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Abstract The traditional one-dimensional ultrasonic beam
steering has time delay and is thus a complicated problem.
A numerical model of ultrasonic beam steering using Neu-
mann boundary condition in multiplysics is presented in the
present paper. This model is based on the discrete wave
number method that has been proved theoretically to satisfy
the continuous conditions. The propagating angle of novel
model is a function of the distance instead of the time do-
main. The propagating wave fronts at desired angles are sim-
ulated with the single line sources for plane wave. The result
indicates that any beam angle can be steered by discrete line
elements resources without any time delay.

Keywords Ultrasonic beam steering · Desired angle · Line
element · Time delay

1 Introduction

Multilayered media such as bonded structures are increas-
ingly used in industries due to their good mechanical proper-
ties. It is crucial to detect the defects that may appear either
in the production process or in the entire service life of the
structure. In bonded structures, interfacial weakness is one
of the critical defects. Ultrasonic techniques are an important
nondestructive evaluation tool for detecting adhesion weak-
ness. Furthermore, the ultrasonic phased array and oblique
incidence technique can improve the sensitivity of interface
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weakness detection without the necessity of utilizing a very
high frequency.

Wave beam steering utilizing phased array and oblique
incidence is a well-established technique and is applied ex-
tensively in ultrasonic imaging for medical and nondestruc-
tive evaluation [1,2]. Many studies have been carrying out
for NDT application of beam steering utilizing phased ar-
ray and oblique incidence. For example, Li et al. [3] im-
plemented a phased comb transducer array using hardware
and software delay and sum wave beam forming algorithms
on pipes. Wilcox [4] presented a circular array integrated
with a deconvolution algorithm to improve quality. Other
researchers proposed the use of spatially distributed arrays,
consisting of sensors distributed over a large area, as an ef-
fective approach to image damage inside and outside the
area, enclosed by the array [5–11]. The method of applica-
tion range from single element transducers to phased array
elements for industrial inspection [12–19].

In many applications the incidence angle may be
changed to steer the wavefront at the desired angle for broad-
ening the range of the inspection. And the phased array is
excited sequentially with a precomputed time-delay. Single-
element transducers are mounted on wedges with known
inclinations to obtain the desired angle of incidence in the
specimen.

In this paper, by normal incidence the element line
sources are applied to the simulation of a propagating wave
front at a desired angle. And the beam is simulated by a num-
ber of discrete line elements which are excited without any
time-delay. It is shown that the required beam steering angle
is accurate in computation. The following sections present
the beam steering using the Neumann boundary conditions
and the essential criteria required in COMSOL.

2 Governing equations and analytical solution

The governing equation describes the induction of an acous-
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tic wave into the bonded structure. The wave equation is

∇
(1
ρ
∇P
)
=

1
ρc2

∂2P
∂t2
. (1)

The form of Gaussian pulse window is excited as

P = −A cos(π f t) · exp
[−4π(t − f /5)2

( f /4)2

]
, (2)

where P is the pressure (Pa), ω = 2π f is the angular fre-
quency of the acoustic wave, f is the frequency (Hz), A is
the amplitude, and t is the time. The shear wave is used for
solid, and longitudinal wave is used for fluid.

2.1 Boundary conditions

To model plane wave propagation, the line source whose
length is governed by Neumann conditions is applied as ul-
trasonic transducer. The Gaussian pulse is adapted to gener-
ate time domain signal as shown in Fig. 1.

Fig. 1 Principle of boundary condition excitation

The Neumann boundary condition is applied to x-axis,
and Gauss pulse is applied to steer the ultrasonic trans-
ducer. The ultrasonic wave propagates along y-axis. Neu-
mann boundary condition [20–22] is employed for the in-
terface between the ultrasonic transducer and the steel. For
time-harmonic displacement û(x, t) = exp(−iωt)u(x) with an
angular frequency ω and imaginary unit i =

√−1, the time-
harmonic waves in a domain Ω can be described by a Navier
equation

−u′′ = k2u in Ω :⊂ (0, 1) · R, (3)

where u′′ = ∂2u/∂x2, u′ = ∂u/∂x, k = ω/c is the consistency
wave number, c is wave velocity, R is the transducer radius.

The boundary conditions is

−iku(0) − u′(0) = −2ik, −iku(1) − u′(1) = 0. (4)

Let [x j]0≤ j≤n denote a set of gird points 0 ≤ x0, x1, · · · ,
xn ≤ 1. The step size h is defined by

h = max
1≤m≤n

(xm − xm−1). (5)

It is easy to check that the exact solution of Eqs. (3)
and (4) are given by

u(x) = eikx. (6)

Similarly, the approximation solution of Eqs. (3)–(5)
are given by

u(h)m = eik′h, m = 1, 2, · · · , n, (7)

where k′ is the discrete wave number.
The approximation of the exact solution of Eq. (3) is

given as [23]

u(h) =
n∑

m=1

umϕm(h), (8)

where ϕm are functions of nodal basis h, and u(h) is approx-
imation of the exact solution.

2.2 Relation of the consistency wave number to the discrete
wave number

A generalized finite element method is applied to verify

k − k′ = 0, (9)

which is the relation of the consistency wave number to the
discrete wave number.

The form of the generalized finite element method is

Du = b , (10)

where matrix D is

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 N
N D2 N

N D3 N

N
. . .

. . .

. . . Dn N
N D1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (11)

and a complex vector u = {uq}q∈Z=(1,2,··· ,n+1) vector b is

b = [−2ik 0 0 0 · · · 0]T. (12)

The element of D can be expanded into a Taylor series

D1 =
1
h

{
1 − ikh +

m∑
n=1

αn(kh)2n

+ikh
m∑

n=1

βn(kh)2n + O
[
(kh)2(m+1)

]}
,

D2 =
1
h

{
2 +

m∑
n=1

γn(kh)2n + O
[
(kh)2(m+1)

]}
,

N =
1
h

{
− 1 +

m∑
n=1

δn(kh)2n + O
[
(kh)2(m+1)

]}
,

D3 = D4 = · · · = Dn = D2,

α1 + β1 = −1
2
, γ1 + 2δ1 = −1.

(13)

Equation (10) can be solved explicitly based on the so-
lution of Eq. (13) which can be solved by the discrete Fourier
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transform. The discrete Fourier transform of a complex vec-
tor is

u = {u p}p∈z=(··· ,−1,0,1,··· ), (14)

û(ξ) = F(u)(ξ) =
+∞∑

p=−∞
u p exp(−ipξ). (15)

For a difference scheme with constant coefficients given
by

(Au)p =

m∑
l=−m

Alup+l. (16)

The difference operator corresponding to the generalized fi-
nite element method is given by

d(k′h) = D2 + 2N cos(k′h), (17)

where k′ =
1
h

arccos(−D2/2N).

The approximation solution is given by Eq. (18) (wave
propagation in the positive direction)

uj = C exp(−ik′ j), 2 ≤ j ≤ n − 1. (18)

The constant C is determined by the boundary conditions

(Du)1 = −2ik, (Du)0 = 0. (19)

And C is thus given by

C = [−ke−ik′(D1 + Neik′h)]
/{

D2
1 sin k′ + 2D1N sin[k′(1 − h)]

+N2 sin[k′(1 − 2h)]
}
. (20)

Together with Eq. (13), we get

D2

2N
=

[
2 +

∞∑
n=0

γn(kh)2n
]/{

2
[
− 1 +

∞∑
n=0

δn(kh)2n
]}

= −
[
1 +
(
δ1 +

1
2
γ1

)
(kh)2 +

∞∑
s=2

ζs(kh)2s
]
. (21)

The discrete wave number is re-written to include wave num-
ber k

k′ =
1
h

arccos
[
1 +
(
δ1 +

1
2
γ1

)
(kh)2 +

∞∑
s=2

ζs(kh)2s
]
. (22)

Let kh→ 0, and cos(kh) ≈ 1 − 1
2

(kh)2,

k′ =
1
h

[ √−2δ1 − γ1kh +
+∞∑
s=1

ρ′s(kh)2s+1
]
. (23)

Using Eq. (13) one can re-written Eq. (23) as

k′ =
1
h

[
kh +

+∞∑
s=1

ρ′s(kh)2s+1
]

= k +
+∞∑
s=1

ρ′s[k(kh)2s], (24)

k′ − k = O[k(kh)2], (25)

where O[k(kh)2] is of higher order infinitesimal, and s ≥ 1.

k′ = k. (26)

And thus we have demonstrated the relation of the consis-
tency wave number to the discrete wave number. Equa-
tion (26) satisfies the usual continuous conditions.

Figure 1 captures the time-domain ultrasonic wave
modeled with the Radiation boundary condition and a nor-
mal acceleration boundary condition, represented by the
boundary condition, respectively.

n ·
(1
ρ
∇P
)
+

1
cρ
∂P
∂t
= n · 1

ρ
∇Pi +

1
cρ
∂Pi

∂t
, (27)

n ·
(1
ρ
∇P
)
= an. (28)

With n being the unit normal vector to the plane of the sides,
Pi is incident pressure wave; the steel-epoxy resin interface
is Eq. (28).

We show the corresponding discretization of the trans-
ducer diameter. Using the results, we are able to construct an
FEM with the property, and satisfying the usual continuous
conditions.

3 Numerical simulations

The Helmholtz equation is solved using the finite element
method. It is imperative that while solving by numerical
technique, the node length Δh should satisfy the following
condition [24,25].

Δh
λ
≤ 1. (29)

Or k ·h = constant [24,25], λ is the wavelength while k is the
magnitude of the wave vector, and it is equivalent to ω/c.

Beam steering

Base on the foregoing formulation, the aim is to simulate
practical cases in engineering applications. To validate the
angle of incidence in bonded structures, the incidence angle
is used to give the relation of reflection coefficient vs. de-
grees as shown in Fig. 2.

It is important to steer beam at desired angles. The in-
terface between the steel and a layer of epoxy resin is as-
sumed to be welded (ideal) or with interfacial debonding,
respectively. The theoretical incidence angle for the steel-
epoxy resin interface [26] is 32◦. The reflection coefficient
changes substantially when the incident angle has a slight
perturbed deviation from 32◦.
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Fig. 2 The reflection coefficients versus degrees for the steel-
epoxyresin interfacial

All of the simulations were carried out for the steel
plate, whose shear speed is 3 230 m/s and the density is
7 800 kg/m3; the shear speed of epoxy resin is 1100m/s and
the density is 1 300 kg/m3. The thickness of bonded layer
is 1 mm. The frequency of the wave under simulation was
1 MHz.

The other approach is based on the distance between
the discrete line elements ΔD and time-delay Δt. Neumann
boundary condition can be regarded as the slope of one di-
rection. When Neumann boundary is used as the boundary
condition for ultrasonic wave propagating, it can be regarded
as partial differential of propagating in direction L.

dΩ
dL
=

dΩ
dx

cos(90◦ − θs)⇒ dΩ
dL

dL
dΩ

=
dΩ
dx

dL
dΩ

cos(90◦ − θs),

⇒ 1 =
dL
dx

cos(90◦ − θs)

⇒ cos(90◦ − θs) =
dx
dL

=
ΔD
ΔL
=

cΔt
ΔD

⇒ cos(90◦ − θs) =
cΔt
ΔD
,

sin θs =
cΔt
ΔD
, (30)

cos(90◦ − θs) =
cΔt
ΔD
=

c(iΔt)
nΔD

, 1 < i < n, (31)

where c is the speed of wave in the steel medium, D is the
transducer diameter. From Eq. (31) it is clear that the inci-
dence angle is governed by three parameters.

If we need to steer the beam at a desired angle, we need
an estimation of time-delay Δt to re-compute the discrete line
elements ΔD.

Let cΔt = ΔD. ΔD is the discrete line elements,

Δt =
1

20 f
, so ΔD =

c
20 f

. Equation (31) is re-written to

include an integer n, it is shown below in Eq. (32)

cos(90◦ − θs) =
i
n
. (32)

If n represents integer greater than i, Eq. (32) can be
used to create the desired angle. From Table 1 one can find
some desired angle for shear wave. ΔD should be small so
that the incidence angle will be steered with sufficient accu-
racy.

Table 1 The different beam steering angles for shear wave

n i 90◦ − θs/(◦)

20 10 30

20 15 49

20 20 90

Results are presented for simulations using the above
technique for three angles in the adhesive structures. Figure
3 denotes by solid lines the dominant energy orientations.
We see that the beam steering technique implemented does
simulate the desired angle. The angles in Fig. 3 are 30◦, 49◦,
and 90◦.

Fig. 3 The different angles of beam steering in shear wave
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Fig. 3 The different angles of beam steering in shear wave (contin-
ued)

4 Conclusions

(1) It is proved theoretically that the discrete wave num-
ber method can steer the beam angle, which satisfies the
usual continuous conditions.

(2) With the FEM boundary condition, any beam angle rota-
tion is simulated at normal incidence.

(3) By steering the numbers of discrete line sources for plane
wave, the propagating wave fronts can be steered for de-
sired beam angles without any time-delay.
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