside beacon, and controls
the vehicle signal devices via the Rolling Stock (RS) interface. The ATO system and CC
on the other end of the train (CC2) are interfaced to achieve speed regulation, stopping
at stations, door control, brake control and automatic turn-back functions.

~
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FIGURE 1. Deployment diagram of the ATP external interface



A NOVEL APPROACH TO AUTOMATIC CODE GENERATION 6331

2.2. Challenges of ATP development. The Safety Integrity Level of an ATP system
is SIL4 in the CENELEC 50128 standard [13], which gives a reasonable and effective
development method. This standard demands that system’s safety is ensured from the
development process, including the safety development life cycle of the V-model and the
use of a formal modeling language. In the development of ATP software systems [14,15],
there are many challenges to face including the following:

e The control of system complexity and scale;

e The consistency of software requirements and source code;

e The avoidance of as many artificial coding errors as possible;
e The implementation and updating of code in an efficient way.

These challenges are especially critical in the current development of safety-related
systems. So, the Model-driven development approach is proposed to solve these problems.

2.3. Composition of an ATP model. The system requirements specification is com-
posed of system interface requirements and functional requirements, which include a de-
scription of the module input, information regarding output data, and details of the sys-
tem’s functionality. The features of ATP systems from various major manufacturers are
compared in Table 1. According to these characteristics, the ATP model is established,
and it’s composed of three parts: the interface, architecture and functional models, as
shown in Figure 2.

e According to the interface requirements, the interface model is designed to describe
the interfaces to the external systems, including interface models of the rolling stock
signal system, speedometer device, beacon interrogator, and communication system.

e According to the ATP system functional requirements, the ATP functional models
are designed by a data flow diagram model or a state machine model, which describe
the input and output variables and the internal details of the functional unit.

e According to the correlations between the ATP functions, the architectural model is
designed to describe the data interface and the correlations between the functions,
which comprise the functional models and the interaction connections.

INTERFACE MODEL
ATP

ATO@ATP
ATE EM
Mo deSwitch 14
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Buttons

ARCHITECTURE MODEL ‘ FUNCIIONAL MODEL
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MasterCo nirol

FIGURE 2. Structure of an ATP model
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FIGURE 3. Data structure of an ATP model
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TABLE 1. ATP systems of major manufacturers

Manufacturers

Main Function of ATP system

Interface of ATP system

SIEMENS
(ATC)

The ATP system is responsible for the vi-
tal operation of the trains. It has differ-
ent tasks to ensure the safety in a metro
system. The ATP continuously detects
the position and the speed of the train,
supervises the speed restrictions, controls
the train doors, supervises the platform
screen, tracks all equipped trains, respects
the interlocking conditions such as target
points position or Supervision.

The subsystems connected
to the ATP on-board com-
puter unit are the balise an-
tenna, the odometer (OPG)
and the radar unit. The
radio has got a receiving
and a transmitting antenna.
Other connections are es-
tablished to the ATO and
the driver’s HMI.

ALSTOM
(URBALISTM)

The ATP system is to achieve the fol-
lowing functions: The ATP provides the
fault-safety train location function; be-
sides it ensures the emergency brake to
prevent the train crossed the protection
point, over-speed or other safety-related
conditions. It also provides authority of
doors, and status monitoring, such as
alarm, the driving mode, door status, link
status, departure instructions.

The position information is
collected through the vehicle
odometer and beacon read
by antenna installed on the
line. The ATP receives rail-
way track line information
and real-time track status
continuously, and feeds back
the location information to
7ZC.

ALCATEL
(SelTrac®)

The ATP is responsible for safety func-
tions the of ATC system. The ATP’s ba-
sic responsibility is as follows: prevents
train collisions caused by hostile running;
prevents dangerous incidents to passen-
gers due to unexpected door open, or train
slipping; prevents the train running over
the speed limit or recommend speed to
cause damage dangerous to the train.

The ATP system interfaced
to the following equipment:
driver display unit, beacon
interrogator antenna, ac-
celerometer, speed sensor,
vehicle DCS and wireless
unit.

USSI

The ATP functions assure the safety of
train operations. All ATP functions are
implemented in accordance with the fail-
safe principle. The Carborne Subsystem
has the responsibility of determining the
position of the train, monitoring train
speed, assuring appropriate braking se-
quences as necessary, managing the con-
trol mode of the train, and controlling the
train according to the information pro-
vided by ZC.

The ATP system interfaces
to speed sensors, accelerom-
eter and the transponder
interrogator to determine
the position of the train.
A Train Operator Display
is interfaced to the ATP
to display driving informa-
tion, equipment status, and
alarms to the operator.

The data structure is shown in Figure 3: the root node <ATPSYSTEM> consists of an
interface model node <INTERFACE> and an architecture model node <ARCHITECTU
RE>. The architecture node <ARCHITECTURE> not only defines the structure type,

but also determines the division and the correlations of the functional models.

functional model node <MODULE> includes multiple subordinate nodes <FUNCTION>

to complete a full description of the functions.

2.4. Model elements. In this paper, two basic types’ elements are designed for descrip-

tion of the functions: Nodes and Connections.

e Element Node: refers to entity object of the model, such as function node or module

node;
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FIGURE 4. An example of the elements

e Element Connection: refers to the relationship between the objects, such as the data
exchange of the modules. The properties are shown in Figure 4.

There are also certain rules and constraints in or among these elements. For example,
as shown in Figure 4, the constraints between the nodes and the corresponding connect
are:

e Data flow of the Connection must be the subset of the output data from source node;
e Data flow of the Connection must be the subset of the input data from destination
node; Or else, this connection is invalid for this model.

So the core of the model structure for ATP software system is the objects are expressed
in format of nodes, the relationships in format of connections, and the configurable module
structure in format of properties, characteristics and rules. The models we discuss in the
following chapters are all based on these elements and constraints.

3. Interface Model. According to the applications environment and the system archi-
tecture, we design the interface models, including an RS interface model, an OPG interface
model, a TTA interface model and a COM interface model (as shown in Figure 5). In
these models, the commonly used interfaces and logic are pre-defined and it is easily to
customize by users to generate required interface models. Moreover, the data obtained
from these interfaces are used throughout the entire modeling process.

3.1. Rolling stock model. The interface between the ATP system and the rolling stock
comprises discrete input/output (IO) signals, including vital input (VI)/non-vital input
(NVI) and the vital output (VO)/non-vital output (NVO). All of the IO signals designed
in this rolling stock interface model are listed in Table 2.

Each input/output signal has similar properties, as listed below:

e T type of the signal (VI/NVI/VO/NVO);

e V: signal value;

e B: the input/output board position of the signal connection pins (ID and bits);

ATP FUNCTION

‘ ATP INTERFACE MODEL ‘

| W [l

| RS MODEL | OP G MODEL | TIA MODEL | COM MODEL ‘j
MASTER CONTROL MODEL | ATO DATA MODEL
DIR CONTROL MODEL
; - . CC2 DATA MODEL
S ODESWITCHNIODEL SPEEDOMETER || BEACON TIA |
DRMODE CONTROL MODEL | ZC DATA MODEL |

FIGURE 5. ATP interface model



6334

X. CHEN, P. LIU, X. QIU, H. HUANG AND H. DUAN

TABLE 2. 10 signals in the rolling stock interface model

NVI Depart | NVI EBA | NVI SBA NVI ADOADC | NVI ADOMDC | NVI MDOMDC
VI KevCCl | VI KevCC2 | VI MSI RM VI MSI JATP | VI MSI ATPM | VI MSI ATO
VI MSI ATB | VI MS2 VI DirCtrl FWD | VI DirCrl REV | VI DirCirl NEUT | VI MC Coast
VI MC FSB | VI MC FB | VI DoorNOR VI ADC VI IATP Release | VI ATB
VI Integrity | NVO OLD | NFO ORD NVO CLD NVO CRD
VO EBR P | VO EBR N | VO RDE VO LDE VO ATB Key VO PE
TABLE 3. RULES of the RS interface model
RULES DESCRIPTION

RULE_INF_RS_1
RULE_INF_RS_2
RULE_INF_RS_3

SINGLE: only one signal is valid;
NONEORSINGLE: one signal or no signal is valid;
ALL: all signals must be valid.

e D: the minimum duration of the valid signal;

e R2: some interrelated constraints, such as mutually exclusive exits among the in-
put/output signals. Depending on the various constraint correlations among the
signals, there are three types of rules in this RS interface model (Table 3).

Based on the properties that are described above and the constraints between the
signals, the value of an IO signal can be expressed by the following formula: V =
IO(R,T, B, D).

3.2. Speedometer device model. Typically, an ATP system uses a speedometer to
measure the train speed. A speedometer generates N pulses in each circle of the wheel,
and the frequency of the pulse is proportional to the angular velocity. According to the
pulse count and the pulse frequency, the train speed, travel distance and driving direction
can be determined. Therefore, the properties of a speedometer are as follows:

PD: Pulse distance;

S: Increase/decrease the sign of the pulse count (UP/DOWN);
F: Working flag of the speedometer (OK/ERROR);

PC'": Cumulative count of the pulse;

PF: Frequency of the pulse.

Based on the actual operation of the train speed per cycle, the speedometer model can
be expressed with the following formula: NV Spd = Speed(PD, S, F, PC, PF).

Depending on the above description, the calculation rules of the pulse count per cycle
and the original train speed are as follows:

TABLE 4. RULES of the speedometer interface model

RULES
RULE_INF_SENSOR_1

DESCRIPTION

GETPULSEPERCYC : PULSEPERCYC =
(PULSECOUNT — PREPULSECOUNT) « SIGN
GETRAWSPEED : NVSPEED =

PULSEFREQ « PULSEDIST

RULE_INF_SENSOR_2
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3.3. Beacon interrogator model. When the train sweeps over the beacon, the ATP
system reads the information of beacon through the transponder interrogator antenna
installed under the train. The system obtains the location of the beacon by the information
and accomplishes a relocation or wheel diameter calibration functions. Thus, the main
properties of the beacon interrogator are as follows:

e S: the status of the interrogator host (OK/ERROR);

e D: the distance from the interrogator to the train’s front-end;
e [: flag of “is beacon detected” (TRUE/FALSE);

e /D: ID of “detected beacon read”;

e T: type of beacon (USA/EU);

e P: position of beacon in the track map database;

e FP(C" frozen pulse count when the beacon is read.

In accordance with the interrogating result of the transponder interrogator antenna,
the model of beacon TITA is expressed as follows: (ID, P) = BenTIA(S, F,ID, P, FPC).

When the status of an interrogator host is OK with the beacon read, the beacon is
valid. The train’s location can be relocated when it reads the beacon because the train’s
location is calculated from the beacon position and the distance from the interrogator to
the front-end of the train. Therefore, the rules are as follows:

TABLE 5. RULES of the beacon TIA interface model

RULES DESCRIPTION
CHECKBCN : BONID =

RULEINFBEACON-1 67 AT/ 58 & READBCN) « BONID
GETRELOCPOS : RSPOS =
BCNPOS + TIA2HEADDIST

RULE_INF_BEACON_2

3.4. Communication model. The ATP system communicates with the ATO and CC2
system every cycle and with the ZC after the train locates. The ATP system applies to
establish or disconnect with the communication target per cycle, according to the current
operation of the train, and checks the connection status of each target per cycle. Once
the connection is successful, the ATP will receive or send the communication message;
meanwhile, if no packet is received within the TIMEOUT time, it is considered to be a
timeout event with completion of a certain appropriate logic process. Thus, communica-
tion targets usually have the following properties:

e ID: ID of communication destination (ATO/CC2/ZC);

e LS: link status of each communication target (OK/ERROR);

e LR: link request of each communication target (TRUE/FALSE);
e T time-out of effective communication message;

e D: type of dataflow (INPUT/OUTPUT).

Thus, the model can be expressed with the following formula: D = COM(ID, LS, LR,
T).
When the status of a connection is OK, and it is not a timeout, the dataflow is valid
for this communication target. This rule is expressed in Table 6.

4. Architecture Model. Considering the characteristics of the network topology, soft-
ware systems can often be designed to sequence structure, network structure, hierarchi-
cal structure or star-shaped structure. With regard to the complexity of the logic and
functions, this article provides a design for the hierarchical and star-shaped structure
architecture model for ATP.
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TABLE 6. RULES of a communication interface model

RULES DESCRIPTION
CHECKMESSAGE : ATAITEMS =
RULE INF COM.1 (LINKSTATUS&&('TIMEOUT)) x DATAITEMS

4.1. Description of the architecture model. The architecture model provides a de-
scription for the input and output information of the modules and the interaction connec-
tions between modules. Therefore, the architecture model has the following properties:

e TYPE: Type of architecture model (hierarchical/star-shaped);
e MODULELIST: list of modules (input/output);
e CONNETCTION: corrections between modules (source/destination and data flow).

' <ARCHITECTURE TYPE= "StarModel"> ™

<MODULELIST> <CONNECTIONLIS T~

<MODULE Name= "Interfuce"> <CONNE CTION~
<PARAMLIST: <SOURCE>MensureSpeed</SOURCE>
<PARAM Name= "SENSOR STATUS"> <DESTNATION=Localization'DESTNATION=-
<8§COPE=public</8COPE= <DATAFLOW=
<DATATYPE-BOOL-/DATATYPE~ <DATA></DATA>
<PARAM- </ DATAFLOW=
< PARAMLIS T~ </CONNECTIO!
<FUNCTION=</FUNCTION= <CONNE CTION=></CONNECTION =

</ MODULE = </CONNECTIONLIST-

L <MODULELIST> </ARCHITECTURE- L

FIGURE 6. Data structure of architecture model

For the data structure of the architecture model described in Figure 6, the architecture
model node <ARCHITECTURE> defines the type of structural model to be a hierarchical
structure or a star-shaped structure, which also determines the division of the functional
model nodes <MODULE> and the data flow. The <MODULE> node describes the
input and output parameters. The module connection list node <CONNECTIONLIST>
includes multiple lists of <CONNECTION> nodes that achieve a complete description of
the interaction connections. The data flow node <DATAFLOW?> is composed of dozens
of data item nodes <DATA>. All of these data items are derived from global input and
output variables of <MODULE> with the same data type.

4.2. Hierarchical model. The hierarchical model has the advantages of distinct grada-
tion: each layer is concerned only with the current content, which shields the implemen-
tation details of the other layers. Also, each level provides services to the upper layer, and
requests services from the lower layer. So, it is consistent with the actual characteristics
of ATP functions. The hierarchical architecture is shown in Figure 7(a), which shows that
the seven models can be divided into three layers: the interface layer, business layer and
logic layer.

The bottom interface layer realizes the platform management functions and mainly ad-
dresses the preprocessing of the input interface data and the final processing of the output
data. The business layer implements data conversion and accomplishes the calculation
of the main information, meanwhile providing data for the logic layer. The top layer
accomplishes the collection and management of all of the safety logic. It is the ultimate
execution unit of the ATP safety logic, and is responsible for managing the train mode
and safety monitoring system. All the logic outputs follow fail-safe principles.
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4.3. Star-shaped model. The hierarchical model has the advantages of distinct gra-
dation and high flexibility; however, the coupling between modules is tight. However, a
star-shaped model can be used to meet the demands of high independence. In the star-
shaped architecture model (shown in Figure 7(b)), a data sharing module ATPDataBase
is designed to cover all the interactive interfaces, and it provides a good solution for
ATP to solve the complex logic data interaction. The data interfaces of this module are
categorized in Table 7.

There are two types of data flow: updating or getting information (UPDATE/GET).
According to the method described in Section 4.1, we can determine the main data flow
between the modules (Figure 7). The relationships between the ATPDataBase interface
types (DB) and the data flow between modules (DF') are shown in Table 8. For example,
in Figure 7, the data flow DF6 means obtaining information from the ATPDataBase and
providing it to the MA LandTCP module; we need three types of ATPDataBase interfaces
(DB2, DB4, DB6) to obtain the interface-related, speed-related and location-related data.

The model of the ATP star-shaped architecture not only reduces the coupling between
the module data but also improves system safety with defensive measures in the ATP-
DataBase module, but it results in data redundancy. Consequently, users should select
the appropriate model to build the ATP architecture model according to their actual
needs.

4.4. Functional model and description. After determining the system’s interface
model, architecture model and the data flow between the modules, we use the approach of
data flow diagram [16] and state machine [17] to model the detailed implementation within
each function module. In the functional models, there are a number of data processing
units included, which are abstracted as an operator meta-models. Each meta-model in-
cludes the type of operator, two inputs and one output, which is expressed as the following
formula: Result = Oper[Operandl, Operand2].
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TABLE 7. Data flow interfaces of the ATPDataBase module

ID DESCRIPTION
Updates the interface data and is responsible for updating the data that
DB1 .
goes to the data sharing module.
DB2 Receives the interface data and is responsible for providing the interface-
related data to the target module.
Updates the speed data and is responsible for updating the speed data that
DB3 .
goes to the data sharing module.
Obtains the speed data and is responsible for providing the speed-related
DB/
data to the target module.
DB5 Updates the location data and is responsible for providing the updated
location data to the data sharing module.
DB6 Obtains the location-related data and is responsible for providing the
location-related data to the target module.
DB7 Updates MAL and target point information and is responsible for provi-
ding the MAL and target point to the data sharing module.
DBS Obtains the MAL and target point information and is responsible for
providing the MAL and target point to the target module.
Updates the ATP curve data and is responsible for providing the updated
DB9 .
curve data to the data sharing module.
Obtains the ATP curve data and is responsible for providing the curve
DB10
data to the target module.
DB11 Updates the train monitoring data and is responsible for providing the
updated train monitoring data to the data sharing module.
Obtains the train monitoring data and is responsible for providing the
DB12 . o
train monitoring relevant data to the target module.
TABLE 8. Relationship mapping of DB and DF
DATA DATA
FLOW IDENTIFIER OF INF TYPE FLOW IDENTIFIER OF INF TYPE
DF1 DB1 DF7 DB7
DF2  DB2 DF8  DB2, DBJ, DB6, DBS
DF3 DB3 DF9 DB9
DF4  DB2, DBJ DF10 DB2, DBJ, DB6, DBS, DB10
DF5 DB5 DF11 DBIit1
DF6  DB2, DBJ, DB6 DF12 DB2, DBJ, DB6, DBS, DB10, DB12

A function operating model is composed of multiple operator meta-models. The data
flow between the operators or functions constitutes the ATP logic functions. The operator
meta-models or function models involved in this paper are shown in Table 9. Consequently,
the function is described in precise mathematical semantics, which is accurate, consistent
and unambiguous with respect to the designed model.

5. Code Generation from Model. Based on the models built in the above chapters,
a series of model files will be generated. We choose XML to describe the models, because
of its flexibility and scalability. Besides, XML and XSLT provide a good programming
model of metadata, and XSLT can convert XML files into any format [19,20]. So, we
propose the “XML + XSLT” method to implement code generation in this paper.
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TABLE 9. The operation models and function models

OPERATION EXPRESSION DESCRIPTION EXPRESSION DESCRIPTION

a+b Add[a, b] axb Mult[a, b]
ARITHMETIC - Subla, b] a/b Diva, b]
OPERATION 77 Mod[a, b]

a&&b Andla, b] a&b BitAnd]a, b]

allb Orla, b] alb BitOr]a, b]
g(l?’(];r;iTION la Not[a] a>b GreaterThan|a, b|

a<b Shiftleft[a,b] a<b LessThanla, b]

a>b Shiftrightla,b] a=b Equal[a, b
FUNCTION  AVG[a,0] Sub[Add[a,b],2]  SUM[a, b, Add[Addla, 0], ]
OPERATION User_defined

Software | Source
Requrement Model generator 2ATP Madel | generator (XIML) | import Destination
Specification e XSLT docuiments
processor (*.cpp,*h)
Cuzljiifvil;l:::lililar(l i Rules (XSLT) [ mport
S

FI1cURE 8. Schematic diagram of code to generate an implementation
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FIGURE 9. An example of code

generation with XSLT

The code generation schematic diagram of the ATP model is shown in Figure 8. The
XML source file is generated according to the data structure of the model, which is
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designed in Sections 3 and 4. Based on the coding specification and documentation
conventions [21], the XSLT template file customized by the user is generated. With the
use of a conversion tool (XSLT processor), we can automatically generate C-language
target source code.

Figure 9 shows an example of code generation with XSLT. The left file “transclass.xslt”
is the template file which translates the model file shown in Figure 8. By loaded into the
XSLT processor with the XML files shown in Figure 8, finally the processor generates
the target codes as shown in the right of Figure 9. In this way, the naming and coding
style can be consistent throughout all the progresses, greatly improving the development
quality. When updated, by changing the source model files and re-running the generator,
the code will be renovated, so we can accomplish “long term” responsibility for renewed
code without changing the generator. Furthermore, it will promote the development
efficiency by using the model files and code template as a prototype for the development
of a similar system.

6. Implementation and Case Studies. According to the approach described above,
an automatic code generation toolkit is implemented. The toolkit consists of three soft-
ware tools: the ATP model generator, the Code template generator and the Auto-code
generator. First, the detailed models are established from the configurable ATP frame-
work model; then, the template XSLT files are obtained from the coding specification;
finally, the final codes are generated based on the models and the templates, as shown in
Figure 9.

6.1. ATP model generator. This toolkit builds the interface model, architecture model
and functional models for ATP system, as is shown in Figure 10.

The interface model includes RS interface, SENSOR interface, BEACON interface and
COM interface model. Users can directly use this model or customize the model according
to actual demands. An example of setting IO interface model in shown in Figure 11: A
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FIGURE 12. (a) Data flow of function [-CalcNo VitalSpeed], (b) an example
of constraints between the modules

list of input/output RS models could be chose in Figure 11(a); developers can configure
rules for each IO signal, or a series of signals, as shown in Figure 11(b) and Figure 11(c).

According to the architecture model that the user selects, different partition of modules
will be generated; after that, developers can design each functional module through an
operator meta-model or a function model via this toolkit. An example of function model
from [MeasureSpeed] module is shown in Figure 12(a). Meanwhile, as described in Section
2.4, the constraints are also taken into account in this toolkit. For example, the dataflow
[DF11] in Figure 10 comes from Module [MeasureSpeed] to Module [Localizaiton], and
the parameters of the two modules are shown in Figure 12(b), so the dataflow of this
connection must be subset of their intersection.
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FIGURE 13. Interface of a code template generator

6.2. Code template generator. As shown in Figure 13, it generates the style rules of
the source code according to the coding specification of the project. Developers can edit
and configure the code style via this toolkit.

6.3. Auto-code generator. After the above steps, based on the template and model
files, the Auto-Code generator automatically generates C language code as shown in Figure
9.

7. Conclusions. In safety critical areas, a high degree of safety and reliability are key
factors for the system. Model-driven techniques help to avoid errors in the software devel-
opment process. This paper presented a novel approach to model-driven code generation
method for the ATP system, which built a model of a common ATP framework includ-
ing interface, architecture, and function models. Developers can customize these models
according to their actual needs. A set of toolkits is also developed to implement this
procedure automatically. According to the XML model files that are generated from the
models by the toolkits, together with the XSLT code template files, the target codes gen-
erated in an automatic way. A significant decrease in development time, number of errors
was observed by using this tool, while consistency between requirements and source code
is guaranteed. The automatic code generation approach proposed in this paper not only
ensures the logical correctness of the ATP, but also provides a convenient and effective
path for development. The ATP codes generated by the approach proposed in this paper
are emulated on a simulation platform, and the simulation results are well satisfied the
design objective of the system.

Acknowledgment. This work is partially supported by National Science and Technol-
ogy Infrastructure Program of China (Grant No.: 2011BAG01B03). The authors also
gratefully acknowledge the helpful comments and suggestions of the reviewers, which
have improved the presentation.



6344 X. CHEN, P. LIU, X. QIU, H. HUANG AND H. DUAN

REFERENCES

[1] H. Wang, C. Gao and S. Liu, Model-based software development for automatic train protection
system, Proc. of Computational Intelligence and Industrial Applications, pp.463-466, 2009.
[2] T. Lodderstedt, D. Basin and J. Doser, SecuretUML a UML-based modeling language for model-
driven security, Proc. of Unified Modeling Language, pp-426-441, 2002.
[3] F. Badeau and A. Amelot, Using B as a high level programming language in an industrial project,
Proc. of Formal Specification and Development in Z and B, pp.334-354, 2005.
[4] A. E. Haxthausen, An Introduction to Formal Methods for the Development of Safety-Critical Ap-
plications, http://www2.imm.dtu.dk/courses/02263 /F11/Files/FormalMethodsNoteTS.pdf.
[5] F. Lindlar and A. Zimmermann, A code generation tool for embedded automotive systems based on
finite state machines, Proc. of Industrial Informatics, pp.1539-1544, 2008.
[6] B. Vogel-Heuser, D. Witsch and U. Katzke, Automatic code generation from a UML model to JEC
61131-3 and system configuration tools, Proc. of Control and Automation, pp.1034-1039, 2005.
[7] E. Denney and S. Trac, A software safety certification tool for automatically generated guidance,
navigation and control code, Proc. of Aerospace Conference, pp.1-11, 2008.
[8] A. Ferrari, A. Fantechi, S. Bacherini and N. Zingoni, Modeling guidelines for code generation in the
railway signaling context, Proc. of the 1st NASA Formal Methods Symposium, pp.166-170, 2009.
[9] A. Ferrari, M. Papini, A. Fantechi and D. Grasso, An industrial application of formal model based
development the MetrO Rio ATP case, Proc. of the 2nd International Workshop on Software Engi-
neering for Resilient Systems, pp.71-76, 2010.
[10] B. Selic, The pragmatics of model-driven development, IEEE Software, pp.19-25, 2003.
[11] IEEE standard for communications-based train control (CBTC) performance and functional require-
ments, I[EEE STD 147/.1, 1999.
[12] IEEE recommended practice for communications-based train control (CBTC) system design and
functional allocations, IEEE STD 1474.3, 2008.
[13] CENELEC, Railway applications — Communications, signaling and processing systems — Software for
railway control and protection systems, Furopean Committee for Electrotechnical EN 50128, 2001.
[14] L. Yang and K. Li, The railway transportation planning problem and its genetic algorithm based
tabu search algorithm, ICIC Express Letters, vol.3, no.3(A), pp.361-366, 2009.
[15] G. Vachkov, Growing neural models for process identification and data analysis, International Jour-
nal of Innovative Computing, Information and Control, vol.2, no.1, pp.101-123, 2006.
[16] E. Gamma, Design Patterns: Elements of Reusable Object-Oriented Software, Addison-Wesley Pro-
fessional, 1995.
[17] F. Wagner, R. Schmuki, T. Wagner and P. Wolstenholme, Modeling Software with Finite State
Machines: A Practical Approach, Auerbach Publications, 2006.
[18] F. V. Barajas, A formal model for the building of state machines: A lightweight approach, Proc. of
Software Engineering Workshop, pp-194-203, 2007.
[19] J. Jelena and G. Dragan, Achieving knowledge interoperability: An XML/XSLT approach, Ezpert
Systems with Applications, vol.29, no.3, pp.535-553, 2005.
[20] S. Sendall and W. Kozaczynski, Model transformation: The heart and soul of model-driven software
development, IEEE Software, vol.20, no.5, pp.42-45, 2003.
[21] T. Cargill, C++ Programming Style, Addison Wesley Professional, 1992.



