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a b s t r a c t

We are interested in a robust and accurate finite volume scheme for 2-D parabolic prob-
lems derived from the cell functional minimization approach. The scheme has a local sten-
cil, is locally conservative, treats discontinuity rigorously and leads to a symmetric positive
definite linear system. Since the scheme has both cell centered unknowns and cell edge
unknowns, the computational cost is an issue and a parallel algorithm is then suggested
based on nonoverlapping domain decomposition approach. The interface condition is of
the Dirichlet–Robin type and has a parameter k. By choosing this parameter properly,
the convergence of the iteration process could be sped up. Numerical results for linear
and nonlinear problems demonstrate the good performance of the cell functional minimi-
zation scheme and its parallel version on distorted meshes.

� 2010 Elsevier Inc. All rights reserved.

1. Introduction

Accurate and efficient discretization methods for parabolic or diffusion problems on distorted meshes are very important
for many applications, such as reservoir simulation, Lagrangian hydrodynamics and magnetohydrodynamics. Numerous ef-
forts have been devoted to this subject and lots of schemes have been suggested, such as the local support operator scheme
(LSOM) [28] and its modern version namely the mimetic finite difference scheme (MFD) [20,24,5,9,10,25], the multi-point
flux approximation scheme (MPFA) [1,18,2,21,15,19], the nine-point scheme [22,34,32,4,35] and some others [16,7]. A desir-
able scheme for diffusion or parabolic problems on distorted meshes is usually required to have as many as possible the good
numerical properties that range from the classical stability and accuracy to some other ones, including local stencil, local
conservation, positivity preserving or monotonicity, simplicity, robustness, cost-efficiency, symmetry and positive definite-
ness of the resulting linear system, cell centered type, etc. To our knowledge, there exists no scheme satisfying all the above
properties. Usually, a scheme possesses some properties at the cost of losing other ones.

In constructing an efficient scheme for parabolic or diffusion problems, one usually faces some commonly known diffi-
culties, including the distortion of the meshes, the discontinuity (sometimes anisotropy) of the diffusion coefficient and
so on. As physical modeling improves, the need for more sophisticated numerical methods is increasing, which may cause
some more difficulties, such as a great number of mesh cells, complex geometries and complicated material distribution.
Compared with the pure cell centered schemes, the schemes that employ both cell centered unknowns and cell edge un-
knowns have two times of degrees of freedom more than that of the former on a structured quadrilateral mesh in two
dimensions. This problem becomes even serious when the schemes are extended to three dimensions. In this case, the cell
centered schemes seem competitive, particularly for parabolic problems. Therefore, it is interesting to study the problem of
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removing the cell edge unknowns from the schemes that possess both cell centered unknowns and cell edge unknowns,
which is not easy and may cause some other problems, say, the loss of accuracy or symmetry on certain types of meshes
(cf. [8,25]). In the case where complex geometries and complicated material distribution present, it is natural to divide
the computational domain into nonoverlapping blocks according to the geometry, material discontinuity and the feature
of the solution. The nonoverlapping subdomains are then partitioned into multi-block matching or non-matching meshes,
which leads to the so-called nonoverlapping domain decomposition algorithms. The interface algorithm is the key factor
of this approach.

This paper aims to derive a robust and efficient 2-D finite volume scheme for problems with complex geometries and
complicated material distribution. This scheme can be viewed as an updated version of the scheme originally suggested
in [23] by minimizing certain functional defined on the whole computational domain. Due to the constraints of the func-
tional and the choice of the unknowns, the scheme in [23] can only solve problems with Neumann or flux boundary condi-
tions. Besides, it usually loses accuracy on distorted meshes. By contrast, the scheme in this paper is obtained by minimizing
certain functional defined on a single cell and, by employing both cell centered unknowns and cell edge unknowns. The idea
of introducing cell edge unknowns is certainly not new and is motivated by other peoples’ works, such as those for MFD and
MPFA. Besides, by a similar technique suggested in [10], the cell functional minimization approach can also generate a family
of schemes, whose resulting linear systems are symmetric positive definite and as a result the saddle-point problem suffered
by MFD scheme in [10] can be avoided. In general the present scheme has a local stencil, is locally conservative, leads to a
symmetric positive definite linear system, treats discontinuity rigorously and moreover, offers approximately a second order
accuracy on highly distorted meshes.

The involving of the cell edge unknowns seems an obvious disadvantage of the scheme derived from the cell functional
minimization procedure. One approach to solve this problem is to remove the cell edge unknowns from the scheme. As men-
tioned above, this approach is not so easy and may cause some new problems. Here we must point out once again that we are
going to develop an efficient scheme for problems with complex geometries and complicated material distribution, where
certain kind of domain decomposition and parallel algorithm are necessary. In this case, we find that the cell edge unknowns
become quite useful since they facilitate certain nonoverlapping domain decomposition approach, which in turn leads to an
efficient parallel algorithm for our problem. The problem of computational cost caused by the introduction of cell edge un-
knowns now becomes less serious.

The interface conditions in our nonoverlapping domain decomposition algorithm is of Dirichlet–Robin type with a param-
eter k. The idea of using interface conditions of Robin type in domain decomposition methods was originally suggested in
[26], which facilitates the use of nonoverlapping subdomains and has the possibility for a speed up in the convergence by
properly selecting the parameter k. For this issue, we mention the works in [3,12,31,27] and the works cited therein. For
the ease of presentation and clearness of the main idea, we just consider the case where matching multi-block structured
quadrilateral meshes are involved. The work for non-matching multi-block meshes is ongoing at the present. In the matching
case, the cell edge unknowns in the cell functional minimization scheme make it convenient to handle all kinds of interface
conditions. In the non-matching case, some mortar technique similar to that in [6] is a possible choice.

The rest of this paper is organized as follows. In the next section, we describe the formulation of problem. In Section 3, we
derive a finite volume scheme based on minimizing a cell functional and suggest also its parallel algorithm based on non-
overlapping domain decomposition. Section 4 presents some numerical experiments for the finite volume scheme and its
parallel version. Finally, we give some concluding remarks in the last section.

2. Formulation of the problem

The parabolic problem that we seek to solve an be expressed in the general form

@u
@t
� divðjðuÞruÞ ¼ Sðx; y; tÞ; in X; ð2:1Þ

with initial condition

uðx; y;0Þ ¼ wðx; yÞ; ð2:2Þ

where u = u(x,y, t) denotes the scalar unknown function or the intensity, X is a bounded domain in R2, j(u) is a positive scalar
diffusion coefficient dependent on u and uniformly bounded above and below in X, and S denotes a source or driving func-
tion. The boundary condition for Eq. (2.1) could be in the following uniform form,

ajðuÞ @u
@~n
þ bu ¼ g; on @X; ð2:3Þ

where ~n denotes the unit outward normal along the domain boundary @X, and a, b are two parameters. If a = 0 and b – 0,
(2.3) leads to the Dirichlet boundary condition, and if a – 0 and b = 0, (2.3) gives the Neumann or flux boundary condition.
Furthermore, if a = 1 and b > 0, one obtains the boundary condition of the Robin type.

In our method, it is useful to introduce a vector function, known as the flux and defined by

F
!
¼ �jðuÞru: ð2:4Þ

8936 L. Yin et al. / Journal of Computational Physics 229 (2010) 8935–8951



Author's personal copy

Flux F
!

has certain physical meanings, for example, it stands for the Darcy velocity in reservoir simulation. By this interme-
diate variable, (2.1) can be rewritten as the following systems,

@u
@t
þ div F

!
¼ S; ð2:5Þ

F
!
¼ �jðuÞru: ð2:6Þ

Integrating Eq. (2.5) over a mesh cell e, we obtainZ
e

@u
@t

deþ
I
@e

F
!
�~n ds ¼

Z
e

S de; ð2:7Þ

where ~n is the unit vector normal to the cell boundary @e. In physical terms, (2.7) represents the energy or particle conser-
vation over the cell. The main part of a finite volume discretization is now down to find certain approximation of the contour
integration in (2.7).

3. A finite volume scheme based on minimizing a cell functional

There are several numerical methods arising from the solution of the first order system (2.5) and (2.6) through functional
approach. In the mixed finite element method [29], the solution for the homogeneous Dirichlet linear steady state problem
associated with (2.5) and (2.6) is the unique saddle point of the Lagrangian Lð�; �Þ defined on H(div;X) � L2(X) by

LðG
!
;vÞ ¼ 1

2

Z
X

jG
!
j2

jc
dXþ

Z
X
ðS� div G

!
Þ v dX;

where jc denotes the constant diffusion coefficient, i.e., the solution ðF
!

c;uÞ 2 Hðdiv; XÞ � L2ðXÞ with F
!

c ¼ �jcru satisfies

LðF
!

c; vÞ 6LðF
!

c; uÞ 6LðG
!
;uÞ; for all ðG

!
;vÞ 2 Hðdiv; XÞ � L2ðXÞ: ð3:1Þ

Here we are more interested in a finite volume scheme introduced in [23] where the flux variable is obtained by minimizing
the following energy functional of a vector field G

!
on the whole domain X,

cW ðG!Þ :¼
Z

X

jG
!
j2

jðuÞ dX� 2
Z

X
udiv G

!
dX: ð3:2Þ

For given u and constant diffusion coefficient jc, minimization of functional (3.2) is equivalent to the solution of the right
inequality in (3.1). Although the scheme avoids the errors coming from vertex values and edge diffusion coefficients calcu-
lated through interpolation procedure, it loses accuracy on distorted meshes and can only solve problems with Neumman or
flux boundary conditions [14,13]. In order to extend the scheme in [23] and overcome its shortcomings, in this section, the
relation between flux F

!
and density u will be rebuilt by minimizing a cell functional, afterwards a finite volume scheme is

obtained by using this new relation. The resulting scheme can deal with all kinds of boundary conditions in the uniform form
(2.3) and has almost second order convergence rate on highly distorted meshes.

3.1. Cell functional minimization algorithm

We begin the discussion by introducing a cell functional of a vector function G
!

, given by

WðG
!
Þ :¼

Z
e

jG
!
j2

jðuÞ de� 2
Z

e
udiv G

!
deþ 2

I
@e

u G
!
�~n ds: ð3:3Þ

Obviously, (3.3) can be viewed as a modified version of (3.2), by replacing the computational domain X with the cell e and by
adding a contour integration term. It is straightforward to obtain the theorem below by making use of the Green’s formula.

Theorem 3.1. The flux F
!
¼ �jðuÞru minimizes the cell functional (3.3), i.e.,

WðG
!
Þ ¼WðF

!
Þ þ

Z
e

jG
!
� F
!
j2

jðuÞ de P WðF
!
Þ: ð3:4Þ

In the following, we discretize the cell functional (3.3) in a special manner. First, we introduce discrete unknowns. The
intensity and flux unknowns, with respect to a single quadrilateral cell, are shown in Fig. 1, where ue and uk(1 6 k 6 4) de-
note the intensity unknowns defined at the cell center and the edge midpoints, respectively, while fk denote the normal com-
ponents of the edge flux, defined by

fk ¼
Z

sk

F
!
�~n ds � F

!
�~nk

� �
mðskÞ; 1 6 k 6 4;

where ~nk denotes unit vector normal to the edge sk of mesh cell e, m(sk) is the measure of sk.
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Next, we approximate the divergence integralZ
e

udiv F
!

de � ue

I
@e

F
!
�~n ds ¼ ue

X4

k¼1

fk; ð3:5Þ

and discretize the contour integralI
@e

u F
!
�~n ds �

X4

k¼1

ukfk: ð3:6Þ

Finally, we approximate the first term in the functional (3.3). The key point is to approximate j F
!
j2. For this, we introduce the

following result.

Theorem 3.2. For a polygonal domain K in the 2-dimensional space as show in Fig. 2, and a constant vector ~v ¼ ðv1;v2Þ, we have

mðKÞ~v ¼
Xn

i¼1

mð@KiÞð~v �~niÞ Z�Zi

!
; ð3:7Þ

where m(K) and m(@Ki) denote respectively the measures of polygonal domain K and edge @Ki;~ni denotes the outward-directed
unit normal associated with edge @Ki. Here Z* is an arbitrary point, Zi is the midpoint of edge @Ki, and the vector Z�Zi

!
¼ Zi � Z�.

Proof. It suffices to prove that the identity (3.7) holds for the first component v1. Let x* and xi denote respectively the first
component coordinates of points Z* and Zi. Then,

mðKÞv1 ¼
Z

K
divððx� x�Þ~vÞdK ¼

I
@K
ðx� x�Þ~v �~n ds ¼

Xn

i¼1

ð~v �~niÞ
Z
@Ki

ðx� x�Þds ¼
Xn

i¼1

ð~v �~niÞ
Z
@Ki

ðx� xi þ xi � x�Þds

¼
Xn

i¼1

ð~v �~niÞ
Z
@Ki

ðxi � x�Þds ¼
Xn

i¼1

mð@KiÞð~v �~niÞðxi � x�Þ;

The proof is completed. h

By using Theorem 3.2, we are ready to approximate j F
!
j2. As shown in Fig. 3, F

!
k denotes the average value of F

!
on the

triangle domain Xk�1XkXk+1. Hereafter, for simplicity of exposition, we use k as a periodic subscript with 4 period. For
example,

Xk ¼ Xðk mod 4Þ;

where (kmod4) represents the remainder of k modulo 4, i.e., X0 = X4, X5 = X1, etc. Let~lk ¼ XkXkþ1

!
; lk ¼ j~lkj, k = 1, . . . , 4, and Zk is

the midpoint of XkXk+1.

Fig. 1. Locations of unknowns. (a) The intensity unknowns are located at cell center and edge midpoints. (b) The edge fluxes are located at edge midpoints.

Fig. 2. A polygonal domain K in 2-space.
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Assume that F
!

2 is constant on triangular domain X1X2X3. Using Theorem 3.2 on X1X2X3 and choosing Z* to be the midpoint
of X1X3, we get

S2 F
!

2 ¼ l1ðF
!

2 �~n1Þ Z�Z1

!
þl2ðF

!
2 �~n2Þ Z�Z2

!
¼ 1

2
ð�f1

~l2 þ f2
~l1Þ;

where S2 is the area of triangle MX1X2X3. Thus,

jF
!

2j2 ¼
1

4S2
2

f 2
1 l2

2 þ f 2
2 l2

1 � 2f 1f2ð~l1 �~l2Þ
h i

:

jF
!

1j2; jF
!

3j2; jF
!

4j2 are obtained analogously. Now, let

1
mðeÞ

Z
e
j F
!
j2de � x1jF

!
1j2 þx2jF

!
2j2 þx3jF

!
3j2 þx4jF

!
4j2; ð3:8Þ

where xk(k = 1,2,3,4) are certain weights that will be determined later. Then, (3.8) leads to,Z
e

j F
!
j2

jðuÞ de � mðeÞ
jðueÞ

X4

k¼1

xkjF
!

kj2 ¼
mðeÞ
jðueÞ

X4

k¼1

xk

f 2
k�1l2

k þ f 2
k l2

k�1 � 2f k�1fk
~lk�1 �~lk
� �

4S2
k

¼ mðeÞ
jðueÞ

X4

k¼1

xk
f 2
k�1l2

k þ f 2
k l2

k�1 þ 2f k�1fklk�1lk cos uk

l2
k�1l2

k sin2 uk

; ð3:9Þ

where m(e) denotes the cell area and uk the angle \Xk�1XkXk+1, see Fig. 3.
At last, putting (3.5), (3.6) and (3.9) together and through some straightforward algebra, we reach

W F
!
� �

� FT AF� 2FT U; ð3:10Þ

where

F ¼ f1; f2; f3; f4ð ÞT ; U ¼ ue � u1;ue � u2;ue � u3;ue � u4ð ÞT ;

and A is a symmetric matrix, given by

A ¼ mðeÞ
jðueÞ

B; ð3:11Þ

here the symmetric matrix B = (bij)4�4 is given by

bkk ¼
xk

l2
k sin2 uk

þ xkþ1

l2
k sin2 ukþ1

; bk;kþ1 ¼
xkþ1 cos ukþ1

lklkþ1 sin2 ukþ1

; bk;kþ2 ¼ 0; for k ¼ 1;2;3;4:

For matrix A, we have the following result.

Theorem 3.3. Suppose that sinuk – 0, and xk > 0 (k = 1,2,3,4), then matrix A defined in (3.11) is symmetric positive definite.

Proof. By (3.11), we only need to prove that B is positive definite. For any nonzero vector R = (r1,r2,r3,r4)T, we have, from
sinuk – 0 and xk > 0,

RT BR ¼
X4

k¼1

xk

sin2 uk

rk�1

lk�1
;
rk

lk

� �
1 cos uk

cos uk 1

� �
rk�1=lk�1

rk=lk

� �
> 0:

Fig. 3. Approximation for j F
!
j2 from the trigonal standpoint.
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The last inequality holds, because

1 cos uk

cos uk 1

� �
is positive definite. Thus, matrix B is positive definite, which complete the proof. h

Since A is symmetric positive definite, the discrete cell functional (3.10) achieves its minimization if and only if

AF ¼ U: ð3:12Þ

3.2. Finite volume scheme based on the cell functional minimization

As can be seen from the discussion in the previous subsection, there are nine unknowns on a single cell, and by (3.12),
only five of them are independent. Thus, in selecting the independent unknowns for a cell, we have mainly two choices, i.e.,

� case (i): (ue, f1, f2, f3, f4);
� case (ii): (ue,u1,u2,u3,u4).

For case (i) the equation corresponding to the cell centered unknown ue can be obtained from (2.7) by the standard finite
volume spatial discretization,

@uði;jÞe

@t
þ 1

mðei;jÞ
f ði;jÞ1 þ f ði;jÞ2 þ f ði;jÞ3 þ f ði;jÞ4

� �
¼ Sði;jÞe ; 1 6 i 6 I; 1 6 j 6 J; ð3:13Þ

where (i, j) denotes the index of a structured cell in the 2-D computational domain, Sði;jÞe ¼ Sðxði;jÞe ; yði;jÞe ; tÞ and ðxði;jÞe ; yði;jÞe Þ denote
the coordinates of cell center (i, j,e) as shown in Fig. 4(a). The equation corresponding to the edge unknowns fk can be ob-
tained by using the continuity of the intensity across the cell edges. Taking edge (i, j,2) or (i + 1, j,4) in Fig. 4(b) for example,
we have uði;jÞ2 ¼ uðiþ1;jÞ

4 so thatX4

k¼1

aði;jÞ2k f ði;jÞk � uði;jÞe ¼
X4

k¼1

aðiþ1;jÞ
4k f ðiþ1;jÞ

k � uðiþ1;jÞ
e ;

where aði;jÞlk are the entries of cell matrix A. In this approach, the solution of the local linear system (3.12) is unnecessary.
However, when the above scheme is applied to the second-order elliptic problems, the resulting algebraic system is of sad-
dle-point type.

For case (ii), we first solve the local linear system (3.12) to get the explicit expressions of the flux variables. Then, by still
taking the edge (i, j,2) or (i + 1, j,4) in Fig. 4(b) for exposition and using the flux continuity condition f ði;jÞ2 ¼ �f ðiþ1;jÞ

4 , we obtain
the equation corresponding to the cell edge intensity unknown uði;jÞ2 ,

�
X4

k¼1

âði;jÞ2k uði;jÞe � uði;jÞk

� �
�
X4

k¼1

âðiþ1;jÞ
4k uðiþ1;jÞ

e � uðiþ1;jÞ
k

� �
¼ 0;

where âði;jÞlk denote the entries of A�1. The equation for the cell centered unknown is obtained by substituting the flux expres-
sions into (3.13),

@uði;jÞe

@t
þ 1

mðei;jÞ
X4

k¼1

X4

l¼1

âði;jÞlk

 !
uði;jÞe � uði;jÞk

� �
¼ Sði;jÞe :

If all the cell matrices are symmetric positive definite, by almost the same procedure in [28], the resulting algebraic system
can be a symmetric positive definite one.

Fig. 4. (a) The stencil for the cell-center (i, j, e) of cell (i, j); (b) An example stencil for the inner edge-center (i, j,2) or (i + 1, j,4).
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Next, we consider the situation of cell edges on the domain boundary. For instance, let us consider the right edge of the
cell (I, j) on the domain boundary @X, see Fig. 5. From the boundary condition (2.3) and flux (2.4), we have

�
Z

sðI;jÞ2

a F
!
�~n dsþ

Z
sðI;jÞ2

bu ds ¼
Z

sðI;jÞ2

g ds: ð3:14Þ

We approximate above boundary condition,

�af ðI;jÞ2 þ buðI;jÞ2 m sðI;jÞ2

� �
¼ gðI;jÞ2 m sðI;jÞ2

� �
; ð3:15Þ

where gðI;jÞ2 ¼ gðxðI;jÞ2 ; yðI;jÞ2 ; tÞ. If the edge intensity variables are treated as intermediate ones, the discrete boundary condition
(3.15) becomes

�af ðI;jÞ2 � b
X4

k¼1

aðI;jÞ2k f ðI;jÞk � uðI;jÞe

 !
m sðI;jÞ2

� �
¼ gðI;jÞ2 m sðI;jÞ2

� �
:

On the other hand, if we choose flux variables to be intermediate ones, (3.15) leads to

�a
X4

k¼1

âðI;jÞ2k uðI;jÞe � uðI;jÞk

� �
þ buðI;jÞ2 m sðI;jÞ2

� �
¼ gðI;jÞ2 m sðI;jÞ2

� �
:

In conclusion, our cell functional minimization algorithm yields a 5-point stencil for the cell-center equations, a 9-point sten-
cil for the inner edge-center equations, and a 5-point stencil for the boundary edge-center equations, see Figs. 4 and 5.

3.3. The cell matrix A

From the above subsection we have seen that the relation (3.12), derived from the cell functional minimization approach,
plays an important part in the construction of our finite volume scheme. In this subsection, we shall discuss the problem of
constructing the cell matrix A in (3.12). The first type of cell matrix is given by (3.11) with the weights specified as

xk ¼
1
4
; k ¼ 1;2;3;4: ð3:16Þ

Our numerical experience indicates that this type of cell matrix usually leads to poor accuracy on distorted meshes. Here we
are more interested in searching some new ones. The main idea is to require that (3.12) satisfies the linearity preserving cri-
terion [35], which means that it holds exactly for the linear case where the solution u is a linear function and the diffusion
coefficient is a constant on each cell, i.e.,

u ¼ aexþ beyþ ce; jðuÞ ¼ je; on e; ð3:17Þ

where ae, be, ce, je are constants.
For the above purpose, we need some more notations and preliminaries. We still employ Fig. 3 for exposition and asso-

ciate it with some new notations. Denote by~nk the outward unit vector normal to the tangential vector~lk ¼ XkXkþ1

!
. Here we

point out once again that k is a periodic subscript with 4 period. Denote by Ze the cell center at which the cell centered un-
known ue is defined. Introduce further the 4 � 2 matrices F ¼ ðfk;jÞ and U ¼ ðuk;jÞ by

fk;j ¼ �jelkð~ej �~nkÞ and uk;j ¼ �~ej � ZeZk

!
;

Fig. 5. An example stencil for the right edge midpoint (I, j,2) of cell (I, j) on the boundary @X.
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where~e1 ¼ ð1;0ÞT ; ~e2 ¼ ð0;1ÞT ; lk ¼ jXkXkþ1j; k ¼ 1;2;3;4 and j = 1, 2. By Theorem 3.2,

mðeÞ~ej ¼
X4

k¼1

lkð~ej �~nkÞ ZeZk

!
: ð3:18Þ

Multiplying the above identity with je~eiði ¼ 1;2Þ yields

UTF ¼ jemðeÞI; ð3:19Þ

where I is a 2 � 2 identity matrix.
Now, by requiring that (3.12) is exact for the linear case (3.17), we reach

AF ¼ U: ð3:20Þ

Recall that the cell edge unknowns uk(k = 1,2,3,4) are defined at the midpoints of the cell edges, while the cell centered un-
known ue is defined at the cell center Ze whose definition has not been given yet. Usually coordinates of the cell center
Zeð�xe; �yeÞ are obtained by arithmetic averaging of those of the cell nodes, i.e.,

�xe ¼
1
4

X4

i¼1

xi; �ye ¼
1
4

X4

i¼1

yi: ð3:21Þ

However, in our method, the cell center Ze(xe,ye) can be any fixed point in the cell. Denote~te ¼ ~ZeZe. Then, on the one hand,
we have by straightforward calculation,

uk;j ¼~ej �~te þ~ej � ~ZkZe ¼~ej �~te þ
1
4
~ej � ~lkþ1 �~lk�1

� �
;

On the other hand, by the definition of matrix B in (3.11), we find that

B ¼
X4

k¼1

xk

lk�1lk sin2 uk

TkBkTT
k ; ð3:22Þ

where

T1 ¼
0 0 0 1
1 0 0 0

� �T

; T2 ¼
1 0 0 0
0 1 0 0

� �T

;

T3 ¼
0 1 0 0
0 0 1 0

� �T

; T4 ¼
0 0 1 0
0 0 0 1

� �T

and

Bk ¼
lk

lk�1
cos uk

cos uk
lk�1

lk

0@ 1A:
Still by straightforward calculation,

BkTT
kF ¼ �je sin uk

�~lk �~e1 �~lk �~e2

~lk�1 �~e1
~lk�1 �~e2

 !
; ð3:23Þ

where we have used the identities

lk ~nk�1 þ~nk cos ukð Þ ¼ � sin uk
~lk;

lk�1 ~nk þ~nk�1 cos ukð Þ ¼ sinuk
~lk�1; k ¼ 1;2;3;4:

ð3:24Þ

Putting (3.11), (3.22) and (3.23) together gives

AF ¼ �mðeÞ
X4

k¼1

xk

lk�1lk sin uk
Tk
�~lk �~e1 �~lk �~e2

~lk�1 �~e1
~lk�1 �~e2

 !
¼ ðak;jÞ4�2; ð3:25Þ

where

ak;j ¼ ~xkþ1
~lkþ1 � ~xk

~lk�1

� �
�~ej; ~xk ¼

mðeÞxk

lk�1lk sin uk
:

Substituting (3.25) and (3.21) into (3.20), we finally arrive at

4 ~xkþ1 � 1ð Þ~lkþ1 þ 1� 4 ~xkð Þ~lk�1 ¼ 4~te; k ¼ 1;2;3;4: ð3:26Þ

By these identities, we have the result below.
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Theorem 3.4. If cell e is not a parallelogram and the cell center coincides with Ze, then (3.12), with cell matrix A given by (3.11),
holds exactly for the linear case (3.17) if and only if

xk ¼
lk�1lk sinuk

4mðeÞ ; k ¼ 1;2;3;4: ð3:27Þ

Proof. Obviously, (3.27) is a sufficient condition. The nontrivial part is to prove that (3.27) is also a necessary one. Since cell e
is not a parallelogram, we assume that, without any harm to our argument,~l1 is not collinear with~l3. By using (3.26) and
noting~te ¼ 0, we have

ð4 ~x3 � 1Þ~l3 þ ð1� 4 ~x2Þ~l1 ¼ 0;

ð4 ~x1 � 1Þ~l1 þ ð1� 4 ~x4Þ~l3 ¼ 0;

(
ð3:28Þ

which implies ~xk ¼ 1=4ðk ¼ 1;2;3;4Þ and in turn (3.27). h

Although we have provided a systematic way to construct finite volume schemes for parabolic Eq. (2.1), the above result
indicates that there is no much flexibility, at least for the structured quadrilateral meshes. The limitation is caused by the fact
that the cell matrix A should be given by (3.11). If we drop this requirement and relay only on (3.20) to construct a symmet-
ric positive definite cell matrix, things will become different. Motivated by [10,11], we give a constructional algorithm by just
choosing

A ¼ 1
jemðeÞUUT þ CDCT ; ð3:29Þ

where D is an arbitrary 2 � 2 symmetric positive definite matrix, and C is a 4 � 2 matrix whose columns span the null
space of the matrix FT so that FTC ¼ 0. By (3.19) we see that the rank of F is two and C is well defined. Due to
(3.19), the matrix A given by (3.29) satisfies (3.20) and is symmetric and positive semidefinite. The positive definiteness
of this new cell matrix follows from its nonsingularity, which can be obtained by using the same procedure in the proof
of Theorem 3.1 in [10].

As in [10], (3.29) allows us to construct a family of finite volume schemes and moreover, enable us to extend the present
results to the unstructured polygonal meshes. More interesting is that the undetermined parameters in (3.29) include not
only the entries of the symmetric positive definite matrix D but also the coordinates of the cell center Ze. Since only the mass
center is allowed for the cell center and only case (i) can be employed for the unknowns in [10], the present approach seems
a little more flexible. Moreover, since we have an equivalent choice of unknowns, i.e., case (ii), and the resulting linear sys-
tem is symmetric positive definite, the saddle-point problem suffered by MFD scheme in [10] can be avoided in our method.
During the revision process of this paper, we were informed by one of the reviewer that the MFD scheme in [10] has been
extended in [17] where the cell center is allowed to be any point in the cell in order to establish certain relation with the
other two finite volume schemes. In addition, in order to be consistent with the framework of the original MFD method,
a weight function wE has to be introduced, although the existence of this weight function has been proved. Since in our der-
ivation there is no requirement for the location of the cell center, it seems natural in the present setting to choose any fixed
point to be the cell center.

At last, we point out that the finite volume scheme based on cell functional minimization approach can now be viewed as
a family of schemes, some of which have close relations with some schemes studied before, including the famous LSOM and
MFD schemes. We list several special cases below:

� Special case 1. If we choose case (i) for unknowns and (3.11) with weights given by (3.16) for cell matrix, the resulting
scheme is identical to the one in [23,14].
� Special case 2. If we choose case (i) for unknowns and (3.11) with weights given by (3.27) for cell matrix, the resulting

scheme coincides with the scheme in [33].
� Special case 3. If we choose case (ii) for unknowns and use (3.11) and (3.27) to define the cell matrix, the resulting scheme

is identical to the LSOM scheme in [28].
� Special case 4. If we choose case (i) for unknowns and use (3.29) and mass center to define the cell matrix, the resulting

scheme coincides with the MFD scheme in [10] confined to the structured quadrilateral meshes.

3.4. A parallel algorithm based on nonoverlapping domain decomposition

Since the scheme discussed above employs both cell centered and cell edge unknowns, it has much more degrees of free-
dom than the pure cell centered schemes, which not only needs more memory space but also influences the computational
speed in the large scale practical simulations. In order to conquer this weakness, we suggest a parallel algorithm based on
nonoverlapping domain decomposition approach. We find that the cell edge unknowns in the scheme facilitate the construc-
tion of all kinds of interface conditions.
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For the sake of simplicity, we only consider the case where the domain X is decomposed into two nonoverlapping sub-
domains X1 and X2, and denote C12 ¼ X1 \X2. A parallel algorithm with Dirichlet–Robin interface conditions for (2.1) and
(2.3) is suggested as follows

unþ1;s
1 � un

1

s
� div jðunþ1;s

1 Þrunþ1;s
1

� �
¼ Snþ1; in X1;

aj unþ1;s
1

� � @

@ ~n1
unþ1;s

1 þ bunþ1;s
1 ¼ gnþ1; on @X \ @X1;

unþ1;s
1 ¼ unþ1;s�1

2 ; on C12;

u0
1 ¼ w

and

unþ1;s
2 � un

2

s
� div j unþ1;s

2

� �
runþ1;s

2

� �
¼ Snþ1; in X2;

aj unþ1;s
2

� � @

@ ~n2
unþ1;s

2 þ bunþ1;s
2 ¼ gnþ1; on @X \ @X2;

kunþ1;s
2 þ j unþ1;s

2

� � @

@~n2
unþ1;s

2 ¼ kunþ1;s�1
1 � j unþ1;s�1

1

� � @

@~n1
unþ1;s�1

1 ; on C12;

u0
2 ¼ w;

where s denotes the iterative number, unþ1;0
i ¼ un

i ;u
n
i is the approximate solution in Xi at time t = ns, and s is the time step.

The implementation of the above algorithm is standard and is then omitted. Here we point out that other types of inter-
face conditions can also be considered in this parallel algorithm. Moreover, if the problem is solved on the whole domain and
a big global matrix is involved, the above domain decomposition algorithm can serve as an efficient preconditioner for cer-
tain iteration method of Krylov type.

4. Numerical experiments

In this section, we provide numerical results for three examples on the distorted structured quadrilateral meshes. One
example is a linear problem with a continuous diffusion coefficient. The following example is a linear problem with a dis-
continuous diffusion coefficient, and the last example is about a nonlinear problem. We will investigate the performance
of our finite volume scheme and its parallel version on some typical distorted quadrilateral meshes, including the sine mesh,
the Shestakov mesh, the Kershaw mesh and the random mesh. Descriptions of these distorted meshes can be found in
[28,35]. Random meshes used in experiments are obtained from their orthogonal counterparts with 20 percent random dis-
turbance of the interior mesh vertices.

We shall examine the following four types of errors on the global computational domain X = [0,1] � [0,1],

ec ¼max
i;j

uðxi;j;e; yi;j;e;TÞ � un
i;j;e

��� ���;
ei ¼max

i;j;k
uðxi;j;k; yi;j;k; TÞ � un

i;j;k

��� ���; k ¼ 2;4;

ej ¼max
i;j;k

uðxi;j;k; yi;j;k; TÞ � un
i;j;k

��� ���; k ¼ 1;3;

eL2 ¼
X

i;j

uðxi;j;e; yi;j;e; TÞ � un
i;j;e

��� ���2mðei;jÞ
 !1=2

;

where the notations (i, j,k), k = e, 1, . . . , 4 for the cell ei,j are shown in Fig. 4. We use the Picard iteration to linearize the non-
linear systems in the nonlinear case, and use GMRES method [30] to solve the linear systems in all experiments. Throughout,
we shall choose case (ii) for unknowns and use (3.11) and (3.27) to define the cell matrix.

Example 5.1. Consider the following linear problem with a continuous diffusion coefficient,

@u
@t
� divðruÞ ¼ Sðx; y; tÞ; ðx; y; tÞ 2 X� ð0; T�;

uðx; y;0Þ ¼ 2þ sinðpxÞ sinðpyÞ; ðx; yÞ 2 X;

with boundary conditions specified by

uð0; y; tÞ ¼ 2 expð�2p2tÞ;
@

@~n
uðx;0; tÞ ¼ @

@~n
uðx;1; tÞ ¼ �p expð�2p2tÞ sinðpxÞ;

@

@~n
þ 2

� �
uð1; y; tÞ ¼ expð�2p2tÞð�p sinðpyÞ þ 4Þ;
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and the source term S(x,y, t) = �4p2 exp (�2p2t). The exact solution of above linear problem is u = exp(�2p2t)(2 + sin (px) sin
(py)).

First, we examine the accuracy of our finite volume scheme, in which a sequence of random quadrilateral meshes are em-
ployed. Here the time step s = 1.0e�6, and the final time T = 0.01. The results are presented in Table 1 where the convergence
rate is also given in the last column, which is obtained by a least squares fit. We can see that the discrete scheme based on
minimizing the cell functional has a nearly second order accuracy.

Next, we test the effect of parameter k in the Dirichlet–Robin interface conditions of the parallel algorithm. Let s denote
the average iterative number per CPU per time step in the whole computing process, and erb is the maximum error bound in
iterative convergence controlling. Both the x and y directions have m processors, i.e., total CPUs = m�m processors for the
whole domain. The relations between s and parameter kh are presented in Fig. 6, where h denotes the average cell size of
the mesh. In those two tests, we choose CPUs = 2 � 2. One is tested on 10 � 10 orthogonal and random meshes with
s = 1.0e�6 and T = 0.01. The other is employed on 10 � 10 orthogonal meshes with different time steps and the total number
of time steps is fixed on 104. Fig. 6(a) shows that iterative number on the random mesh is a little bigger than that on the
uniform mesh, and the optimal value of k seems the same on both meshes, which implies that the optimal value of k is insen-
sitive to the mesh distortion. Fig. 6(b) shows that the time step does not affect the optimal value of k. The optimal value
O(h�1/2) of k for a Robin–Robin non-overlapping domain decomposition for Poisson equation is derived by using Poin-
care–Steklov operators in [27]. Making use of techniques in [27], we also get the optimal value O(h�1) of k for a Dirich-
let–Robin non-overlapping domain decomposition method. Here we omit intricate analysis, but our numerical
experiments confirm it.

Now fixing the number of processors and k(here k � 2/h), numerical results on a sequence of random meshes are pre-
sented in Table 2. Table 3 shows results of the parallel algorithm with a fixed number of processors and a set of varying k

Table 1
The accuracy of the scheme for Example 5.1 on a sequence of random meshes.

Mesh 10 � 10 20 � 20 40 � 40 60 � 60 Rate

ec 4.6395E�3 1.9091E�3 4.7524E�4 1.9004E�4 1.85
ei 1.2481E�2 3.5619E�3 1.0846E�3 4.0806E�4 1.98
ej 1.0888E�2 3.4173E�3 1.0218E�3 4.5532E�4 1.80
eL2 1.4046E�3 4.0909E�4 1.0054E�4 4.1752E�5 1.99
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Fig. 6. Iterative number s versus parameter kh.

Table 2
The accuracy of the parallel algorithm with CPUs = 2 � 2.

Mesh 10 � 10 20 � 20 40 � 40 60 � 60 Rate

k 20.0 40.0 80.0 120.0
s 6.9996 8.6729 6.9994 8.3318
ec 4.6399E�3 1.9093E�3 4.7702E�4 1.9021E�4 1.85
ei 1.2480E�2 3.5614E�3 1.0831E�3 4.0791E�4 1.98
ej 1.0887E�2 3.4172E�3 1.0203E�3 4.5463E�4 1.80
eL2 1.4047E�3 4.0909E�4 1.0078E�4 4.1882E�5 1.99
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and erb on a 10 � 10 random mesh. Table 4 presents results with a fixed k and mutative numbers of CPUs and erb on a 60 � 60
random mesh. From Tables 3 and 4, we can see that computational errors do not be affected by the parameter k or the num-
ber of subdomains as maximum controlling error erb approaches zero. Obviously, it will cost more iterations by using a smal-
ler maximum controlling error. All those Tables 2 and 4 show that the parallel algorithm has almost the same accuracy with
the discrete scheme on one CPU by referring the results in Table 1.

Table 3
Results of the parallel algorithm with varying k,erb and CPUs = 2 � 2.

k 10.0 20.0 50.0 100.0

erb 1.0E�8 1.0E�8 1.0E�8 1.0E�8
s 8.2247 6.9996 9.0007 14.1232
eL2 1.4046E�3 1.4047E�3 1.4049E�3 1.4050E�3
erb 1.0E�10 1.0E�10 1.0E�10 1.0E�10
s 30.8528 11.9994 31.9983 64.1955
eL2 1.4046E�3 1.4046E�3 1.4046E�3 1.4046E�3
erb 1.0E�12 1.0E�12 1.0E�12 1.0E�12
s 31.8526 12.9992 32.9982 65.1954
eL2 1.4046E�3 1.4046E�3 1.4046E�3 1.4046E�3

Table 4
Results of the parallel algorithm with varying CPUs, erb, and k = 120.

CPUs 2 � 2 4 � 4 10 � 10

erb 1.0E�8 1.0E�8 1.0E�8
s 8.3318 8.9992 11.9989
eL2 4.1882E�5 4.1892E�5 4.1753E�5

erb 1.0E�10 1.0E�10 1.0E�10
s 13.9991 15.9534 18.1870
eL2 4.1752E�5 4.1752E�5 4.1752E�5

erb 1.0E�12 1.0E�12 1.0E�12
s 14.9990 18.4752 21.2068
eL2 4.1752E�5 4.1752E�5 4.1752E�5

Table 5
Results of the parallel algorithm for the fixed size problem per processor.

Mesh 20 � 20 30 � 30 40 � 40 50 � 50 60 � 60 80 � 80

CPUs 2 � 2 3 � 3 4 � 4 5 � 5 6 � 6 8 � 8
k 40.0 60.0 80.0 100.0 120.0 160.0
s 3.9997 4.9995 4.9995 4.9996 4.9996 4.9996

eL2 1.6557E�4 7.5416E�5 4.3751E�5 2.9103E�5 2.1183E�5 1.3467E�5
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Fig. 7. Execution time decreased in inverse proportion to the number of processors.
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At last, check the scalability for our unaccelerated parallel algorithm with an optimal value of k. Table 5 shows parallel
results on a series of orthogonal mesh as problem size and processor number are increased in proportion. It indicates that the
iterative number s does not increase much when the mesh is refining and the number of CPUs is increasing. Fig. 7 describes
that execution time on a fixed 200 � 200 orthogonal mesh decreases in inverse proportion to the number of processors.

Example 5.2. Consider a linear problem with discontinuous diffusion coefficients,

@u
@t
� divðjðuÞruÞ ¼ Sðx; y; tÞ; ðx; y; tÞ 2 X� ð0; T�;

where

jðuÞ ¼
0:4; ðx; y; tÞ 2 0; 2

3

� �
� ð0;1Þ � ð0; T�;

0:1; ðx; y; tÞ 2 2
3 ;1
� 	

� ð0;1Þ � ð0; T�

(
with initial value

uðx; y;0Þ ¼
2þ sinðpxÞ sinð2pyÞ; ðx; y; tÞ 2 0; 2

3

� �
� ð0;1Þ � ð0; T�;

2þ sinð4pxÞ sinð2pyÞ; ðx; y; tÞ 2 2
3 ;1
� 	

� ð0;1Þ � ð0; T�

(
and boundary conditions

uð0; y; tÞ ¼ 2 expð�2p2tÞ;

@

@~n
uðx;1; tÞ ¼ � @

@~n
uðx;0; tÞ ¼

2p expð�2p2tÞ sinðpxÞ; x 2 0; 2
3

� �
;

2p expð�2p2tÞ sinð4pxÞ; x 2 2
3 ;1
� 	

;

(
@

@~n
þ 2

� �
uð1; y; tÞ ¼ 4p expð�2p2tÞ sinð2pyÞ þ 4 expð�2p2tÞ:

Here the source term S(x,y, t) = �4p2 exp (�2p2t). The associated analytic solution is

uðx; y; tÞ ¼
expð�2p2tÞð2þ sinðpxÞ sinð2pyÞÞ; ðx; y; tÞ 2 0; 2

3

� �
� ð0;1Þ � ð0; T�;

expð�2p2tÞð2þ sinð4pxÞ sinð2pyÞÞ; ðx; y; tÞ 2 2
3 ;1
� 	

� ð0;1Þ � ð0; T�:

(
Table 6 shows the accuracy of the finite volume scheme based on the cell functional minimization algorithm on a sequence
of random quadrilateral meshes, in which s = 1.0e�6 and T = 0.01.

In our numerical parallel experiments for this example, we will test parallel results in two special cases. One case is that
interfaces are not on the material discontinuities, for example CPUs = 2 � 2. Another case is that interfaces are on the material
discontinuities, for example CPUs = 3 � 3. Tables 7 and 8 present errors of parallel algorithm with optimal values k (here
k � 5/(9h)) on random meshes in those two cases. Comparing Tables 7 and 8 with Table 6, we can see that parallel results
for a linear problem with a discontinuous diffusion coefficient also have good accuracy. Obviously, it seems that the accuracy
almost keeps the same, the iterative number does not change much, and the optimal value of k nearly does not change
whether interfaces are on the material discontinuity or not.

Table 6
The accuracy of the scheme for Example 5.2 on random meshes.

Mesh 18 � 18 27 � 27 45 � 45 60 � 60 Rate

ec 2.0481E�2 1.2423E�2 5.4063E�3 2.9723E�3 1.65
ei 5.4576E�2 2.3280E�2 8.4362E�3 5.8177E�3 1.79
ej 2.8680E�2 1.1602E�2 5.6470E�3 2.8996E�3 1.99
eL2 4.1674E�3 1.9870E�3 7.9039E�4 4.4058E�4 1.89

Table 7
The accuracy of the parallel algorithm for Example 5.2 with CPUs = 2 � 2.

Mesh 18 � 18 27 � 27 45 � 45 60 � 60 Rate

k 10.0 15.0 25.0 33.33
s 7.0005 8.9999 8.9999 8.9997

ec 2.0481E�2 1.2423E�2 5.4064E�3 2.9723E�3 1.65
ei 5.4575E�2 2.3280E�2 8.4362E�3 5.8177E�3 1.79
ej 2.8680E�2 1.1602E�2 5.6470E�3 2.8996E�3 1.99
eL2 4.1673E�3 1.9870E�3 7.9040E�4 4.4056E�4 1.89
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Example 5.3. In this example, we will consider the following nonlinear problem,

@u
@t
� divðuruÞ ¼ Sðx; y; tÞ; ðx; y; tÞ 2 X� ð0; T�;

uðx; y;0Þ ¼ 2þ sinðpxÞ sinðpyÞ; ðx; yÞ 2 X

with Dirichlet boundary condition

uðx; y; tÞ ¼ 2 expð�2p2tÞ; ðx; yÞ 2 @X;

and the source term S(x,y, t) = �2p2exp (� 2p2t)(2 + sin (px) sin (py)) + p2exp (�4p2t)[(4 + 2sin (px) sin (py)) sin (p x) sin
(py) � cos2(px) sin2(py) � sin2(px) cos2(py)). The exact solution is u = exp (�2p2t)(2 + sin (px) sin (py)).

Now, we investigate the performance of the finite volume scheme for Example 5.3 on some typical distorted quadrilateral
meshes, including the trapezoidal mesh, the sine mesh, the Shestakov mesh and the Kershaw mesh. Examples of these typ-
ical meshes together with the domain decomposition are shown in Fig. 8(a)–(d), respectively. In the parallel experiments for
this nonlinear example, the interface conditions are updated after each nonlinear iteration. So in the nonlinear case, the iter-
ative number s combines effects of the nonlinear iteration and the iteration of the domain decomposition algorithm.

Table 8
The accuracy of the parallel algorithm for Example 5.2 with CPUs = 3 � 3.

Mesh 18 � 18 27 � 27 45 � 45 60 � 60 Rate

k 10.0 15.0 25.0 33.33
s 9.0004 11.0000 10.9660 10.9996

ec 2.0480E�2 1.2422E�2 5.4036E�3 2.9729E�3 1.65
ei 5.4575E�2 2.3280E�2 8.4372E�3 5.8178E�3 1.79
ej 2.8680E�2 1.1602E�2 5.6429E�3 2.8996E�3 1.99
eL2 4.1674E�3 1.9871E�3 7.9045E�4 4.4069E�4 1.89
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Fig. 8. Four typical distorted meshes with 4 � 4 subdomains.
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Some experiences have been done to investigate the optimal value of k on those four typical distorted meshes. Results are
similar with those in Fig. 6 and show that the optimal value of k is independent of mesh types and interface shapes. Numer-
ical results with optimal values k(k � 5/h for this nonlinear example) relevant to a sequence of test meshes are presented in
Tables 9–12, where erb = 1.0e�8, s = 1.0e�6, T = 0.01. Obviously, our parallel finite volume scheme on those distorted
meshes has a good accuracy, and the iterative number s does not acutely increase as meshes refining and the number of pro-
cessors enhancing.

5. Concluding remarks

We have obtained a finite volume scheme through a cell functional minimization approach and derived its parallel algo-
rithm based on nonoverlapping domain decomposition. Unlike the mixed finite element methods or the MFD method, here
the edge intensity unknowns are not defined through the hybridization procedure, instead they are introduced simulta-
neously with the cell centered unknowns and edge flux unknowns. The relations of these unknowns are then established

Table 9
Numerical results on the trapezoidal mesh.

Mesh 10 � 10 20 � 20 40 � 40 60 � 60 Rate

CPUs 2 � 2 4 � 4 8 � 8 12 � 12
k 50.0 100.0 200.0 300.0
s 7.9746 11.5745 12.5212 13.1619

ec 7.5339E�3 2.3076E�3 6.2896E�4 2.8735E�4 1.84
ei 1.0102E�2 2.7858E�3 7.2783E�4 3.2804E�4 1.92
ej 1.0804E�2 2.7630E�3 7.0011E�4 3.1263E�4 1.98
eL2 3.6554E� 9.2186E�4 2.3079E�4 1.0262E�4 2.00

Table 10
Numerical results on the sine mesh.

Mesh 10 � 10 20 � 20 40 � 40 60 � 60 Rate

CPUs 2 � 2 4 � 4 8 � 8 12 � 12
k 50.0 100.0 200.0 300.0
s 10.0578 12.0778 15.0754 16.9986

ec 1.1794E�2 3.9348E�3 1.1548E�3 5.3888E�4 1.74
ei 2.3899E�2 7.6112E� 2.1642E�3 9.9126E�4 1.80
ej 2.3899E�2 7.6111E�3 2.1639E�3 9.9099E�4 1.80
eL2 5.0811E�3 1.3958E�3 3.6016E�4 1.6111E�4 1.93

Table 11
Numerical results on the Shestakov mesh.

Mesh 8 � 8 16 � 16 32 � 32 64 � 64 Rate

CPUs 2 � 2 4 � 4 8 � 8 16 � 16
k 40.0 80.0 160.0 320.0
s 8.4755 11.3688 15.3630 19.7516

ec 1.9926E�2 7.0053E�3 2.2056E�3 6.0064E�4 1.69
ei 1.9795E�2 6.8708E�3 2.0855E�3 7.1647E�4 1.60
ej 1.6536E�2 5.5557E�3 1.8505E�3 6.9889E�4 1.52
eL2 6.8811E�3 1.9148E� 5.1242E� 1.3745E�4 1.88

Table 12
Numerical results on the Kershaw mesh.

Mesh 10 � 10 20 � 20 40 � 40 60 � 60 Rate

CPUs 2 � 2 4 � 4 8 � 8 12 � 12
k 50.0 100.0 200.0 300.0
s 8.9995 12.0632 15.8855 19.5776

ec 1.0980E�2 3.4808E�3 1.5726E�3 7.2127E�4 1.58
ei 1.0311E�2 2.4488E�3 9.4742E�4 3.7670E�4 1.90
ej 2.5099E�2 5.4083E�3 2.1299E�3 9.6244E�4 1.84
eL2 5.3822E�3 1.2649E�3 4.0678E�4 1.7113E�4 1.96
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by minimizing certain cell functional. Moreover, we find that cell edge unknowns play important roles in the construction of
the parallel algorithm of the finite volume scheme. They not only prevent the loss of accuracy on the interface due to inter-
polation but also make it convenient to handle all kinds of interface conditions of subdomains. The Robin condition used here
could speed up convergence if k is properly chosen. Our numerical experiments show that the optimal value of k seems
insensitive to the mesh distortion, interface shape and location, but relevant to the mesh size. Numerical results demonstrate
the good performance of the finite volume scheme and its parallel version. Both of them have almost second order accuracy
on many typical distorted quadrilateral meshes. Other future works include investigating the influence of the location of the
cell center, comparing multiplicate interface conditions, extending them to the nonconforming interface cases, computing
practical multi-material physical problem.
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