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Abstract — In this paper, a new supervised classifica-

tion method, combining spectral and spatial information,
is proposed. The method is based on the two following

facts. First, a hyperspectral pixel can be sparsely repre-

sented by a linear combination of the dictionary consists
of a few labeled samples. If any unknown hyperspectral

pixel lies in the subspace spanned by some labeled-class
samples, it will be classified to this labeled-class. And this

is to solve a fully constrained sparse unmixing problem

with the l2 regularization and the criterion of classification
is relaxed to be determined by the largest value of sparse

vector whose nonzero entries correspond to the weights of
the labeled samples. Second, since the nearest neighbors

probably belong to the same class, a spatial constraint is

introduced. Alternating direction method of multipliers
(ADMM) and the graph cut based method are then used

to solve the spectral-spatial model. Finally, two real hy-
perspectral data sets are used to validate our proposed

method. Experimental results show that the proposed

method outperforms many of the state-of-the-art methods.
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I. Introduction

Hyperspectral remote sensors capture digital images in hun-
dreds of continuous narrow (about 2 to 10nm) spectral bands span-

ning the visible to infrared spectrum (400nm–2500nm)[1] . Pixels

in Hyperspectral imaging (HSI) are represented by vectors whose
entries corresponding to the spectral bands. Different materials

usually reflect electromagnetic energy differently at specific wave-
lengths. And this allows the characterization, identification, and

classification of the land-covers with improved accuracy and robust-

ness. In recent years, many techniques have been developed for
HSI classification. Among these methods, Support vector machines

(SVMs) have been a powerful tool to solve supervised classification
problems for high-dimensional data and have shown a good per-

formance for hyperspectral classification[2−4], due to their ability

to deal with large input spaces efficiently and produce sparse solu-
tions. Another efficient methods are graph based methods[5,6], in

which each sample spreads its labeled and unlabeled samples un-

til a global stable state is achieved on the hole dataset. This kind
of methods play a key role in hyperspectral classification. In ad-

dition, sparse multinomial logistic regression methods[7,8] based on

Bayesian learning framwork also provide good performances and
draw more attention in hyperspectral classification. This kind of

methods learn the class distribution themselves and provide a sparse
regressor. Recently, sparse representation has also been proposed

for HSI classification[9,10] . It relies on the assumption that hyper-

spectral pixels in the same class lie in the same low-dimensional
subspace. Thus, an unknown pixel can be sparsely represented by

a set of training samples in a dictionary, and it doesn’t need to
learn the dictionary but use the training samples as the dictionary.

In addition, a trend of hyperspectral classification is to include the

spatial information[11,12], as well as to use the kernel method[13−15]

to project the data into a nonlinear feature space, for improving the

classification accuracy.
In this paper, a new supervised classification method with

spectral-spatial constraints is proposed. we use the sparse un-

mixing to do the first step of classification and then impose the
spatial-contextual information, which encourages the neighboring

samples to belong to the same class, to improve the classification
accuracy (see Fig.1). In the sparse unmixing procedure, the labeled

samples are assumed to be spectrally pure and used as endmem-

bers. And the corresponding fractional abundances (sparse vec-
tors), imposing two constrains, sum-to-one (the so-called Abun-

dance sum constraint–ASC) and non-negative (Abundance non-
negativity constraint–ANC), are estimated by the fully-constrained

l2-SUADMM (l2 regularized Spectral unmixing by alternating di-

rection method of multipliers[16]) method. The first step of clas-
sification is not determined by the minimum residual but relaxed

to be determined by the maximum element of abundance, which is
got under the two constraints. In order to improve the classification

accuracy, the spatial-contextual information is proposed by forcing

constraint on the classified neighbors instead of the sparse vectors.
The main novelty of our proposed work is the integration of l2 reg-

ularized sparse unmixing method with the spatial-contextual term
forced on the classified neighbors.

II. HSI Classification Based on Sparse
Representation

For the convenience of describing hyperspectral classification
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problem, we define some notations. Let S ≡ {1, · · · , N} be a set of

integers indexing N pixels in a HSI, L ≡ {1, · · · , K} be a set of K
class labels, X ≡ (x1, x2, · · · , xN ) ∈ R

L×N be a HSI with N pixels

of L-dimension, where xi is a L-dimension vector corresponding to

pixel i, y ≡ (y1, y2, · · · , yN ) ∈ LN be an image of class labels and

Ak ≡ (ak
1 , ak

2 , · · · , ak
lk

) ∈ R
L×lk be a sub-dictionary containing lk

labeled samples in class k.

Fig. 1. Block diagram summarizing the most relevant steps of

our proposed l2-SUADMM-TV algorithm

1. Sparse unmixing model for HSI

The sparse model is based on the assumption that hyperspectral

pixels in the same class approximately lie in the same low dimen-
sional subspace. It is to say that, if an unlabeled hyperspectral

pixel x ∈ X belongs to the kth class, its spectrum turns to lie in

a low-dimensional subspace spanned by the labeled hyperspectral
samples in class k, and can be represented by a linear combination

of the labeled samples, as[9]:

x ≈ sk
1ak

1 + sk
2ak

2 + · · ·+ sk
lk

ak
lk

= [ak
1ak

2 · · ·ak
lk

]︸ ︷︷ ︸
Ak

·
T

[sk
1sk

2 · · · sk
lk

]︸ ︷︷ ︸
sk

= Ak · sk (1)

where sk is a lk-dimensional vector whose entries are the abun-

dances of the corresponding spectra in Ak .

Under the above assumption, if we known the class number in

the hyperspectral scene, any test samples would lie in one of the sub-
space spanned by one class of all K classes. Then, combining the

dictionaries {Ak}k=1,2,···,K , a unlabeled sample x can be written
as a linear combination of all labeled samples as:

x ≈ A1s1 + A2s2 + · · ·+ AKsK

= [A1 · · ·AK ]︸ ︷︷ ︸
A

·

⎡
⎢⎣

s1

...

sK

⎤
⎥⎦

︸ ︷︷ ︸
s

= A · s (2)

where A is a L × l matrix containing all labeled samples from K

classes with l =
∑K

k=1 lk, and the vector s is sparse (s contains a
few non-zeros entries).

In contrast with the ideal case, there are always noise in the

observed hyperspectral pixel x. In order to solve the reconstruction

problem imposing noise and find the sparse vector s for a unla-
beled sample, it’s necessary to impose a sparsity regularization for

the problem, as the noise will be amplified by the eigenvalues in
the Singular value decomposition (SVD) of the matrix A at its bad-

condition (the condition number of A is big) case. One of the choice

of the sparsity regularization is the l0 norm of s, which gives the
number of non-zero elements of s, and then the sparse vector s can

be found by the following optimization problem:

s = arg min
s

||s||0

s.t ||A · s− x||2 < ε (3)

But, this problem is NP-hard and can only be approximately solved
by greedy pursuit algorithms[17−19]. In this paper, we turn to

solve a easy and convex problem using the l1 regularization of the

weighted vector s, the problem becomes:

s = arg min
s

||s||1

s.t ||A · s− x||2 < ε (4)

As we assume that the labeled samples can be seen as the endmem-
bers in the hyperspectral scene, the problem is a sparse unmixing

problem[20−23]. Imposing the two constraints ANC and ASC and

using the Lagrange multiplier method representation, the problem
is formulated as:

s = arg min
s

{
1

2
||A · s− x||22 + λ · ||s||1

}

s.t s ≥ 0, 1T · s = 1 (5)

where 1T · s = 1 denotes the sum of elements of s is 1. Eq.(5)

is the traditional l2 − l1 problem, and can be solved by existing
methods[24,25] . As ||s||1 ≡ 1 under the ASC constraint, we will use

the ||s||22 to replace it in the following section.
2. Proposed sparse unmixing method by minimizing l2

norm of abundance vector

In this section, we use the l2 norm instead of the l1 norm to ob-
tain the sparse solution under the ANC and ASC constraints. The

advantages of using l2 norm is that (1) under the ASC constraint, l1
constraint on s is always equal to 1, (2) l2 norm is easier than l1 as

well as that, under the ASC constraint, maximizing ||s||2 (defined

as ||s||2 =
√∑

i |si|2, where si is the ith element of s) can also get

Fig. 2. The sparsity that may
be reached by max-

imizing ||s||2 regular-
ization under ASC and

minimizing ||s||1 regu-

larization separately

a sparse solution, sometimes,

sparser than that got by min-
imizing ||s||1. For example,

given an unlabeled sample x1
and the labeled samples matrix

A, if s1 = (0.2, 0, 0.3, 0, 0.5)T

and s2 = (0.1, 0, 0, 0.9, 0)T

are two possible solution of

{arg min
s
||x1 − A · s||22} under

the constraints (ANC and ASC).
In this situation, we will get the

sparser solution s2 by maximiz-
ing ||s||2 regularization. And

the sparsity of maximizing s2

and minimizing s1 are shown in
Fig.2. So, we suggest using the

l2 norm instead of the l1 norm.
The new model is formulated as:

s = arg min
s

{
1

2
||A · s− x||22 −

λ

2
· ||s||22

}

s.t s ≥ 0, 1T · s = 1 (6)

this is a constrained quadratic problem and easy to solve. Here, we

use the ADMM to solve it, the reader can refer to Ref.[16] for the
details about ADMM.

Now, we transfer the constrained model into an unconstrained

model using Lagrange multipliers:

s = arg min
s

{
1

2
||A·s−x||22−

λ

2
· ||s||22 + l{1}(1T ·s)+ lRn

+
(s)

}
(7)

where Rn
+ means the positive vector space and lx(·) is the indicator

function, which means that if (·) belongs to the set x, the function
equals to 1, else +∞. According to the ADMM method, we get the

following iterative formulation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sk+1 ∈ argmin
s

{
1

2
||x−A · s||22 −

λ

2
· ||s||22

+
μ

2
||s− uk − dk||22 + l{1}(1T · s)

}
(8)

uk+1 ∈ arg min
u

{
lRn

+
(u) +

μ

2
||sk+1 −u− dk||22

}
(9)

dk+1 ← dk − (sk+1 − uk+1) (10)
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Eq.(8) is the standard equality constrained quadratic problem and

can be formulated as follows.

sk+1 ∈ argmin
s

{
1

2
sT (AT A + (μ− λ)I)s

− (AT x + μ(uk + dk))T s

}

s.t 1T · s = 1 (11)

the solution of Eq.(11) is:

sk+1 ←H−1w− c1T H−1w + c

where

H =AT A+ (μ − λ)I

w =AT x + μ(uk + dk)

c =H−11(1T H−11)−1

and 1 is the column vector with elements of ones. Eq.(9) is an

inequality constrained quadratic problem and can also be easily
solved, the solution is formulated as:

uk+1 = P+(sk+1 − dk) (12)

where P+ is a projection operator for the first orthant. dk+1 in

Eq.(10) is the Lagrange multipliers.

In order to reduce the impact of the spectral noise and enhance

the spatial piecewise smoothness in some sense, we use a filter func-
tion to convolute the pixel x and rewrite Eq.(6) as:

s = argmin
s

{
1

2
||A · s−Hf ∗ x||22 −

λ

2
· ||s||22

}

s.t s ≥ 0, 1T · s = 1 (13)

where Hf is the filter (average filter or gaussian filter) function, it
can be also seen as a kind of preprocessing. But, in the course of

preprocessing, all labeled samples are not changed.

Algorithm 1 l2-SUADMM sparse unmixing algorithm

1. Input iteration number k = 0, maximum iteration

number K, μ > 0, u0 = (0, 0, · · · , 0) and d0 = (0, 0, · · · , 0)
2. while k < K or other criterion is not satisfied do

3. w = AT (Hf ∗ x) + μ(uk + dk)

4. sk+1 ←H−1w− c1T H−1w + c

5. uk+1 ← max(sk+1 + dk, 0)

6. dk+1 ← dk − (sk+1 − uk+1)

7. k ← k + 1

8. end while

9. Output s

Algorithm 1 provides a pseudocode for our proposed sparse un-

mixing method by maximizing the l2 regularization under ANC
and ASC. During the iterative procedure, the most computational

complexity is calculating H−1. However, in hyperspectral classi-

fication, the labeled samples matrix A is fixed, we can precom-
pute the SVD of AT A, that is, if AT A = S · Σ · V , then

H−1 = S · diag(1./(diag(Σ) + (μ − λ))) · V , where diag(x) de-
notes getting the main diagonal of x, if x is a matrix or returning

a matrix with x as its main diagonal, if x is a vector. Up to a con-

stant, this inverse takes the same amount of time as multiplication.
Furthermore, the parameter λ is suggested to be chosen as a small

value to ensure the stability of the result.

3. Relaxed criterion for HSI classification

In this section, we relax the classification criterion from mini-
mum residual to the maximum entries of the sparse vector s under

the two constraints (ANC and ASC). First, we use the variables de-
fined in Ref.[9], the kth residual (i.e., error between the test sample

xi and the one reconstructed from labeled samples in the kth class)

is defined as:

rk(xi) = ||xi −Ak · ŝk||2, i ∈ S, k ∈ L (14)

where ŝk is the estimation of the sparse vector sk, then, the class

image can be obtained from the following formulation:

yi ≡ class(xi) = argmin
k∈L

{rk(xi)}, i ∈ S (15)

In order to simplify the classification criterion only using the sparse

vector s instead of calculating the kth residual for k = 1, 2, · · · , K,

we note s̃k =
lk∑

i=1
ŝk
i and ϕ(yi|Ak) = s̃k, then the classification

criteria can be simply written as:

yi ≡ class(xi) = arg max
k∈L

{ϕ(yi|Ak)}, i ∈ S (16)

where s̃k is a value not vector, and it is the sum of the entries of
vector ŝk.

As columns of the labeled samples matrix A are not normalized,
it is necessary to impose the ASC constraint to relax the criterion

to depend on s only. This is the reason why we have to force the

ASC constraint during the sparse unmixing procedure. Under the

ASC and ANC constraints, we have
K∑

k=1
ϕ(yi|Ak) = 1, so ϕ(yi|Ak)

can be seen as a probability of yi belonging to the kth class in some

sense. Hence, the relaxation of classification criterion from Eq.(15)
to Eq.(16) is reasonable.

III. Proposed Model Imposing Spatial
Constraint

The classification criterion Eq.(16) is only focus on the spectral
sparse representation aspect without considering the spatial infor-

mation, which consequently leads to the low accuracy of classifi-

cation. In order to encourage the spatial information, we add a
regularization term to the optimal problem as follows:

TV(y) =
∑

|i−j|<δ

|yi − yj | (17)

where yi ∈ L for each i ∈ S, and | · | denotes the absolute value,
|i− j| < δ denotes the ith pixel and the jth pixel are neighbors and

δ controls the size of neighborhood. This TV regularizer encourages

the pixels in the same neighborhood to belong to the same class and
it gives no preference to any direction. So this regularization term

would promote piecewise smooth classifications.
In summary, we have used the linear sparse regression to do

the classification from the spectral viewpoint and then added a TV-

induced regularization to imposing the spatial information accord-
ing to the prior that hyperspectral image turn to be piecewise in

spatial domain. Combining the two aspects, our spatial-spectral
classification model can be written as:

ŷ = arg min
y∈L

{
−

∑
i∈S

ϕ(yi|Ak) + μs ·
∑

|i−j|<δ

|yi − yj |
}

(18)

the first term is spectral term imposing the spectral information,

which is solved by the fully constrained l2 sparse representation
method. The second term is the TV term which encourages the

pixels in neighborhood to belong to the same class in spatial do-

main. μs is the smoothness parameter balancing the spectral term
and spatial term. It is difficult to solve this TV regularized classi-

fication model for the discrete status of yi. In order to solve this
optimization problem of Eq.(18), we turn to graph cuts[26−29] re-

cently developed energy minimization algorithms, which are efficient

tools to tackle this kind of optimization problems. The relationship
associating our model with graphical model is presented in Fig.3.

We use the graph cut algorithm proposed in Ref.[29] to solve opti-
mization problem Eq.(18) for its polynomial computation.
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Fig. 3. Graphical example on hyperspectral classification

Algorithm 2 provides a pseudocode for our proposed supervised

classification algorithm combining sparse unmixing and TV-induced
spatial constraint. This algorithm, termed as l2-SUADMM-TV

hereinafter, integrates all modules described in above two sections.
Line 3 in Algorithm 2 learns the sparse vector by solving the fully

constrained unmixing problem, and the filter function Hf could be

set as a gaussian filter with deviation of 1 and the window size is
3× 3.

Algorithm 2 l2-SUADMM-TV classification

1. Input: class number K, labeled samples set A = [A1, A2,

· · · , AK ], test sample xi, number of image pixels N , filter

function H, smoothness parameter μ.

2. while i < N do

3. ŝ = l2-SUADMM(A, Hf ∗ xi)

4. ϕ̂(yi|Ak) = s̃k

5. ŷi = Graphcut(ϕ̂(yi|Ak), μs)

6. i = i + 1

7. end while

8. Output: ŷ = (ŷ1, ŷ2, · · · , ŷN )

IV. Experiments on Real Hyperspectral
Data

In this section, we show the effectiveness of the proposed method
using two real hyperspectral data sets. For comparison, we adopt

several state-of-the-art supervised classifiers such as Subspace pur-

suit with smoothness(SP-S)[10] , Simultaneous orthogonal matching
pursuit (SOMP)[10], Logistic regression via variable splitting and

augmented lagrangian (LORSAL-MLL)[11] and SVMs[4,30], which

are well-established techniques in the machine learning community.
For SVM, we use a composite kernel (denoted by SVM-CK) that

combines the spectral and spatial information via a weighted kernel
summation, which has been shown to outperform the spectral-only

SVM in HSI classification. All parameters of these methods were set

according to the reference papers. And the parameters in our pro-
posed method, if no other specifying, are set as follows: λ = 0.00001,

μ = 0.01, μs = 2 and Hf is chosen as Gaussian filter with deviation
of 1 and window size of 3× 3.

The classification results are measured by the Overall accuracy

(OA), Average accuracy (AA) and the k statistic. The OA is com-
puted by the ratio between correctly classified test samples and the

total number of test samples, and the AA is the mean of all class
accuracies. The k statistic is computed by weighting the measured

accuracies. It incorporates both of the diagonal and off-diagonal en-

tries of the confusion matrix and is a robust measure of the degree
of agreement. And all these measurements in the following experi-

ments are achieved by the adopted classifiers after ten Monte Carlo
runs.

1. AVIRIS Indian Pines data set

The first data set was collected by the Airborne visible/infrared
imaging spectrometer (AVIRIS) sensor over the Indian Pines region

in June 1992. The AVIRIS sensor generates 220 bands across the
spectral range from 0.2µm to 2.4µm. In the experiments, the num-

ber of bands is reduced to 200 by removing 20 water absorption

bands[30]. This image has spectral resolution of 10nm and spatial
resolution of 20m by pixel, and the spatial dimension is 145 × 145.

The ground truth contains 16 land cover classes and a total of 10366
labeled pixels. The number of pixels in the smallest class is 20, while

the number of pixels in the largest class is 2468, as seen in Table 1.

Fig.4 and Fig.5 show the performance of our method at the
different values of smoothness parameter μs and the training sam-

ples on Indian Pines data set, separately. From Fig.4, we conclude
that the classification performance indeed depends on the setting of

μs. However, the proposed method is not sensitive to the setting

of μs, even with the poorest μs = 20, it leads to a good classifica-
tion result. From Fig.5, we conclude that the classification results

produced by our method show high accuracy even with very limited
training samples. As the number of labeled samples increases, the

Table 1. Classification accuracy (%) for the Indian Pines image on the test set

Class Name Train Test SVM SVM-CK SP-S SOMP l1 LORSAL-MLL l2-SUADMM l2-SUADMM-TV

1 Alfalfa 6 48 81.25 95.83 87.50 85.42 39.58 72.08 92.71 96.88

2 Corn-notill 144 1290 86.28 96.67 91.94 94.88 78.53 93.53 96.01 98.72

3 Corn-min 84 750 72.80 90.93 82.53 94.93 51.87 90.05 91.07 97.33

4 Corn 24 210 58.10 85.71 70.95 91.43 28.57 97.38 89.52 93.81

5 Grass/Pasture 50 447 92.39 93.74 94.41 89.49 80.76 94.90 97.99 98.43

6 Grass/Trees 75 672 96.88 97.32 99.26 98.51 99.40 98.42 99.93 100

7 Grass/Pasmowed 3 23 43.48 69.57 47.83 91.30 17.39 55.22 89.13 89.13

8 Hay-windtrowed 49 440 98.86 98.41 99.77 99.55 99.32 99.55 99.77 100

9 oats 2 18 50.00 55.56 94.44 0 16.67 42.48 55.56 55.56

10 Soybeans-notill 97 871 71.53 93.80 86.80 89.44 63.95 90.01 86.11 95.41

11 Soybeans-min 247 2221 84.38 94.37 93.38 97.34 86.04 96.94 97.52 99.82

12 Soybeans-clean 62 552 85.51 93.66 84.24 88.22 57.79 97.79 93.66 97.64

13 Wheat 22 190 100 99.47 100 100 100 99.68 100 100

14 Woods 130 1164 93.30 99.14 98.28 99.14 97.94 97.88 99.61 99.91

15 Bui-GrassTrees 38 342 64.91 87.43 69.30 99.12 35.96 87.05 84.94 93.42

16 Stone-steelTowers 10 85 88.24 100 95.29 96.47 90.59 84.24 94.12 100

Overall accuracy (%) 84.52 94.86 91.16 95.28 77.99 94.82 95.31 98.40

Average accuracy (%) 79.24 90.73 87.25 88.45 65.27 87.33 91.73 94.75

k statistic 0.823 0.941 0.899 0.946 0.746 0.941 0.9464 0.9818
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Fig. 4. The OA, AA and kappa statistic as
a function of the smoothness pa-

rameter μs with training samples
l = 1043

Fig. 5. The OA and kappa statistic (k) as

a function of the number of train-
ing samples l

Fig. 6. The OA, AA and kappa statistic

(k) as a function of the window size
of filter Hf

OA and k statistic increase. Fig.6 shows the OA, AA and kappa

statistic (k) as a function of the window size of Gaussian filter Hf .
It is easy to see that our method is robust on the change of window

sizes. Although combining the preprocessing (Gaussian filter with
deviation of 1) and sparse unmixing still leads to a good result, our

final method is still a little more accurate and robuster than it.

In order to test the performance of the proposed method with
limited training sets, a total size of l = 1043 (which represents about

10% of the available labeled samples among classes) was used for
training purpose and the training samples of each class was chosen

randomly according to Table 1, where the remaining about 90% of

the samples were used for validation. Table 1 illustrates the OA,
AA, k statistic and the accuracy of each class for all tested methods.

It is easy to see that the classifiers imposing spatial information pro-
duce better results, all more than 90% accuracy. And among these,

our proposed method l2-SUADMM-TV produces the best results in

all OA, AA and k statistic. For illustrative purposes, Fig.7 shows
the ground truth and some of the classification results obtained by

the different tested classifiers for the Indian Pines Scene. For each
classifier, we randomly selected one of the maps obtained after con-

ducting ten Monte Carlo runs.

Fig. 7. AVIRIS image. (a) The gray map of Indian Pines; (b)

Ground truth and the overall accuracy of the meth-
ods of (c) LORSAL-MLL (OA = 94.82%); (d) SVM-

CK (OA =94.86%); (e) SOMP (OA = 95.28%); (f) l1
(OA =76.59%); (g) l2-SUADMM (OA = 94.98%) and
(h) l2-SUADMM-TV (OA = 98.75%) with about 10%

training samples

2. ROSIS university of Pavia data set
The second real hyperspectral data set that used in our experi-

ment was acquired in 2001 by the Reflective optics system imaging

spectrometer (ROSIS), flown over the city of Pavia, Italy. The sen-
sor generates 115 spectral bands ranging from 0.43µm to 0.86µm

and has a spatial resolution of 1.3m per pixel. The image scene,

with size of 610× 340 pixels, is centered at the University of Pavia

and has 103 bands after removing 12 noisiest bands. There are nine
ground truth classes and 3921 (about 9%) of all labeled data are

used as training and the rest are used for testing. We also adopted
the above classifiers for comparison, the results are shown in Table

2.

From it, we can conclude the same results as that in Indian
Pines experiment. Our method outperforms all of the other classi-

fiers. Fig.8 illustrates the classification maps achieved by some of
the considered methods.

Fig. 8. ROSIS image. (a) The gray map of ROSIS image; (b)
Ground truth and the overall accuracy of the meth-

ods of (c) LORSAL-MLL (OA = 97.08%); (d) SVM-CK
(OA =87.18%); (e) SOMP (OA = 79%); (f) l1 (OA

=76.59%); (g) l2-SUADMM (OA = 96.76%) and (h) l2-

SUADMM-TV (OA = 98.04%) with about 9% training
samples

V. Conclusions and Future Work

In this paper, we have proposed a novel supervised classifica-
tion method combining sparse unmixing and spatial information. In

the proposed method, an HSI pixel is assumed to be sparsely repre-

sented by a few atoms consist of the training samples. In order to
recover the sparse vector of a test spectral sample, we assume the

training samples to be purely spectra (endmembers) and solve the
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Table 2. Classification accuracy (%) for the university of Pavia image on the test set

Class Name Train Test SVM SVM-CK SP-S SOMP l1 LORSAL-MLL l2-SUADMM l2-SUADMM-TV

1 Asphalt 548 6304 84.30 79.85 83.79 59.33 80.65 96.31 95.94 98.03

2 Meadows 540 18146 67.01 84.86 72.35 78.15 64.74 97.42 99.39 99.92

3 Gravel 392 1815 68.43 81.87 71.85 83.53 73.22 89.14 97.66 99.94

4 Trees 524 2912 97.80 96.36 98.94 96.91 98.35 98.35 99.61 97.56

5 Metal sheets 265 1113 99.37 99.37 100.0 99.46 99.91 99.85 99.81 99.81

6 Bare soil 532 4572 92.45 93.55 92.63 77.41 92.54 99.60 97.04 100

7 Bitumen 375 981 89.91 90.21 91.44 98.57 86.95 98.10 99.58 99.69

8 Bricks 514 3364 92.42 92.81 95.57 89.09 81.54 94.55 84.25 88.79

9 Shadows 231 795 97.23 95.35 98.24 91.95 98.99 100 100 99.86

Overall accuracy (%) 79.15 87.18 82.09 79.00 76.87 97.08 97.31 98.56

Average accuracy (%) 87.66 90.47 89.42 86.04 86.32 97.04 97.03 98.18

k statistic 0.37 0.833 0.772 0.728 0.709 0.960 0.9631 0.980

fully constrained unmixing problem by maximizing the l2 norm of

the sparse vector using the ADMM method, and give the reasons
of using the l2 regularization to replace the l1 regularization as well

as show the sparsity of l2 regularization under ASC constraint. So
as to ease of computation and the context consistency, we relax

the classification criteria to only depend on the recovered sparse

abundance vector. To improve the classification performance, we
proposed a TV-induced spatial constraint to encourage the pixels

in neighborhood to belong to the same class. At last, the spectra-
spatial model is solved by graph cut based algorithm in polynomial

computation. Experimental results on the real hyperspectral image

show that the proposed algorithm yields high classification accu-
racy and outperforms most of the tested methods. In the future

we would consider a more standardized spectral unmixing on (1)
estimating the endmembers in the training samples and construct-

ing the fractional abundances of each endmember of the scene, or

(2) learning a dictionary (or designing a composite kernel containing
spatial and spectral information) using the training samples in their

feature space and using the learned dictionary for classification.
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