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GROUND STATE SOLUTIONS FOR ASYMPTOTICALLY
PERIODIC SCHRÖDINGER EQUATIONS WITH CRITICAL

GROWTH

HUI ZHANG, JUNXIANG XU, FUBAO ZHANG

Abstract. Using the Nehari manifold and the concentration compactness

principle, we study the existence of ground state solutions for asymptotically
periodic Schrödinger equations with critical growth.

1. Introduction and statement of main results

In recent years, there have been many works on the existence of non-trivial
solutions for the nonlinear Schrödinger equation

−∆u+ V (x)u = g(x, u), (1.1)

due to its physical and mathematical interests; see for example the references in
this article. Especially, the study of ground state solutions has made great progress
and attracted many authors’ attention. Ground state solution is such a non-trivial
solution with least energy, which has great physical interests. The results mainly
depend on the spectrum of the operator A := −∆ + V in L2(RN ) (denoted by
σ(A)), the periodicity of V and g, and the growth condition of g since they effect
the restore of compactness.

According to the location of 0 in σ(A), we have three cases: inf σ(A) > 0; 0 lies
in a gap of σ(A); and 0 is a boundary point of a gap of σ(A). For details, see [7, 11].
In this paper, we are concerned with the first case.

Many authors focus on the case that V and g are periodic in the variable x. When
g satisfies subcritical growth condition, there are many results, see [6, 13, 15, 19,
23]. Moreover, the authors made many efforts to weaken the classical Ambrosetti-
Rabinowitz condition for g and the differentiability of g. Recently, Szulkin and Weth
[19] showed that problem (1.1) possesses a ground state solution under Nehari-type
conditions for merely continuous g. Later, for g with critical growth, in [25] we
considered the existence of ground state solutions of (1.1).

Other authors turn to study asymptotically periodic Schrödinger equations of the
form (1.1). Equation (1.1) is called asymptotically periodic if it can approach to a
periodic equation in some sense as |x| → ∞; in the sequel we explain the meaning
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of asymptotic periodicity. Silva and Vieira [18], Lins and Silva [14] considered
equation (1.1) with subcritical growth and critical growth g respectively. However,
they obtained only the existence of non-trivial solutions for (1.1).

Motivated by these works, we focused our interest in ground state solutions for
asymptotically periodic equation (1.1) with critical growth. Note that for asymp-
totically periodic equation (1.1) with subcritical growth, we can have similar result.
But it is much simpler than the critical growth case and then we ignore this case.
We consider the equation

−∆u+ V (x)u = K(x)|u|2
∗−2u+ f(x, u), x ∈ RN ,

u ∈ H1(RN ),
(1.2)

where V , K and f are asymptotically periodic in the variable x.
In what follows, the notation inf is understood as the essential infimum. First

we make some assumptions on the functions V and K:
(H1) V ∈ L∞(RN ), infRN V > 0,
(H2) K ∈ L∞(RN ), infRN K > 0, and there exists a point x0 ∈ RN such that

K(x) = |K|∞ +O(|x− x0|N−2), as x→ x0.
For the nonlinearity f , setting F (x, u) =

∫ u
0
f(x, s)ds, we assume that

(H3) f ∈ C(RN ×R,R), |f(x, u)| ≤ a(1+ |u|q−1), for some a > 0 and 2 < q < 2∗,
where 2∗ = 2N/(N − 2), N ≥ 3,

(H4) f(x, u) = o(u) uniformly in x as u→ 0,

(H5) u 7→ K(x)|u|2
∗−2u+f(x,u)
|u| is increasing on (−∞,0) and (0,∞),

(H6) (i) F (x,u)
|u|2∗−2 →∞ uniformly in x as |u| → ∞, if N = 3,

(ii) F (x,u)
u2 log |u| →∞ uniformly in x as |u| → ∞, if N = 4,

(iii) F (x,u)
u2 →∞ uniformly in x as |u| → ∞, if N > 4.

Let F be the class of functions h̃ ∈ L∞(RN ) such that, for every ε > 0 the set
{x ∈ RN : |h̃(x)| ≥ ε} has finite Lebesgue measure. The asymptotic periodicity of
V , K and f as |x| → ∞ is given by the condition

(H7) there exist functions Vp,Kp ∈ L∞(RN ) and fp ∈ C(RN × R,R) such that
(i) Vp,Kp and fp is 1-periodic in xi, 1 ≤ i ≤ N ,
(ii) V −Vp,K−Kp ∈ F , |f(x, u)−fp(x, u)| ≤ |h(x)|(|u|+ |u|q−1), x ∈ RN ,

h ∈ F ,
(iii) V ≤ Vp, K ≥ Kp and F (x, u) ≥ Fp(x, u) :=

∫ u
0
fp(x, s)ds.

(iv) u 7→ Kp(x)|u|2
∗−2u+fp(x,u)
|u| is nondecreasing on (−∞, 0) and (0,∞).

Theorem 1.1. If (H1)-(H7) are satisfied, then the problem (1.2) has a ground state
solution.

Remark 1.2. The assumption (H5) is inspired by [19]. As in [19], under the
condition (H5), the method of Nehari manifold is valid. Then we use the method of
Nehari manifold to find ground state solutions for (1.2). In addition, the condition
(H6) is inspired by [19] and [14], and it will be used to restrict the functional level
to a suitable interval and then overcome the difficulties brought by the critical term
K(x)|u|2∗−2u. The condition (H6) is stronger than the condition (g5) in [14], since
here we need to obtain the boundedness of PS sequence without the condition (g3)
in [14].
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The proof of Theorem 1.1 is mainly based on the method of Nehari manifold and
the concentration-compactness principle. We first follow the same outline as in [19]
to reduce our problem of looking for a ground state solution into that of finding a
minimizer on the Nehari manifold. We then apply concentration-compactness prin-
ciple to solve this minimization problem. As far as we know, for similar problems,
in most of the previous papers the weak limit of minimizing sequence is nontrivial
and the weak limit is the desired ground state solution (see, for instance, [13] and
[19]). However, inspired by [14], here we allow the case that the weak limit is trivial.

The article is organized as follows. In Section 2 we give some preliminaries. In
Section 3 we give our variational framework. In Section 4 we estimate the least
energy on Nehari manifold. In Section 5 we prove Theorem 1.1.

2. Notation and preliminaries

In this article we use the following notation. Denote R+ = [0,+∞). For 1 ≤
p ≤ ∞, the norm in Lp(RN ) is denoted by | · |p. For any r > 0 and x ∈ RN , Br(x)
denotes the ball centered at x with the radius r.

∫
RN f(x)dx will be represented by∫

f(x)dx. Let E be a Hilbert space, the Fréchet derivative of a functional Φ at u,
Φ′(u), is an element of the dual space E∗ and we shall denote Φ′(u) evaluated at
v ∈ E by 〈Φ′(u), v〉.

By (H1), we define the inner product and norm of the Sobolev space X :=
H1(RN ) by

(u, v) =
∫ (
∇u∇v + V (x)uv

)
dx, ‖u‖2 =

∫ (
|∇u|2 + V (x)u2

)
dx.

Define S1 = {u ∈ X : ‖u‖ = 1}. Moreover,

‖u‖2p =
∫ (
|∇u|2 + Vp(x)u2

)
dx,

is an equivalent norm in X by (H7)-(iii).
Let g(x, u) = K(x)|u|2∗−2u+f(x, u). The functional corresponding to our prob-

lem is

I(u) =
1
2
‖u‖2 −

∫
G(x, u)dx, u ∈ X,

where

G(x, u) :=
∫ u

0

g(x, s)ds =
1
2∗
K(x)|u|2

∗
+ F (x, u).

By (H1)–(H4), I is differentiable and its critical points are solutions of (1.2).
A solution ũ ∈ X of (1.2) is called a ground state solution if

I(ũ) = min{I(u) : u ∈ X \ {0}, I ′(u) = 0}.

In the process of finding ground state solutions for (1.2), the corresponding
periodic equation of (1.2) is very important. The corresponding periodic equation
is

−∆u+ Vp(x)u = Kp(x)|u|2
∗−2u+ fp(x, u), x ∈ RN ,

u ∈ X.
(2.1)

Let gp(x, u) = Kp(x)|u|2∗−2u+ fp(x, u). The functional corresponding to (2.1) is

Ip(u) =
1
2
‖u‖2p −

∫
Gp(x, u)dx,
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where Gp(x, u) :=
∫ u

0
gp(x, s)ds. Below we give some instruction for our conditions.

Lemma 2.1. If (H3), (H4) are satisfied, then for all ε > 0 there exist aε, bε > 0
such that

|f(x, u)| ≤ ε|u|+ aε|u|q−1, ∀u ∈ R, (2.2)

|g(x, u)| ≤ ε|u|+ bε|u|2
∗−1, ∀u ∈ R. (2.3)

If (H4) and (H5) are satisfied, then

0 < G(x, u) <
1
2
g(x, u)u, ∀u 6= 0. (2.4)

Moreover, if (H7)-(iv) is satisfied, then

Gp(x, u) ≤ 1
2
gp(x, u)u, ∀u ∈ R. (2.5)

Proof. The inequalities (2.2) and (2.3) follow easily from (H3) and (H4). Now we
prove (2.4) and (2.5). By (H4) and (H5), we have g(x, u) > 0 for all u > 0, and
g(x, u) < 0 for all u < 0. Thus G(x, u) =

∫ u
0
g(x, s) ds > 0 for all u 6= 0. Again for

all u > 0 we have

G(x, u) =
∫ u

0

g(x, s)
s

s ds <

∫ u

0

g(x, u)
u

s ds =
1
2
g(x, u)u. (2.6)

For u < 0, the above inequality still holds. Thus (2.4) follows. In a similar way we
deduce that (2.5) holds. �

For the derivative of the functional I we have the following lemma.

Lemma 2.2. Let V,K ∈ L∞(RN ) and f ∈ C(RN × R,R) satisfy

|f(x, u)| ≤ C(|u|+ |u|q−1), ∀u ∈ R. (2.7)

There holds the following results:
(i) I ′ maps bounded sets in X into bounded sets in X∗;

(ii) I ′ is weakly sequentially continuous; i.e., if un ⇀ u in X, then I ′(un) ⇀
I ′(u) in X∗.

Proof. (i) Let {un} be a bounded sequence in X. By (2.7) we have

|g(x, u)| ≤ C(|u|+ |u|2
∗−1) ≤ C(1 + |u|2

∗−1), ∀u ∈ R, (2.8)

here and below we use the same C to indicate may various positive constants. For
any v ∈ X, it follows that∣∣∫ g(x, un)vdx

∣∣ ≤ ∫ C
(
|un||v|+ |un|2

∗−1|v|
)
dx

≤ C
(
|un|2|v|2 + |un|2

∗−1
2∗ |v|2∗

)
≤ C

(
‖un‖‖v‖+ ‖un‖2

∗−1‖v‖
)
≤ C‖v‖,

since {un} is bounded. Note that

〈I ′(un), v〉 = (un, v)−
∫
g(x, un)vdx.

Then we obtain |〈I ′(un), v〉| ≤ C‖v‖ and so {I ′(un)} is bounded in X∗.
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(ii) Assume that un ⇀ u in X. For any v ∈ C∞0 (RN ) with the support Ω, we
may assume that un → u in L2∗−1(Ω). By (2.8) we have g(x, un) → g(x, u) in
L1(Ω). Then ∫

g(x, un)vdx→
∫
g(x, u)vdx.

Hence, we obtain

〈I ′(un), v〉 → 〈I ′(u), v〉, ∀v ∈ C∞0 (RN ). (2.9)

By (i), we have {I ′(un)} is bounded in X∗. Combining the fact that C∞0 (RN ) is
dense in X, we conclude that (2.9) holds for any v ∈ X and so I ′(un) ⇀ I ′(u) in
X∗. �

If f satisfies (H3) and (H4), then (2.7) holds. In addition, if fp satisfies (H7)-(ii),
then

|fp(x, u)| ≤ |f(x, u)− fp(x, u)|+ |f(x, u)| ≤ C(|u|+ |u|q−1), ∀u ∈ R.
Hence, we have the following result.

Remark 2.3. If (H3) and (H4) are satisfied, then I ′ is weakly sequentially con-
tinuous. If (H3), (H4) and (H7)-(ii) are satisfied, then I ′p is weakly sequentially
continuous.

3. Variational setting

In this section, we describe the variational framework for our problem. To find
ground state solutions, we use the method of Nehari manifold. As in [19], we reduce
our variational problem to the minimization problem on a Nehari manifold. Then
we take advantage of concentration compactness lemma to deal with the minimizing
problem.

The Nehari manifold M corresponding to I is defined by

M = {u ∈ X \ {0} : 〈I ′(u), u〉 = 0}.
Moreover, the least energy on M is given by c := infM I. As in the proof of [26,
Lemma 3.3], we have the following lemma.

Lemma 3.1. Under assumptions (H1)–(H6), the following results hold:
(i) For all u ∈ X \ {0}, there exists a unique tu > 0 such that tuu ∈ M and

I(tuu) = maxt≥0 I(tu).
(ii) For each compact subset W ⊂ S1, there exists a constant CW such that

tu ≤ CW for all u ∈W .

From Lemma 3.1 (i), for any u ∈ X\{0} we define the mapping m̂ : X\{0} →M
by m̂(u) = tuu. In addition, for all v ∈ R+u we have m̂(v) = m̂(u). Define
m := m̂|S1 . Then m is a bijection from S1 to M . Then

c = inf
M
I = inf

u∈S1
I(m̂(u)) = inf

u∈X\{0}
I(m̂(u)).

By Lemma 3.1 (i), we have I(m̂(u)) = maxt≥0 I(tu). Therefore,

c = inf
u∈X\{0}

max
t≥0

I(tu). (3.1)

Since the nonlinearity f is merely continuous, the Nehari manifold M may not
be differentiable and it may hve no differential structure. So the restriction of
I on M may have no derivative. As before, we find that there is a one-to-one
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correspondence between S1 and M . Noting that S1 is differentiable, we replace M
with S1. Thus, we introduce the functional Ψ : S1 → R by Ψ(u) = I(m(u)). The
lemma below shows that the PS sequences and critical points of Ψ on S1 and those
of I on M are corresponded by the mapping m.

Proposition 3.2. If (H1)–(H6) are satisfied, then the following results hold:

(i) If {wn} is a Palais-Smale (PS) sequence for Ψ, then {m(wn)} is a PS
sequence for I.

(ii) infS1 Ψ = infM I. Moreover, if w is a critical point of Ψ, then m(w) is a
nontrivial critical point of I.

Results (i) and (ii) in the above propositions follow from [19, Corollaries 3.3(b)
and 3.3(c)]; so we refer to [19] and omit its proof.

Lemma 3.3. A minimizer of I|M is a ground state solution of (1.2).

Proof. Let u ∈ M be such that I(u) = infM I = c. We claim that I ′(u) = 0.
Indeed, by I(u) = c, we obtain Ψ(w) = c, where w = m−1(u) ∈ S1. By Proposition
3.2 (ii), we have Ψ(w) = infS1 Ψ. So Ψ′(w) = 0. Using Proposition 3.2 (ii) again,
we deduce that I ′(u) = 0. For any v ∈ X \ {0} satisfying I ′(v) = 0, we obtain
v ∈M . So I(v) ≥ c = I(u). Thus, u is a ground state solution of (1.2). �

From Lemma 3.3, we know that the problem of seeking for a ground state solution
for (1.2) can be transformed into that of finding a minimizer of I|M . In the process
of finding the minimizer, comparing with previous related work (see [13, 19]), we
mainly need to overcome the difficulties which brought by the critical growth term
K(x)|u|2∗−2u and the non-periodicity of (1.2).

First we deal with the difficulty brought by the critical growth term. Recall that
the best constant for the Sobolev embedding D1,2(RN ) ↪→ L2∗(RN ) is given by

S = inf
u∈D1,2(RN )\{0}

|∇u|22
|u|22∗

.

We shall prove that when the above infimum c lies in a certain interval, the mini-
mizing sequence of c is bounded.

Lemma 3.4. Let (H1)-(H6) hold. If c < 1
N |K|

−N−2
2∞ SN/2, then the minimizing

sequence of c is bounded.

Proof. Let {un} be a minimizing sequence of I on M . Namely,

I(un)→ c, 〈I ′(un), un〉 = 0.

We argue by contradiction. Suppose that {un} is unbounded. Without loss of
generality, we may assume that ‖un‖ → ∞. Set vn := un/‖un‖. Then we may
suppose vn ⇀ v in X, vn → v in L2

loc(RN ), and vn → v a.e. in RN . Moreover, from
Lemma 3.1 (i) we have

I(un) ≥ I(tvn), for all t ≥ 0. (3.2)

If vn is vanishing; i.e.,

lim
n→∞

sup
y∈RN

∫
B1(y)

v2
n(x) dx = 0,
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then Lions Compactness Lemma implies that vn → 0 in Lq(RN ). For any ε > 0,
t > 0 given in (3.2), by (2.2) we obtain∣∣∫ F (x, tvn)dx

∣∣ ≤ εt2|vn|22 + aεt
q|vn|qq < Cε+ aεt

q|vn|qq, (3.3)

since {vn} is bounded in L2(RN ). Noting that vn → 0 in Lq(RN ), then for above
ε, there exists J ∈ N such that aεtq|vn|qq < Cε, for n > J . So by (3.3) for n > J we
obtain that |

∫
F (x, tvn)dx| < Cε. Then∫

F (x, tvn)dx→ 0.

Combining with (3.2), for large n we have

c+ on(1) = I(un) ≥ sup
t≥0

I(tvn)

= sup
t≥0

[
t2

2
− t2

∗

2∗

∫
K(x)|vn|2

∗
dx] + on(1)

≥ sup
t≥0

[
t2

2
− t2

∗

2∗
|K|∞

∫
|vn|2

∗
dx] + on(1)

≥ sup
t≥0

[
t2

2
− t2

∗

2∗
|K|∞S−

2∗
2 ] + on(1)

=
1
N
|K|−

N−2
2∞ SN/2 + on(1).

Then c ≥ 1
N |K|

−N−2
2∞ SN/2 contradicting the fact that c < 1

N |K|
−N−2

2∞ SN/2. Hence
{vn} is non-vanishing. Then there exists xn ∈ RN and δ0 > 0 such that∫

B1(xn)

v2
n(x)dx > δ0. (3.4)

Set ṽn(·) = vn(· + xn). Passing to a subsequence, we may assume that ṽn ⇀ ṽ in
X, ṽn → ṽ in L2

loc(RN ), and ṽn → ṽ a.e. in RN . By (3.4) we obtain∫
B1(0)

ṽ2
n(x)dx > δ0.

So ṽ 6= 0. Then there exists a positive measure set Ω1 such that ṽ(x) 6= 0, ∀x ∈ Ω1.
Set ũn = ‖un‖ṽn. Noting that ‖un‖ → ∞ and ṽn → ṽ a.e. in RN , then ũn(x)→∞,
x ∈ Ω1. We need to discuss for the dimension N by (H6). First we assume that
N > 4. By (H6) we have∫

Ω1

lim inf
F (x+ xn, ũn)

ũ2
n

ṽ2
ndx =∞.

Then ∫
Ω1

lim inf
( 1

2∗
K(x+ xn)|ũn|2

∗

‖un‖2
+
F (x+ xn, ũn)

ũ2
n

ṽ2
n

)
dx =∞.

Therefore, (2.4) and Fatou’s Lemma yield that

lim inf
∫

Ω1

( 1
2∗
K(x+ xn)|ũn|2

∗

‖un‖2
+
F (x+ xn, ũn)
‖un‖2

)
dx =∞.



8 H. ZHANG, J. XU, F. ZHANG EJDE-2013/227

Again using (2.4) we have

lim inf
∫ ( 1

2∗
K(x+ xn)|ũn|2

∗

‖un‖2
+
F (x+ xn, ũn)
‖un‖2

)
dx =∞.

Then

c

‖un‖2
+ on(1) =

I(un)
‖un‖2

=
1
2
− 1

2∗

∫
K(x)|un|2

∗

‖un‖2
dx−

∫
F (x, un)
‖un‖2

dx

=
1
2
− 1

2∗

∫
K(x+ xn)|ũn|2

∗

‖un‖2
dx−

∫
F (x+ xn, ũn)
‖un‖2

dx→ −∞.

This is a contradiction. Similarly, when N = 3 or N = 4, there is also a contradic-
tion by (H6). The proof is complete. �

Next we treat the difficulty caused by the non-periodicity of (1.2). Since V,K
and f in (1.2) are non-periodic, we cannot use the invariance of the functional under
translation to look for a minimizer. However, the approached equation of (1.2) as
|x| → ∞ is periodic, we shall take advantage of the periodicity of the equation (2.1)
and the relationship of the functionals and derivatives between (1.2) and (2.1) to
find the minimizer. By (H7)-(iii), one easily has the following lemma.

Lemma 3.5. Let (H7)-(iii) hold. Then I(u) ≤ Ip(u), for all u ∈ X.

As in the proof of [14, Lemma 5.1], and [26, Lemma 4.1], we have the following
two lemmas, respectively.

Lemma 3.6. Let (H7)-(ii) hold. Assume that {un} ⊂ X is bounded and ϕn(x) =
ϕ(x− xn), where ϕ ∈ X and xn ∈ RN . If |xn| → ∞, then∫

(V (x)− Vp(x))unϕndx→ 0,∫
(K(x)−Kp(x))|un|2

∗−2unϕndx→ 0.

Lemma 3.7. Let (H7)-(ii) hold. Assume that {un} ⊂ X satisfies un ⇀ 0 and
ϕn ∈ X is bounded. Then∫

[f(x, un)− fp(x, un)]ϕndx→ 0.

Remark 3.8. Let (H7)-(ii) hold. Assume that {un} ⊂ X satisfies un ⇀ 0. Note
that ∫

[F (x, un)− Fp(x, un)]dx =
∫

RN

∫ 1

0

[
f(x, tun)un − fp(x, tun)un

]
dtdx.

Then similar to the proof of Lemma 3.7, we have∫
[F (x, un)− Fp(x, un)]dx→ 0.



EJDE-2013/227 GROUND STATE SOLUTIONS 9

4. Estimates

This section, we estimate the least energy c, provided that

c ∈ (0,
1
N
|K|−

N−2
2∞ SN/2),

where S is the best constant for the Sobolev embedding D1,2(RN ) ↪→ L2∗(RN )
given in Section 3.

Lemma 4.1. Let (H3) and (H4) hold. Then c > 0.

Proof. By (H3) and (H4), Inequality (2.3) holds. Then for all ε > 0 there exists
dε > 0 such that

|G(x, u)| ≤ εu2 + dε|u|2
∗
, ∀u ∈ R.

Consequently

I(u) =
1
2
‖u‖2 −

∫
G(x, u)dx

≥ (
1
2
− ε)‖u‖2 − dε|u|2

∗

2∗

≥ (
1
2
− ε)‖u‖2 − dεC‖u‖2

∗
.

Let ε < 1/4, then there exist small r > 0 and % > 0 such that I(u) ≥ %, for ‖u‖ = r.
For any w ∈ X \ {0}, there exists t0 such that ‖t0w‖ = r. Then I(t0w) ≥ %. So

c = inf
w∈X\{0}

max
t≥0

I(tw) ≥ % > 0

by (3.1). �

To show that c < 1
N |K|

−N−2
2∞ SN/2, by the definition of c, we shall choose a

function u ∈ M and show that I(u) < 1
N |K|

−N−2
2∞ SN/2. The construct of u is

based on a test function in X \ {0}. The test function is standard, see [23].
Without loss of generality, in the condition (H2), we assume that x0 = 0. For

ε > 0, the function wε : RN → R defined by

wε(x) = C(N)
ε
N−2

4

(ε+ |x|2)
N−2

2

,

where C(N) = [N(N − 2)]
N−2

4 , is a family of functions on which S is attained. Let
φ ∈ C∞0 (RN , [0, 1]), φ ≡ 1 in Bρ/2(0), φ ≡ 0 in RN \ Bρ(0). Then define the test
function by

vε =
uε

(
∫
K(x)u2∗

ε dx)
1
2∗
,

where uε = φwε.
The following lemma gives some properties for vε and uε, proved in [14].

Lemma 4.2. Suppose that (H2) is satisfied. Then the following results hold:∫
|∇vε|2dx ≤ |K|

2−N
N∞ S +O(ε

N−2
2 ), as ε→ 0+,

|vε|22 =


O(ε

N−2
2 ), if N = 3, as ε→ 0+;

O(ε| log ε|), if N = 4, as ε→ 0+;
O(ε), if N > 4, as ε→ 0+.

(4.1)
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Moreover, there exist positive constants k1, k2 and ε0 such that

k1 <

∫
Ku2∗

ε dx < k2, for all 0 < ε < ε0. (4.2)

Now we are ready to prove that c < 1
N |K|

−N−2
2∞ SN/2.

Lemma 4.3. Suppose (H1)–(H6) are satisfied. Then

c <
1
N
|K|−

N−2
2∞ SN/2.

Proof. By the definition of c, we just need to verify that there exists v ∈ M such
that

I(v) <
1
N
|K|−

N−2
2∞ SN/2. (4.3)

We first claim that for ε > 0 small enough, there exists constants tε > 0, A1 and
A2 independent of ε such that

I(tεvε) = max
t≥0

I(tvε),

and
0 < A1 < tε < A2 <∞. (4.4)

In fact, by Lemma 3.1 (i), there exists tε > 0 such that

tεvε ∈M, I(tεvε) = max
t≥0

I(tvε). (4.5)

Then I(tεvε) ≥ c > 0. So t2ε‖vε‖2 ≥ 2c by (2.4). Moreover, since ‖vε‖ is bounded
for ε small enough by (4.1), then we conclude that there exists A1 > 0 such that
tε ≥ A1, for every ε > 0 sufficiently small. On the other hand, since tεvε ∈ M , we
obtain 〈I ′(tεvε), tεvε〉 = 0. Noting that

∫
K(x)v2∗

ε dx = 1, we have

t2ε‖vε‖2 = t2
∗

ε +
∫
f(x, tεvε)tεvεdx.

By (2.2) we find that

t2
∗

ε ≤ t2ε‖vε‖2 + δt2ε |vε|22 + Cδt
q
ε |vε|qq ≤ (1 + δ)t2ε‖vε‖2 + CCδt

q
ε‖vε‖q.

Noting that q < 2∗, then there exists A2 > 0 such that tε ≤ A2 since ‖vε‖ is
bounded for small ε.

Now we estimate I(tεvε). Note that

I(tεvε) ≤
t2ε
2

(Bε + |V |∞|vε|22)− t2
∗

ε

2∗
−
∫
F (x, tεvε)dx

=
( t2ε

2
Bε −

t2
∗

ε

2∗
)

+
( t2ε

2
|V |∞|vε|22 −

∫
F (x, tεvε)dx

)
:= I1 + I2,

(4.6)

where Bε :=
∫
|∇vε|2dx. For I1, considering the function θ : [0,∞) → R, θ(t) =

1
2Bεt

2 − 1
2∗ t

2∗ , we have that t0 = B
1

2∗−2
ε is a maximum point of θ and θ(t0) =

1
NB

N/2
ε . Then I1 ≤ 1

NB
N/2
ε . Combining with (4.1) we have

I1 ≤
1
N

(|K|
2−N
N∞ S +O(ε

N−2
2 ))N/2 ≤ 1

N
(|K|

2−N
2∞ SN/2 +O(ε

N−2
2 )), (4.7)
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where we applying the inequality

(a1 + a2)ζ ≤ aζ1 + ζ(a1 + a2)ζ−1a2, a1, a2 ≥ 0, ζ ≥ 1.

For I2, given A0 > 0, we invoke (H6) to obtain R = R(A0) > 0 such that, for
x ∈ RN , s ≥ R,

F (x, s) ≥


A0s

2∗−2, if N=3;
A0s

2 log s, if N=4;
A0s

2, if N>4.
(4.8)

By (4.1) and (4.8), we estimate I2 in the three cases about the dimension. First we
assume that N = 3.

For |x| < ε1/2 < ρ/2, noting that φ ≡ 1 in Bρ/2(0), by the definition of vε and
(4.2), we find a constant α > 0 such that

tεvε(x) ≥ A1

(k2)
1
2∗
uε(x) ≥ A1

(k2)
1
2∗
wε(x) =

A1C(N)
(k2)

1
2∗

ε
N−2

4

(ε+ |x|2)
N−2

2

≥ αε−
N−2

4 , (4.9)

here A1 is given by (4.4). Then we may choose ε1 > 0 such that

tεvε(x) ≥ αε−
N−2

4 ≥ R,

for |x| < ε1/2, 0 < ε < ε1. From (4.8) it follows that

F (x, tεvε(x)) ≥ A0t
2∗−2
ε v2∗−2

ε ,

for |x| < ε1/2, 0 < ε < ε1. Then for any 0 < ε < ε1, by (4.9) we infer that∫
B
ε1/2

(0)

F (x, tεvε)dx ≥ A0

∫
B
ε1/2

(0)

t2
∗−2
ε v2∗−2

ε dx

≥ A0α
2∗−2

∫
B
ε1/2

(0)

ε−
N−2

4 (2∗−2)dx

≥ A0α
2∗−2ε−1ωN

∫ ε1/2

0

rN−1dr = A0α
2∗−2ωN

N
ε
N−2

2 .

(4.10)

For |x| > ε1/2, by (H4) and (H6), there exists η > 0 such that

F (x, s) + ηs2 ≥ 0, s ∈ R.

Then by (4.1) we obtain∫
RN\B

ε1/2
(0)

F (x, tεvε)dx ≥ −ηt2ε
∫

RN\B
ε1/2

(0)

v2
εdx ≥ −ηA2

2|vε|22 ≥ −η̃ε
N−2

2 ,

(4.11)
where A2 is given by (4.4).

Combining (4.1), (4.10) and (4.11), we have

I2 ≤ Cε
N−2

2 − (A0α
2∗−2ωN

N
− η̃)ε

N−2
2 .

Inserting the above inequality and (4.7) into (4.6), we find there exists a constant
C1 > 0 such that

I(tεvε) ≤
1
N
|K|

2−N
2∞ SN/2 + (C1 −A0α

2∗−2ωN
N

+ η̃)ε
N−2

2 .
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Since A0 > 0 is arbitrary, we choose large enough A0 such that C1−A0α
2∗−2 ωN

N +
η̃ < 0. Then for small ε > 0 we have

I(tεvε) <
1
N
|K|

2−N
2∞ SN/2.

Noting that tεvε ∈M by (4.5), then (4.3) establishes. Similarly, we can yield (4.3)
for the other two cases with N > 4 and N = 4. This ends the proof. �

5. Proof of main theorem

Proof of Theorem 1.1. By Lemma 3.3, we only need to show that the infimum c is
attained. Assume that {wn} ⊂ S1 is a minimizing sequence satisfying Ψ(wn) →
infS1 Ψ. By the Ekeland variational principle, we suppose Ψ′(wn)→ 0. Then, from
Proposition 3.2 (i) it follows that I ′(un)→ 0, where un = m(wn) ∈ M . Moreover,
by Proposition 3.2 (ii), we have I(un) = Ψ(wn) → c. Applying Lemmas 4.3 and
3.4, we obtain that {un} is bounded in X. Up to a subsequence, we assume that
un ⇀ ũ in X, un → ũ in L2

loc(RN ) and un → ũ a.e. on RN . Using Remark 2.3,
we have I ′(ũ) = 0. Below we shall prove that if ũ 6= 0, it is just a minimizer.
Otherwise, if ũ = 0, by concentration compactness principle and the periodicity of
(2.1), we can still find a minimizer. Namely, we distinguish two cases that ũ 6= 0
and ũ = 0.

Case 1: ũ 6= 0. So ũ ∈M and then I(ũ) ≥ c. Let

G̃(x, u) =
1
2
g(x, u)u−G(x, u). (5.1)

Note that G̃(x, un) ≥ 0. By Fatou’s lemma,
∫
G̃(x, ũ) dx ≤ lim inf

∫
G̃(x, un) dx.

Note that
c+ on(1) = I(un)− 1

2
〈I ′(un), un〉 =

∫
G̃(x, un) dx (5.2)

and
I(ũ) = I(ũ)− 1

2
〈I ′(ũ), ũ〉 =

∫
G̃(x, ũ) dx.

It follows that I(ũ) ≤ c. Therefore, I(ũ) = c.
Case 2: ũ = 0. This case is more complicated. We discuss that {un} is vanishing

or non-vanishing. It is easy to see that the case of vanishing does not happen

since the energy c ∈ (0, 1
N |K|

−N−2
2∞ SN/2) by Lemmas 4.1 and 4.3. In the case of

non-vanishing, we can follow the similar idea in [14] to construct a minimizer.
Suppose {un} is vanishing. Namely

lim
n→∞

sup
y∈RN

∫
B1(y)

u2
n(x) dx = 0.

Then Lions Compactness Lemma implies that un → 0 in Lq(RN ). As in the proof
of Lemma 3.4, we easily have

∫
F (x, un)dx → 0 and

∫
f(x, un)undx → 0. Note

that
I(un)→ c, 〈I ′(un), un〉 → 0.

Therefore,

c =
1
2
‖un‖2 −

1
2∗

∫
K(x)|un|2

∗
dx+ on(1), (5.3)

‖un‖2 =
∫
K(x)|un|2

∗
dx+ on(1). (5.4)
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By (5.4) we obtain

‖un‖2 ≤ |K|∞|un|2
∗

2∗ + on(1) ≤ |K|∞S−
2∗
2 ‖un‖2

∗
+ on(1). (5.5)

If ‖un‖ → 0, then it follows from (5.3) and (5.4) that c = 0. However, from
Lemma 4.1 we obtain c > 0. This is a contradiction. Then ‖un‖ 6→ 0. So ‖un‖ ≥
|K|−

N−2
4∞ S

N
4 + on(1) by (5.5). Then from (5.3) and (5.4) we easily conclude that

c ≥ 1
N |K|

−N−2
2∞ SN/2 contradicting the fact that c < 1

N |K|
−N−2

2∞ SN/2 by Lemma
4.3.

Hence {un} is non-vanishing. Then there exists xn ∈ RN and δ0 > 0 such that∫
B1(xn)

u2
n(x)dx > δ0. (5.6)

Without loss of generality, we assume that xn ∈ ZN . Since un → ũ in L2
loc(RN )

and ũ = 0, we may suppose that |xn| → ∞ up to a subsequence. Denote ūn by
ūn(·) = un(·+ xn). Similarly, passing to a subsequence, we assume that ūn ⇀ ū in
X, ūn → ū in L2

loc(RN ), and ūn → ū a.e. on RN . By (5.6) we have∫
B1(0)

ū2
n(x)dx > δ0.

So ū 6= 0.
We first claim that

I ′p(ū) = 0. (5.7)
Indeed, for all ψ ∈ X, set ψn(·) := ψ(· + xn). From Lemma 3.6, replacing ϕn by
ψn it follows that ∫

(V (x)− Vp(x))unψndx→ 0,∫
(K(x)−Kp(x))|un|2

∗−2unψndx→ 0.

Moreover, replacing ϕn by ψn again, Lemma 3.7 implies∫
[f(x, un)− fp(x, un)]ψndx→ 0.

Consequently,
〈I ′(un), ψn〉 − 〈I ′p(un), ψn〉 → 0.

Noting that I ′(un)→ 0 and ‖ψn‖ = ‖ψ‖, we have 〈I ′(un), ψn〉 → 0. So

〈I ′p(un), ψn〉 → 0.

Moreover, by the periodicity of Vp, Kp and fp in the variable x and xn ∈ ZN , we
obtain

〈I ′p(ūn), ψ〉 = 〈I ′p(un), ψn〉.
Then 〈I ′p(ūn), ψ〉 → 0. By the arbitrary of ψ, I ′p(ūn) ⇀ 0 in X∗. Since I ′p is weakly
sequentially continuous (Remark 2.3), (5.7) holds.

Now we prove that
Ip(ū) ≤ c. (5.8)

Replacing ϕn by un, Lemma 3.7 yields∫
[f(x, un)un − fp(x, un)un]dx→ 0. (5.9)
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It follows from Remark 3.8 that∫
[F (x, un)− Fp(x, un)]dx→ 0. (5.10)

Set G̃p(x, u) = 1
2gp(x, u)u−Gp(x, u). By the condition K ≥ Kp, (5.9) and (5.10),

we obtain∫
G̃p(x, un) =

1
N

∫
Kp(x)|un|2

∗
dx+

∫
(
1
2
fp(x, un)un − Fp(x, un)) dx

≤ 1
N

∫
K(x)|un|2

∗
dx+

∫
(
1
2
fp(x, un)un − Fp(x, un)) dx

=
1
N

∫
K(x)|un|2

∗
dx+

∫
(
1
2
f(x, un)un − F (x, un)) dx+ on(1)

=
∫
G̃(x, un)dx+ on(1),

where G̃ is given in (5.1). Noting that G̃p is 1-periodic in x, we have∫
G̃p(x, ūn)dx =

∫
G̃p(x, un)dx.

Therefore, ∫
G̃p(x, ūn)dx ≤

∫
G̃(x, un)dx+ on(1).

From (2.5) and Fatou’s Lemma it follows that∫
G̃p(x, ū)dx+ on(1) ≤

∫
G̃p(x, ūn)dx.

So ∫
G̃p(x, ū)dx ≤

∫
G̃(x, un)dx+ on(1).

Combining with (5.2) and (5.7) we obtain

c+ on(1) =
∫
G̃(x, un)dx ≥

∫
G̃p(x, ū)dx+ on(1)

= Ip(ū)− 1
2
〈I ′p(ū), ū〉+ on(1) = Ip(ū) + on(1).

So we have Ip(ū) ≤ c.
We shall verify that maxt≥0 Ip(tū) = Ip(ū). Indeed, let χ(t) = Ip(tū), t > 0.

Then

χ′(t) = t
(
‖ū‖2p −

∫
gp(x, tū)ū

t
dx
)

:= tÃ(t).

Since I ′p(ū) = 0 by (5.7), Ã(1) = 0. By (H7)-(iv), Ã is non-increasing in (0,∞),
then Ã(t) ≥ 0 when 0 < t < 1 and Ã(t) ≤ 0 when t > 1. Hence χ′(t) ≥ 0 when
0 < t < 1 and χ′(t) ≤ 0 when t > 1. Therefore, maxt≥0 Ip(tū) = Ip(ū).

Using Lemma 3.1 (i), there exists tū > 0 such that tūū ∈ M . Then by Lemma
3.5 we infer

I(tūū) ≤ Ip(tūū) ≤ max
t≥0

Ip(tū) = Ip(ū).

With the use of (5.8), we have I(tūū) ≤ c. Noting that tūū ∈ M , we obtain
I(tūū) ≥ c. Then I(tūū) = c.

In a word, we deduce that c is attained, and the corresponding minimizer is a
ground state solution of (1.2). This completes the proof. �



EJDE-2013/227 GROUND STATE SOLUTIONS 15

Acknowledgments. The authors would like to express their sincere gratitude to
the anonymous referees for their helpful and insightful comments. Hui Zhang was
supported by the Research and Innovation Project for College Graduates of Jiangsu
Province with contract number CXLX12 0069, Junxiang Xu and Fubao Zhang were
supported by the National Natural Science Foundation of China with contract
number 11071038.

References

[1] S. Alama, Y. Y. Li; On ”multibump” bound states for certain semilinear elliptic equations,
Indiana Univ. Math. J. 41 (1992), 983-1026.

[2] T. Bartsch, Y. H. Ding; On a nonlinear Schrödinger equation with periodic potential, Math.
Ann. 313 (1999), 15-37.

[3] H. Berestycki, P.-L. Lions; Nonlinear scalar field equations. I. Existence of a ground state,

Arch. Rational Mech. Anal. 82 (1983), 313-345.
[4] B. Buffoni, L. Jeanjean, C. A. Stuart; Existence of nontrivial solutions to a strongly indefinite

semilinear equation, Proc. Amer. Math. Soc. 119 (1993), 179-186.

[5] J. Chanbrowski, A. Szulkin; On a semilinear Schrödinger equation with critical Sobolev
exponent, Proc. Amer. Math. Soc. 130 (2002), 85-93.

[6] V. Coti-Zelati, P. Ranbinowitz; Homoclinic type solutions for semilinear elliptic PDE on Rn,

Comm. Pure Appl. Math. 46 (1992), 1217-1269.
[7] Y. H. Ding; Variational methods for strongly indefinite problems, Interdisciplinary Mathe-

matical Sciences,7. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2007.

[8] Y. H. Ding, S. Luan; Multiple solutions for a class of nonlinear Schrödinger equations, J.
Differential Equations 207 (2004), 423-457.

[9] Y. H. Ding, A. Szulkin; Bound states for semilinear Schrödinger equations with sign-changing

potential, Calc. Var. Partial Differential Equations 29 (2007), 397-419.
[10] L. Jeanjean; On the existence of bounded Palais-Smale sequences and application to a

Landesman-Lazer type problem set on Rn, Proc. Roy. Soc. Edinburgh Sect. A. 129 (1999),
787-809.

[11] W. Kryszewski, A. Szulkin; Generalized linking theorem with an application to semilinear

Schrödinger equation, Adv. Differential Equations 3 (1998), 441-472.
[12] G. B. Li, A. Szulkin; An asymptotically periodic Schrödinger equation with indefinite linear

part, Commun. Contemp. Math. 4 (2002), 763-776.

[13] Y. Q. Li, Z.-Q. Wang, J. Zeng; Ground states of nonlinear Schrödinger equations with po-
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