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Abstract

Let v be a probability measure on 2. We define the upper and lower multifractal box dimension (the measure v with
respect to u) on a probability space and investigate the relation between the multifractal box dimension and the mul-
tifractal Hausdorff dimension, the multifractal pre-packing dimension . Then, we generalize the dimension inequalities
of multifractal Hausdorff measures and multifractal packing measures in a probability space.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

Multifractal theory has been discussed by numerous authors and it is developing rapidly. Very recently there has
been an enormous interest in verifying the multifractal formalism and computing the multifractal spectrum of measures
in the mathematical literature and within the 5 or 6 years the multifractal spectra of various classes of measures in
Euclidean space R? exhibiting some degree of self-similarity have been computed rigorously. But the nature many things
have the smoothness and the complexity often are not stochastic. Therefore, the research multifractal theory needs in
the general probability space.

In 1995 Olsen established a multifractal formalism (see [1]). In 2000, Olsen developed the dimension inequalities of
multifractal Hausdorff measures and multifractal packing measures (see [2]). Li and Dai established a multifractal for-
malism in a probability space in 2006 (see [3]). Applying the above idea, we may develop the analogue of the dimension
inequalities of multifractal Hausdorff measures and multifractal packing measures.

We now give a brief description of the organization the paper. Section 2 contains preliminaries . In Section 3, we
define the lower and upper multifractal box dimension (the measure v with respect to the measure x) in a probability
space and investigate the relation between the multifractal box dimension and the multifractal Hausdorff dimension, the
multifractal pre-packing dimension. In Section 4, we generalize the dimension inequalities of multifractal Hausdorff
measures and multifractal packing measure in a probability space.
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2. Preliminaries

In this paper, we want to yield a generalization multifractal box dimension in a probability space.
Let we start with a fixed stochastic process {X,, n € N} on a probability space (Q, 7, i) taking values in a finite or
countable state space E. A cylinder set C of rank # is of the form

C=A{ow: Xi(w)=k, i=12,...,n}
with k; € E. For each o, € Q there is a unique cylinder set of rank n, denoted by u,(w), which contains w,. Thus
u,(wy) ={w: Xi(w) =X (), i=1,2,...,n}.

We assume the process is % -measure, that is that ¥ C % ,where ¥ is the class of all cylinder sets. We use sets in € for
both covering and packing. Many details of classical proofs are greatly simplified because € is nested; that is, give
C1,Cy € €, either CyN Cy, =0 or C; C G, or C, C C1. We use sets in € for both covering and packing.

In this paper, we will assume that p is # = o(%)-continuous, that is

lim pi(u,(w)) =0 for all w € Q.
Let A C Q and 6>0. A countable family # = {C; = u,(w;)}, is called J-covering of 4 if 4 C U;,C;, w; € A and
w(uy(w;)) <o for all i. The family 8 = {C; = u,(w;)}, is called centered J-packing of 4 if w; € A, p(u,(w;)) <o and

C;NCy=10forall i #j. Let v be a probability measure on .
For g € R, define ¢, : [0,00) — R, = [0,00] by

® +o0o for x =0, R 0
X) = or g < 0;
?q x4 for x > 0, 1

¢,(x)=1 forg=0;

® 0, forx=0, " 0
o, (x) = or g > 0.
Pa x?  for x > 0, 1

Let ) # A C Q and 6 > 0, Suppose v is a probability measure on (2, 7). For ¢, € R, write

lm) = inf {Z @ (v (u(Cy)) : 4 C UGy, u(Cy) < 0 and C; = u,(w) with o EA},
L) =l L (4) = sup L (4), 1)
HIL(A) = sup A (4)
A;Cc4
and
}Zl\é —Sup{Z(pq (/)t (Cl))clmc/:®7 l#]: :u‘(cl)<57 and Ci:un(w) WlthweA}7
Pu(A) = lim 2], (4) = inf 271 (4), (2.2)

P (4 mf{Z/’q’ AcuA}

In fact, it is easily seen that the following holds for > 0:
L (4) < A }5(4),

v

2,(4) = 2,,(4), (2.3)
(1) = P4 ),

v

where L’ .(4) denotes the ¢-dimensional Hausdorff measure with respect to x, 7’ denotes the z-dimensional packing mea-
sure and 2, denotes the /-dimensional pre-packing measure with respect to . It is easily seen that the usual assign way
a dimension to each subset 4 of Q: there exist unique numbers dim?, ,(4), 4% (4), Dim? (4) € [~o0, +o0] such that
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dim? (4) = sup {t LA () = +oo} —inf {z LA () = o},

A7 (4) = sup {t L P (4) = +oo} = inf {z L P (4) = o}, (2.4)

wy wy

Dim? (4) = sup {t cP(4) = +oo} =inf {t PV (A) = 0},

Y Vv Vv

which are respectively called multifractal Hausdorff dimension, pre-packing dimension, packing dimension with respect
to u in a probability space. For convenience, we write

buya(g) == dimy (4),

Auvalq) = 47 (4),

Byyv.a(g) == Dim{ (4),

b(q) == by,(g) = dimj, (supp u N suppv),

A(g) = Ayy(q) = 4 ,(suppu N suppv),

B(q) := By.,(q) = Dim{ (supp u N suppv).
It is also readily seen that

b(q) < B(q) < A(q).
In fact, Eq. (2.1) imply that

dim,, (4) < dim), (4),

A,(4) = 4;,(4),

Dim,(4) = Dim"_(4).

1y

We are now ready to introduce new indices.

3. Multifractal box dimensions in a probability space

We now define multifractal box dimensions in a probability space. We first recall the definition multifractal box
dimensions (see[1]). Let u € Z(R?) and ¢ € R. For E C R and ¢ > 0 write

8 5(E) := sup {Z W(B(x:,0))? : (B(x;,0)), is a centered packing of E} (3.1)

The upper respectively lower multifractal g-box dimension 674 (E) and CY(E) of E (with respect to the measure ) is de-
fined by
log SZ‘(;(E) q log SZ,& (E)

CY(E) := liminf

b 310 —logé (32)

CU(E) = li
WE) 1n;ﬁ)up —logé
If FZ (E) = (o) (E) we refer to the common value as the g-box dimension of E (with respect to the measure u) and denote
it by CY(E). There is another equally natural way to define g-box dimensions. For ¢ € R and 6 > 0 write

T 5(E) := sup {Z,u(B(x,», 8))? : (B(x;,0)), is a centered covering of E} (3.3)

and set

log 7% ,(E
L9(E) = liminf 28T E)

_ log T S(E)
oy og s (E)
LI(E) = lim sup Zu 510 —logd

4
310 — log o (3 )

We will now define the generalization multifractal box dimensions in a probability space.
Let v be a probability measure on (2,7 ). For A C Q and J > 0 write

S7, 5(4) = sup {EV(C,»)" LCNC =0, 04, wy(C) <8, C =), oe A}. (3.5)

i
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The upper respectively lower multifractal g-box dimension 6;1” (4) and CY (4) of A (the measure v respect to the mea-
sure u) in a probability space is defined by

e . log §7,,.5(4) .. . logS? (4)
C?,(4) = limsup ——"=——= Y (4) := liminf ——""——

510 —logs = M 510 —logéd (36)

The number E" ,(4) is an obvious multifractal analogue of the upper g-box dimension fZ(A) of A as given in [1],

whereas C4 (4 ) is an obvious multifractal analogues of the lower g-box dimension C%(4) of 4 in a probability space.

==,V

Also observe that
Eﬁ,v(A) = 6#(‘4)’ c (A) = Q“(A).

=,y

If ?‘1 ,(4) = €I (4) we refer to the common value as the g-box dimension of 4 (the measure v with respect to the mea-
sure /1) and denote it by €4 (4).
There is another equally natural way to define g-box dimensions. For ¢ € R and 6 > 0 write

TZ‘(S(A) = inf {Z V(C,’)q A C U,‘Cl‘, H(C,) < 5, C,‘ = u,,(a)), [ONS A} (37)

i
and set

log T, 5(4 log 7%, 5(4
8 Tussl) 1o () = timng 0 ersl)

T4 — i
L7 (A4) := limsup ni “Togo

wy 510 flogé

The next results summarize the important inequalities between E" ,C L4 L9 and dim? , 47 .

==,y Ty =y wy? my*

Proposition 3.1. Let v be a probability measure on (Q, %) and A C Q, then

(i) Lj, < G, for g € R;
(i) L9, < CY, for g €R

Proof. (i) Let {C;}, C € be a centered o-covering of A. It follows from the properties of % that we can suppose
C;N C;=10 for i # j, hence {C;}; is a o-packing of 4, then by (3.5) and (3.7) we have

TY,5(4) < 3 M(C) < 51, 5(4)

Taking logarithms and letting J | 0 yields ¢ < C? by (3.6) and (3.8).

=y N =y

(ii) The proof of (ii) is similar to that of (i). O
Proposition 3.2. fﬁ,v = A7, for g eRand v € 2(Q).

Proof. Put ¢ := A% (4). Let A C Q and £ > 0. We may choose 0 < J, < 1 such that

oy

PU4) <1, for 0 <6 <0,

v,0

Fix 0 <6 <9, and let {C;}, C 4,2 < u(C;) < & be a centered packing of A.
For ¢ <1, we have AW > 0, then ¢+ ¢ > 0, hence

S —(t+¢) " S —(t+u)~ N S —(t+¢)
Swer =a eyt < (3) Yarmer < (3) Zmws(3)

whence S} 5(4) < (5)_(’“). Taking logarithms then yields
logS?, ,(4) (4 #)log2
080\ . 39
—logd (t+¢) log o (39)

For ¢ > 1, we have A" < 0, then ¢+ ¢ <0, hence
Z =5 1+£)Z q51+£ 5—(!+£) ZV(Ci)qM(Ci)t+£ 5 (t+e) _yztf;(A) < 5—(1+£)7

i i
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whence 8¢ (4) < 6“9, Taking logarithms then yields

1,0

1,0

log S? s(A)
e AP 10
“logo +eé (3.10)
Letting 6 | 0 for (3.9) and (3) now yields GZ,v(A) < ¢+ ¢ by (3.6), which completes the proof of GZ‘,\’(A) < 4% (4) since
&> 0 was arbitrary.
On the other hand, if s > EZ‘V(A) > 0 then Ve > 0, s + ¢ > lim supy
J-packing of 4. Thus

Yo <,

i

IOgSZ,\-.(»‘(A)

—fa5— hence S7

¢ ,6(4) <070 Let {C));bea

which implies that
DoMCY W(EC) T < FT Y N(C) <5 = 1,

we have by (2.2)

PUHA) < 1,

o
hence from (2.4)
29 (4) <s+e.
Since ¢ > 0 is arbitrary, it follows that 47 (4) < f‘fw(A). Hence
cl =41 O

Proposition 3.3. dim? (4) < L] (4) for g € R and v € 2(Q).

y
Proof. In order to prove dim{ (4) < L{ (4), it is thus sufficient to prove V¢ > L¢ (4), ¢ > dim],
in assuming L? (4) < +oo.

Suy

We now must prove that

(A4), There is no harm

H(4) = sup AU (B) < +o0
: BcA

q
log !, (4
—logd

for all B C A. Since t > LZJ,(A) = liminfj)o

log TZ,\'_(S,, (A)
—logé,

there exists a sequence (d,,), such that o, | 0, 9, € (0,1) and
for n € N,

which implies
6, > T s (A).

V.00

For n € N then there exists a centered o,-covering {C;},.y C % of A4 satisfying
5,1 > > v(C)".

Let n € Nand put I = {i|C; N B # 0}. For i € I choose w; € C; N B, then {u,(w;)};is a centered J,-covering of B, whence
from (2.1)

A5 (B) < S v(un(0)) 1y () < 8, v(un ()" < 8,3 W€ < 8,5, =1 < +oo.

Letting n — oo gives %Z"(B) < 1 for all BC A. Whence %va(/l) < 1 < 400 and the proof is complete. [

It follows immediately from Propositions 3.1-3.3 the following Theorem 3.4 hold.

Theorem 3.4. dim? , <L{ =C% <Li = flqu = A4

=,y =pu,v ny:
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4. Multifractal dimension inequalities in a probability space
Let w € Q, define the upper, lower local dimension of v at a point w respectively by

Oy (w) = limsup 11 0g V(ty(®)) oy (o) == liminf log v(un())

oo (u"(w)) ' n—00 log ,u(u,,(a))) ’ (4'1)

If @,,(») and o, ,(w) agree we refer to the common value as the local dimension of v with respect to y at @ and denote it
by o, (). Put

M5 = Sy.s(supp N suppy), (4.2)
the lower and upper multifractal ¢g-box dimensions z,,,(¢) and 7,,,(¢) of v with respect to u are defined by

.. IOgMZV‘(; _ . log M ,“(3
lu‘v(q) = hl’gl_)lglf Tgé’ 'C“_v(q) = lim sup Tgé . (43)

60
Recall that if /: R — R is a convex function and x € R, then we denote the left derivative and the right derivative of fat

x by D_f(x) and D f(x) respectively. We can now state our main results.

Proposition 4.1. Let v € #(Q) and q,t € R.

qut < yfqt ]qf ﬁqt

4 4
(i1) dlmw < D“ . /u’ in partlcular bw < By, < A,,. Also /lw =Ty

Proof. Statements (i), (ii) follow from [3].
Proof of (iii): It follows from %', > #! for g < p and #% > #9 for t < s that b, is decreasing. The proofs of

v

B, , and 7,, decreasing are 51m11ar to the proof of b, decreasmg
We now prove that B, , is convex as follows. Firstly, we may prove that 7  is logarithmic convex, that is

op+(1—a)q,at+(1—o)s pps % Taqs I—a
Dm0 ) < (P ) (Pg3(4) (44)

1V

for all « €[0,1], p,q.t,s € R and A C Q. In fact, let ¢, 6 > 0, for all centered J-packing {C; = u,(w)},cn of A, we have

Do) =Y () ((C) ) ((V(C) (€)' (by Hlder inequality)

i i

< {Z(V(G))"(#(G))’} {Z(V(Ci))"(u(Ci))"} (by (2.2))

i i

(P () (P 5(A)'

1,0

hence

gt g) < DL ) < (D) (P )L forall 6> 0.

AR

Letting 6 — 0 gives (4.4).
Let p,g e R, o €[0,1] and ¢ > 0. Write B, , 4(p) =t and B,,, 4(q) = s. Clearly

P (A) = 0 = P0(A).

wy

We can thus choose coverings (H;);,en and (K;);en of 4 such that

DOPUH) <L, Y PEEK) < L.

i i
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For n € N, write 4, = U] ,_,(H: N K;). Fix n € N, we have
o, 1—o)q,ut+(1—o)s+e a, 1—o)q,a(t+e 1—o)(s+e
glfj( )q.cut+(1—2) (4,) = ylfj( )g.(t+2)+(1-0) (s+2) <U (H;N Kj))
ij=1

Zl - IWWHI o)q,o(t4e)+(1—o) (s+e) (H, N K/)

< Z G-t (=060 (|, K ) (by (4.4))

1V

n oy (1—a)
< (Prrink)) (P47HNK)) T (by Holder inequality)
ij=1

VA
pauieY
[
S
W
=%
b
X
D
5
S—
PR
(3
S
)
=
I
S
D
=
N
8
N—

N

<n*n T =n < 4oo,

I
/3\/—\
=
—
S
=3
S
—~
X
N
[
~
//
N
T =
—
S
=<
=1
=
Z
~—
T
&
~
/
3

hence
Dlm’“(1 "M(4,) <at+ (1 —a)s+e forallneN.
Since 4 C U,4,, this implies that
Buva(op+ (1 —a)g) = Dim;“f‘,*(l’“)q(A) < Dim;f",*(lf“)q(unA ) = sup Dlm“’”(l (4,

< o(BAA.V.A (P) + (1 - “)Bu,\'-«‘l (Q) +e.
Since this is true for any ¢ > 0, convexity of B, , is proved. [

It follows from logarithmic convexity @Z{ that convexity of 4, ,. Applying Proposition 3.2, we can have convexity of

Ty
(iv) follows immediately from (ii) and (iii).

Proposition 4.2.

(i) If by, is convex, then we have for sz:ﬁ“"‘(q)\supp,u Nsuppv — a.e. w,
—=Dibyy(q) < %uy(®), tuy(@) < =D-byy(q);

(ii) We have for 245+ |supp N suppv — a.e. o,
—D.B,y(q) < %u(®),  tuy(@) < =D-Byu(q)-

Proof. (i) Proof of —D.b,,(q) < &,,(w) for %Z’_"’,ﬂv"(")\suppu Nsuppv —a.e. w: write a = Db, ,(q) and let
F :={w € suppunNsuppv: —a > d,,(w)}.
To prove —a < @,,(w) for %Z’_{’,"v“(msuppu Nsuppv — a.e. w, it suffices to prove that
bu(q) —
A D (F) = 0.

Fix ¢> 0, put

E = {w € suppu Nsuppv : liminf M > 1}.
n=oe iy (@)

It clearly suffices to prove that %Zf"-“(q) (E) =0 since F C E. In fact, Vo € F, from (4.1) we have

|
4> limsup IOMM

oo l0g pu(u,(@))’
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hence 3¢ > 0 such that

1
—a— &> limsup 122" 4(@)
n—oo IOg lu(un(w))
N v(u, (w)ﬂH
t(un ()
whence w € E.
By the definition of right derivative a = DB, ,(g), there exists 2> 0 such that M < a+ ¢, whence
bu(q+h) <b,(q)+ ha+ ¢), and we therefore deduce that

A4 D) (supp M suppv) = 0. (4.5)

—a—e

= (—a—&)log u(u,(w)) <logv(u,(w) = plus(w)) " < v(u,(w))

> 1,

Also observe by the equivalence theorem of limit inferior that for each w € FE there exists a positive number N, such that
forn>N

V(@) (1, ()™ u, ()1 v, () 1w, (@)
)1 ) < () 5 () ) > 1
hence
(14, ()" 10 ()" < (1, (00)) 7 a0, (00)) O, (4.6)

It now follows easily from Egs. (4.5) and (4.6) that:

%Z'ﬁ"”(q)(E) < %Zth,b,l.v(qﬂh(aﬂ) (E) =0.

Proof of () <— D_by,,(q) for #%4@|suppunsuppv — a.e. w: write a = D_b,,(¢) and let

F :={w € supppuNsuppv : o,,(w) > —a}.

To prove o, (w) <— D_b,(q) for %Zﬁ““‘(q)\supp,u Nsuppv — a.e. w, it suffices to prove that
buv(a) _

AV (F) = 0.

Fix ¢ > 0, put

E = {w € supppu Nsuppv : limsup % < 1}.
n—00 .u(“n(w))

It clearly suffices to prove that JKZ:’\’,“-“(") (E) = 0 since F C E. In fact, Vo € F, from (4.1) we have
4 < liminf 28 (@)
P2 Tog k(@)
hence 3¢ > 0 such that

e o ()
e g (@)
V(i ()

7 (@)

whence w € E.
By the equivalent propositions of convexity of b,,, there exists 2> 0 such that M > a — ¢, whence
bu(q —h) <b,.(q) — h(a — ¢), and we therefore deduce that

—h by (q)~h(a—e) _
Al (suppuNsuppv) = 0. (4.7

= (—a+¢)1og pu(uy(w)) > logv(uy(@) = u(uy(@)) " > v(us())

<1,

Next observe by the equivalence theorem of limit superior, that for each @ € E there exist a positive number N such that
vty ()" 1t ()" < vty ()" (it (00))"07HD for n > N. (4.8)
It now follows easily from (4.7) and (4.8) that:
,%)Zf“'“((]) (E) < P}/[/Z;hvbn.v(q)*h(ufﬁ) (E) =0.

(ii) The proof of (ii) is similar to the proof of (i). O
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Lemma 4.3. Let v € 2(Q) and g € R. For J/Z‘ff‘“'
_D+Bu,v(q) g gum(w) g a/t,v(a)) g _D—B;z,v(q)~

supp L N suppv — a.e. w, we have

Proof. Proof of —DyB, \(q) < o, () for %Zf‘q"“|suppu Nsuppv —a.e. w: write A = D, B, ,(¢). Fix &, >0 and let

E = {w € supppu Nsuppv : liminf % > n}.
e (@)

It clearly suffices to prove that #4%~%(E) = 0.
By the definition of right derivative 4 = D, B, ,(q), there exists & > 0 such that

Bu,\'(q + h) - Bu.v(q)
h
whence B, ,(q + 1) < B, .(q) + (A + ¢), and we therefore deduce that

<A+e,

pa+h.Buuy (q)+h(A+e) ) —
P (supppNsuppv) = 0.
Also observe by the equivalence theorem of limit inferior, that for each w € E there exists a positive number N such that
V(1 (@) 11t ()" D < 79 (1t () 1ty (0)) PO for p > N,
and we therefore deduce that
2q:Buv(q) —h agpq+h.Byy (q)+h(A+¢)
AL E) < oA (E).

It now follows easily from

q+h.Byy(q)+h(A+e) gp9+h.Buy(q)+h(A+e)
’%’/)u,v o < '/u,v o

that
H i D (E) < e () = 0.
Proof of &,,(w) < —D_B,,(q) for #4%?|supppnsuppv — a.e. w : write A = D_B,,,(q). Fix &, k>0 and let
E := (¢ w &€ suppunsuppyv : limsup % <ky.
ooy (@))

It clearly suffices to prove that %Zf“-“q) (E)=0.
By the equivalent propositions of convexity of B,,, (by Proposition 4.1), there exists 4> 0 such that w >
A — ¢, whence B, (¢ — h) < B,,,(q) — h(A — &), and we therefore deduce that

24 B 149 (supp A suppv) = 0. (4.9)
By the equivalence theorem of limit superior for each w € E, there exists a positive number N such that
(1t ()7 iaty ()"0 < v ()" ity ()M for n > N,
and we therefore deduce that
A (E) <t A4 B @A ).
It now follows, from Proposition 4.1 and Eq. (4.9), that
A D(E) S Ko PPl =0, O

Proposition 4.4. Write t = b, ,(q) and AL = D, B, (q). Assume that b, ,(q) = B, (q). For %Z‘ﬁﬂsupp wnNsuppv —a.e. @
we have

—A: < tyy(w) < Tpy(w) < —4-. (4.10)
Proof. Inequality (4.10) follows from Lemma 4.3.

Since b,,\(1) = B,,(1) =0 (cf. Proposition 4.1) and " is equivalent v, Proposition 4.4 yields the following
corollary by setting ¢ = 1.
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Corollary 4.5. Let v be a probability measure on Q.

(1) We have
—DB,,(1) < ayy(w) < %yy(w) < —D_B,,(1), forv—a.e. w; (4.11)
(i) Write © =7,,, since =Dt (1) < —D+B,, (1) and —D_B,, ,(1) < —D_1(1) (by Proposition 4.1), (4.11) implies that
—Dit(1) < op(w) < 9yp(w) < —D_1(1) for v—a.e. o. (4.12)

5. Conclusion

The present research is about the multifractal formalism. The conceptions of the multifractal spectrum and all kinds
of multifractal dimensions have been developed by previous a few of authors which include mathematician and phys-
icist. In this paper, we establish the conceptions for lower and upper multifractal box dimensions in a probability space,
investigate the relation between the multifractal box dimension and multifractal Hausdorff dimension, multifractal
packing dimension in a probability space. Furthermore, we explore the dimension inequalities of multifractal Hausdorff
measures and multifractal packing measures in a probability space.

We note that some scholar such as El Naschie [7-17], Ord et al. [18,19], and Nottale [20] have achieved many valu-
able results on the same subject and application. Our paper is relevant to their work published in Chaos, Solitons and
Fractals. It is particularly relevant in physics for relation between the dimensions of E-infinity theory and sphere pack-
ing problem researched in high energy physics [1-18]. Therefore researches concerning fractals and the multifractal for-
malism in a probability space is very significant.
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