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Abstract—In ultrasound color flow imaging (CFI), the single-ensemble eigen-based filters can reject clutter
components using each slow-time ensemble individually. They have shown excellent spatial adaptability. This
article proposes a novel clutter rejection method called the single-ensemble geometry filter (SGF), which is derived
from an analytic geometry perspective. If the transmitted pulse number M equals two, the clutter component
distribution on a two-dimensional (2-D) plane will be similar to a tilted ellipse. Therefore, the direction of themajor
axis of the ellipse can be used as the first principal component of the autocorrelation matrix estimated from
multiple ensembles. Then the algorithm is generalized from 2-D to a higher dimensional space by using linear
algebra representations of the ellipse. Comparisons have been made with the high-pass filter (HPF), the
Hankel-singular value decomposition (SVD) filter and the recursive eigen-decomposition (RED) method using
both simulated and human carotid data. Results show that compared with HPF and Hankel-SVD, the proposed
filter causes less bias on the velocity estimation when the clutter velocity is close to that of the blood flow. On
the other hand, the proposed filter does not need to update the autocorrelation matrix and can achieve better
spatial adaptability than the RED. (E-mail: yywang@fudan.edu.cn) � 2011 World Federation for Ultrasound
in Medicine & Biology.
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INTRODUCTION

To achieve accurate velocity estimates in ultrasound color
flow imaging (CFI), it is essential to apply a high-
performance filter to attenuate the clutter signals originated
from surrounding tissues or vessel walls. Due to the high-
energy of the clutter components and the limited number
of transmitted pulses (Jensen 1996), the clutter rejection
has been a challenging step in an ultrasound CFI system.

Conventionally, the digital high pass filter (HPF) is
used as a common clutter rejection method. However, it
is only applicable when the tissue is almost stationary
since its frequency response is usually fixed (Bjærum
et al. 2002b). To solve this problem, many adaptive
clutter filters have been proposed in recent years. The
down-mixing HPF (Thomas and Hall 1994; Brands
et al. 1995) shifts the clutter spectrum to zero before
applying a HPF. Then, Yoo et al (2003) and Yoo and
Kim (2010) proposed a method that selects a HPF adap-
tively from a set of predefined filters. The eigen-based
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filter is a group of clutter rejection methods, which
involves the Karhunen-Loeve (K-L) expansion or other
orthogonal decompositions techniques (Bjærum and
Torp 1997; Ledoux et al. 1997; Kruse and Ferrara 2002;
Bjærum et al. 2002a). These adaptive filters have shown
great advantages over nonadaptive HPF because instead
of a fixed response, their stopband are alterable
according to the actual clutter Doppler frequency shift.

The eigen-based filters have been reviewed in detail
recently (Yu and Løvstakken 2010) and it is pointed out
that there are two basic types of eigen-based filters: the
multi-ensemble approach such as the Eigenfilter
(Bjærum and Torp 1997; Bjærum et al. 2002a) and the
single-ensemble approach such as the Hankel-singular
value decomposition (SVD) filter (Yu and Cobbold
2008). The review shows that the multi-ensemble
approach is more suitable for scenarios where clutters
are accelerated over the time or the tissue motion is
uniform over the depth. On the other hand, the single-
ensemble approach is more suitable for scenarios with
highly spatially-varying tissue motions. In other words,
the multi-ensemble filters have a good temporal adapt-
ability and poor spatial adaptability while the single-
ensemble filters have the exact opposite characteristics.
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Moreover, the recursive eigen-decomposition (RED)
filter is developed as a compromise of the single and
multi-ensemble approaches (You and Wang 2009,
2010). The RED could achieve a medium temporal and
spatial adaptability at the same time.

Being the only implementation of the single-
ensemble eigen-based clutter filter, the Hankel-SVD can
achieve an outstanding spatial adaptability over the depth.
However, it can provide at most half the number of eigen-
components as can be obtained from the multi-ensemble
approach. This limitation may make the Hankel-SVD
less effective in representing clutters that span a wider
spectrum (Yu 2007; Yu and Løvstakken 2010).

In this article we propose a single-ensemble eigen-
based clutter rejection filter called the single-ensemble
geometry filter (SGF). The SGF is derived from an analytic
geometry point of view that gives a clearer physical inter-
pretation of this algorithm. This proposed filter can achieve
a spatial adaptability comparative to the Hankel-SVD.
Meanwhile, it does not suffer from the number limitation
of the eigen-components mentioned above and has a rela-
tively good temporal resolution that is comparative to the
Eigenfilter (Bjærum and Torp 1997; Bjærum et al. 2002a).
Fig. 1. Two-dimensional (2-D) data distribution of 1000 points
of x(m) with m 5 0 and 1 (only the real parts are plotted, kc 5
100, uc 5 p/5). The solid and dashed lines are the direction of
the first and second principal component of these points, respec-
tively, showing that for a 2-D situation, directions of the prin-
cipal components are the same as directions of the eclipse’s

major and minor axes.
METHODS

Basic model
It is known that each slow-time ensemble demodu-

lated from a sample volume is a complex vector x con-
taining M temporal samples. Variable M is the number
of pulses transmitted at the same beam line that is also
called the ensemble size. Usually, the vector x can be
synthesized by three components (Bjærum et al. 2002a):

x5 ½xð0Þ; xð1Þ; /; xðM21Þ�T 5 c1b1w (1)

where c, b and w are the clutter, blood flow and white
noise component, respectively.

In this article, the clutter and blood flow components
are modeled as simple complex exponential series with
a designated basic frequency and a random phase shift.
Then the m-th element of x can be expressed by:

xðmÞ5 cðmÞ1bðmÞ1wðmÞ
5 kcexpðjðucm1ucÞÞ1kbexpðjðubm1ubÞÞ
1kwwðmÞ; m5 0;.;M21:

(2)

where the subscript c, b and w denote the clutter, blood
flow and noise, respectively; the variable k is the ampli-
tude weight; the variable u is the angular frequency shift
determined by the velocity of object by using the Doppler
equation; the variable u is a random phase shift that
subjects to a uniform distribution. It is important to point
out that eqn (2) is the premise for our later analysis. All
illustrations and derivations will be based on this model.
Interpretation from an analytic geometry perspective
Usually, the strength of the clutter component is

much higher than the other two components (Torp
1997). Therefore, x(m) can be approximated by:

xðmÞzcðmÞ5 kcexpðjðucm1ucÞÞ; m5 0;.; M21:

(3)

To visualize the processing procedure, we first start
our discussion from the specific case with M equals 2.
Let the horizontal and vertical axis refer to x(0) and
x(1), respectively. One thousand points of x(m) are simu-
lated by (3) and plotted on a two-dimensional (2-D) plane.
Note that for each simulated point, its x(0) and x(1) are
dependent because the phase shift uc is deterministic.
However, x(0) or x(1) for different two points are indepen-
dent because their phase shifts uc are selected randomly.
The data distribution is shown in Figure 1. Note that
only the real part of x(m) is used for visualization.

It can be observed from Figure 1 that the 2-D data
distribution of x(m) is a tilted ellipse that can also be re-
garded as a Lissajous figure under special cases. The first
and second principal component directions are also
plotted in Figure 1, which are almost the same as the
directions of the major and minor axes of the ellipse.
The ignorable difference is probably caused by the errors
accumulated during numerical computations. Therefore,
we consider using two deterministic directions of this
ellipse instead of its principal components.

From the definition of the analytic Lissajous ellipse,
it can be derived that the tilt angle of the ellipse will either
be 45� (when –p/2 , uc ,p/2) or 135� (when p/2 , uc

, 3p/2). The detailed derivations can be found in
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Appendix A. Therefore, the direction of the major axis of
the ellipse is determined.

Generalization for multiple dimensions
When M equals 3, the ellipse becomes an ellipsoid

in three-dimensional (3-D) space. The ellipse can no
longer be visualized when M . 3, which unfortunately
happens in most of the practical situations. Although
2-D geometry cannot work any more, linear algebra
does not suffer from a dimension problem. In an
M-dimensional space, a virtual ‘‘ellipse’’ is constructed
by the means of linear algebra. According to Levy
(1988), an M-dimensional ‘‘ellipse’’ can be represented
in a quadratic form:

XM21

p;q5 0

apqxpxq 5C (4)

where xq is the dimension index, apq is the coefficients
and C is a constant. The equation can also be put into
a matrix form:

xTAx5C (5)
A5

2
66664

M21 2expð2jucÞ 2expð2j2ucÞ / 2expð2jðM21ÞucÞ
2expðjucÞ M21 2expð2jucÞ / 2expð2jðM22ÞucÞ

« « 1 « «
2expðjðM22ÞucÞ / 2expðjucÞ M21 2expð2jucÞ
2expðjðM21ÞucÞ / 2expðj2ucÞ 2expðjucÞ M21

3
77775 (8)
where the vector x is [x0, x1,., xM21]
Tand thematrixA5

[apq]. If A is diagonal, (5) denotes the standard form.
Otherwise, the standard form can be achieved by perform-
ing the singular value decomposition (SVD) on thematrix
A as long as it is symmetric positive definite.
Table 1. Summary of

Steps

1. Input ensemble x
2. Estimate uc

3. Construct matrix A
4. Perform the SVD on A
5. Rearrange columns of Q (eigenvectors) according to the
eigenvalues in ascendant order.

6. Construct the filtering matrix (Kc is the filter order)
7. Output filtered ensemble

SGF 5 single-ensemble geometry filter; SVD 5 singular value decomposit
xT
�
Q ^ QT

�
x5C (6)

whereQ andL are the eigenvector and eigenvalue matrix
of A. In this case, the eigenvectors of A define the prin-
cipal directions of the ellipse and the inverse of the square
root of the eigenvalues are the corresponding semi-axis
lengths (Strang 1997).

Using Figure 1 as an example, we notice that a00 5
a11 5 1 and a01 5 a10 5 –cosuc. Therefore,

A5

�
1 2cosuc

2cosuc 1

�
(7)

Performing the SVD on the matrix Awith uc 5 p/5
as an example, we get the second eigenvector of A, e2 5
[0.707 0.707]T, which shows a tilt angle of 45�. It is the
same as what we pointed in the previous subsection.
Note that the real matrix A expressed by (7) is only for
the theoretical derivation. For application, a complex
version of matrix Awill be derived.

For an arbitrary M, the matrix A ˛ CM3M (C refers
to the complex domain) can be expressed as follows (see
Appendix B):
where uc is the Doppler frequency of the clutter compo-
nent. For practice, an estimation of uc can be achieved
using the auto-correlation algorithm (Kasai et al. 1985).
The uc achieved here represents the mean clutter velocity
during the time interval ofM pulse echoes. An estimation
steps of the SGF

Mathematic description

ucz:

 
1

M21

XM22

m5 0

x�ðmÞxðm11Þ
!

Refer to eqn (8)
A 5QLQH

l0 , l1 , . , lM21

F5 I2
Pkc21

i5 0 qiq
H
i , (qi is the i-th column of Q)
y 5 Fx

ion.



Table 2. Summary of steps of the modified SGF

Steps Mathematic description

1. Input ensemble x
2. Calculate the temporary variable a a5

PM22
m5 0 x

�ðmÞxðm11Þ=jPM22
m5 0 x

�ðmÞxðm11Þj
3. Construct matrix Rellipse using a Refer to eqn (14)
4. Perform the SVD on Rellipse Rellipse 5 QLQH

5. Rearrange the eigenvectors (columns of Q) according to the eigenvalues
in descendant order.

l0 . l1 . . . lM21

6. Construct the filtering matrix (Kc is the filter order) F5 I2
Pkc21

i5 0 qiq
H
i , (qi is the i-th column of Q)

7. Output filtered ensemble y 5 Fx

SGF 5 single-ensemble geometry filter; SVD 5 singular value decomposition.
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bias of uc may lead to the bias of the blood velocity
profile later. Up to now, we have constructed a harmonic
matrix A with the Toeplitz structure. The Toeplitz prop-
erty implies the fact that only one dominant clutter
frequency is modeled in our discussion, which has also
been denoted by (2). The relationship between the eigen-
vectors of A and the clutter frequency uc is shown intui-
tively in Figure 1. When uc is small, the eccentricity of
the ellipse will be close to one. On the other hand,
when uc is close to 6p/2, the ellipse will degenerate
into a circle in 2-D space with its eccentricity being
zero. But for a greater M, the algorithm will always
work because the principal components of a higher
dimensional eclipse can always be determined even if
uc equals p/2.

Once the matrix A is obtained, the rest of the algo-
rithm is almost the same as other eigen-based filters. The
complete algorithm steps are summarized in Table 1.
Note that the standard SVD is performed on the matrix
Awithout using any property of its Toeplitz structure.
Table 3. Single-ensemble simulation parameters

Parameter Value

Ensemble size M 8
Number of ensemble realizations N 100
Scope of uc 0 to p
Scope of ub 0 to p
Increment step of uc, Duc p/12
Increment step of ub, Dub p/10

Amplitude of clutter kc 100 40
Amplitude of blood kb 10 10
Amplitude of noise kw 1 5
Statistical perspective
For any eigen-based filter, it is inevitable to estimate

the auto-correlation matrix R first. By definition, R is
expressed by:

R5E
�
xH x

�

5

2
6664

r0ð0Þ r�1ð1Þ / r�M21ðM21Þ
r1ð1Þ r1ð0Þ / /

« « 1 r�M21ð1Þ
rM21ðM21Þ / rM21ð1Þ rM21ð0Þ

3
7775 (9)

where

rkðlÞ5EfxðkÞx�ðk2lÞg; 0 # l # k # M21 (10)

with l being the lag number (Yu and Cobbold 2008).
Substituting (3) into (10), we have:

rkðlÞ5 k2c,Efexp½jðuc1kucÞ�,exp½2jðuc1ðk2lÞucÞ�g
5 k2cexpðjlucÞ

(11)
The clutter frequency shift uc can be regarded as
a mean value of the complex phase shifts between
neighboring samples of the vector x according to the
classic auto-correlation estimation algorithm (Kasai
et al. 1985):

ucz:

 
1

M21

XM22

m5 0

x�ðmÞxðm11Þ
!

5:

 XM22

m5 0

x�ðmÞxðm11Þ
! (12)

Substituting (12) into (11), we have rkðlÞz
k2cfexp½j:ðPM22

m5 0 x
�ðmÞxðm11ÞÞ�gl From this expres-

sion, we find that rk(l) is a complex number with an argu-

ment of ½:ðPM22
m5 0 x

�ðmÞxðm11ÞÞ�l and a modulus of

kc
2, which gives:

rkðlÞz

8>>>>><
>>>>>:

k2c ; l5 0

k2c

0
BBB@
PM22

m5 0

x�ðmÞxðm11Þ���� PM22

m5 0

x�ðmÞxðm11Þ
����

1
CCCA

l

; ls0
(13)

Let the temporary variable a equalsPM22
m5 0 x

�ðmÞxðm11Þ=jPM22
m5 0 x

�ðmÞxðm11Þj and substi-
tute (13) into (9), we get:



Fig. 2. Results of single-ensemble simulations after using the down-mixing high-pass filter (DM HPF), Hankel-singular
value decomposition (SVD) and the single-ensemble geometry filter (SGF) (kc: kb: kw 5 100:10:1).

Single-ensemble clutter rejection method d W. YOU and Y. WANG 1913
Rellipse 5

2
664

1 a21 / a2ðM21Þ

a1 1 / «
« « 1 a21

aM21 / a1 1

3
775 (14)

Note that the scaling factor k2c is ignored in (14)
because it does not affect the eigenvectors of Rellipse.

Comparing (14) and (8), we notice that the matrix
Rellipse and A are similar and the following relationship
exists:

A5M,IM3M2Rellipse (15)

Equation (15) leads to a fact that eigenvectors of the
matrix A and Rellipse are only different in the order (i.e., if
their eigenvectors are organized according to correspon-
dent eigenvalues in a descendantway, two sets of eigenvec-
tors will be exactly reversed in the order). A modified SGF
algorithm based on (14) has been derived from a statistical
perspective and the steps are summarized in Table 2, which
is slightly different from that described in Table 1.Note that
these two approacheswill achieve identical results but their
physical interpretations are different.
SIMULATION RESULTS

Simulation studies are carried out to compare the
performances of the proposed method to other popular
clutter filters. All simulations are implemented in



Fig. 3. Results of single-ensemble simulations after using the down-mixing high-pass filter (DM HPF), Hankel-singular
value decomposition (SVD) and the single-ensemble geometry filter (SGF). (kc: kb: kw 5 40:10:5)
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MATLAB R2010a (MathWorks, Natick, MA, USA) on
a personal computer (AMD Athlon II 245-2.90 GHz,
2GB Memory).
Single-ensemble simulations
In this subsection, single-ensembles of x are gener-

ated by (2) with different uc and ub. Three single
ensemble clutter filters are applied to x: the down-
mixing (DM) HPF (a projection initialized, 3-order
type-I Chebyshev IIR (Bjærum et al. 2002b), digital stop-
band and passband frequencies are set to 0.02p and 0.2p,
respectively), the Hankel-SVD (the frequency threshold
fthr set to 0.28, the clutter band Dfthr set to 0.04) and the
SGF filter (the clutter dimension Kc set to 1). All the filter
parameters used here are chosen by practical experience
to ensure their best performances. Non-single ensemble
clutter filters will be compared in the next subsection
because only single ensemble data set can be synthesized
by the simulation process proposed by Yu and Cobbold
(2008). After the clutter rejection, the Doppler frequency
shift of blood flow component ûb is estimated in each
ensemble by the classic auto-correlation algorithm
(Kasai et al. 1985). Suppose N realizations of x are gener-
ated with random uc and ub, the mean value m and stan-
dard deviation s of the estimated ûb, are computed by:

m5
1

N

XN
i5 1

ûbðiÞ (16)



Table 4. Multi-ensemble simulation parameters

Transducer center frequency f0 5 MHz
Acoustic speed c 1540 m/s
F-number Fnum 4
Repeated pulse number M 16
Beam-blow angle qb 45 degree
Beam-tissue angle qc 0
Tissue vibration frequency fvib 5 Hz

Blood profile shape parabolic
Vessel radius r0 8 mm
Pulse repetition frequency fprf 5 kHz
Transmitted cycle Ncyc 2.5
Maximum clutter-to-blood ratio CBRmax 42 dB
Minimum clutter-to-blood ratio CBRmin 40 dB
Maximum blood velocity vbmax 0.35 m/s
Minimum clutter velocity vcmin 0.2 m/s
Maximum clutter velocity vcmax 0.3 m/s

Single-ensemble clutter rejection method d W. YOU and Y. WANG 1915
 
1 XN

2

!1
2

s5
N21

i5 1

ðûbðiÞ2mÞ (17)

where ûbðiÞ is the estimated blood flow Doppler
frequency shift of the i-th realization. The error between
m and theoretical ub can be obtained by ε 5 m 2 ub.
Table 3 lists all the simulation parameters.

Simulation results are plotted in Figures 2 and 3. The
title for each subfigure is the value of uc in this ensemble,
which has an increment step Duc of p/12. The horizontal
axis stands for ub and the vertical axis stands for ε 6 s.

In Figure 2, the amplitudes for the clutter, blood flow
and noise components are 100, 10 and 1, respectively, to
simulate the Doppler ensembles originated from an
artery. Observing all subfigures, we can see that the
smallest ε is achieved by the SGF (i.e., closest to the hori-
zontal axis), while the HPF has the largest ε. When ub is
close touc, the error and standard derivation will increase
obviously. The worst estimate of ûb (i.e., the largest m)
appears at the point when ub 5 uc. This phenomenon
is easy to understand because when ub 5 uc, the clutter
Fig. 4. (a) Clutter velocity before filtering and the theoretica
and blood flow components have the same Doppler
frequency shift and are mixed into one complex exponen-
tial series. The largest derivation of ûb also emerges at the
point whenub5uc. In most cases, the derivations caused
by then Hankel-SVD and the SGF are close, which are
much better than that caused by the HPF.

Figure 3 plots the same results as Figure 2 only with
different amplitude weights of the three components. The
amplitudes of the clutter and blood flow get close and
much stronger noises are included.

From Figure 3 we can see that the performances of
the eigen-based filters deteriorate severely. Error arouses
whenever ub is near uc and derivation of ûb is greater
than that achieved in Figure 2. However, the error
achieved by the proposed method is still lower than the
other two filters obviously. From the above simulation
results, we see that although the simulation model is
simple, the major advantage of the proposed method
has been shown effectively. A more complex simulation
model considering the spectral broadening effect will
be applied in the next subsection.
Multi-ensemble simulations
Comparisons of velocity profiles have been made in

this subsection using simulated multiple ensembles along
one beam line. The simulation procedure has been intro-
duced in the recent paper (You and Wang 2009). The
multi-ensemble simulation parameters are listed in Table 4.

Figure 4a depicts the theoretical profile and the esti-
mated clutter velocity without any filtering. Figure 4b
shows the clutter to blood ratio (CBR) variation along
the depth.

Estimated profiles after applying the DM HPF, the
Hankel-SVD, the RED method and the SGF are plotted
in Figure 5. The filter type and order of the HPF are the
same as those used in the subsection single-ensemble
simulations. Its actual stopband and passband angular
l blood profile. (b) The CBR variation along the depth.



Fig. 5. Estimated profiles of multi-ensemble simulations after using the (a) down-mixing high-pass filter (DM HPF), (b)
Hankel-singular value decomposition (SVD), (c) recursive eigen-decomposition (RED) and (d) single-ensemble

geometry filter (SGF).
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frequencies are set to 10 and 40 rad/s, respectively. For
the Hankel-SVD, its fthr and Dfthr are set to 2000 and 100
Hz, respectively. For the RED, its filter order is one and
the forgetting factor lforget is set to 0.9 and lremember

is set to 0.1. The filter order for the SGF is also set
to one.

We can see from Figure 5 that the profiles achieved
by the RED and the SGF are better than the other two
methods. However, the first a few points obtained by the
RED are severely biased because the multi-ensemble
algorithm needs some time to converge after the initializa-
tion. Fortunately, the SGF does not suffer from the initial-
ization problem and achieves the best blood profile.
Table 5. ZONARE CFI system parameters

Parameter Value

Transducer center frequency 6 MHz
Pulse repetition frequency 1.428 kHz
Pulse number 14
Transmission pulse cycles 4 cycles
Lateral scan lines 257
Number of depth samples 142
Lateral field of view –19.2�19.2mm
Axial field of view 1.8�20 mm

CFI 5 color flow imaging.
IN VIVO RESULTS

Demodulated color flow imaging data were acquired
from the carotid arteries of a healthy 25-year-old male
volunteer using a commercial CFI system (ZONARE
Medical Systems, Mountain View, CA, USA). The clutter
rejection step in the CFI system was bypassed. Later
different clutter filters were applied to evaluate their off-
line performances. In vivo experimental settings are listed
in Table 5. This study was approved by Fudan Univer-
sity’s institutional review board.
The outcome CFI images after using five clutter
filters are plotted in Figure 6 with all the color gains
scaled to the same level. The HPF used is a projection
initialized, 3-order Chebyshev type-I IIR with its pass-
band and stopband cutoff frequency set to 10 Hz and
50 Hz, respectively. The frequency threshold fthr andDfthr
used for the Hankel-SVD are set to 500 and 100 Hz. The
parameters used for the RED are the same as those used in
the subsection multi-ensemble simulations. The clutter
dimension Kc for the Eigenfilter and SGF is set to one
manually. All the filter parameters are selected and
adjusted by experimental experience to achieve their
best performances.



Fig. 6. In vivo color flow images after (a) no filtering, (b) down-mixing high-pass filter (DMHPF), (c) the Eigenfilter, (d)
the recursive eigen-decomposition (RED), (e) the Hankel-singular value decomposition (SVD) and (f) the SGF. Unit for

the color bar is m/s.

Single-ensemble clutter rejection method d W. YOU and Y. WANG 1917
It can be seen from Figure 6a that the blood area is
severely contaminated without any clutter filter applied.
In Figure 6b–f, the vessel shape emerges but various
degrees of velocity artifacts are brought in because of
the side effect of clutter rejection. Relatively, the artifacts
caused by the multi-ensemble methods are less than that
caused by the single-ensemble ones. However, they must
rely on multiple ensembles near a certain depth where
clutter motions are statistically stationary. On the other
hand, the single-ensemble filters do not suffer from this
limitation. In Figure 6f, it seems that the blood velocity
around artery center is slower than those in the preceding
four figures. Actually it is caused by the spatial adaptive
capability of the SGF. In carotid artery scenario, the blood



Table 6. Summary of steps of the simplified SGF

Steps Mathematic description

1. Input ensemble x
2. Calculate the temporary variable a a5

PM22
m5 0 x

�ðmÞxðm11Þ=jPM22
m5 0 x

�ðmÞxðm11Þj

3. Construct vector q0 using a u1 5 [1 a1 a2 . aM 2 1]T M 21/2

4. Perform the filtering y5 ðI2u1u
H
1 Þx

SGF 5 single-ensemble geometry filter.
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power echoed from the artery center can be comparative
to the clutter component. This will cause problem when
applying the SGF filter because it uses the amplitude to
differentiate between the blood and clutter components.
If blood and clutter power are close, the SGF cannot
work properly. Note that the Eigenfilter also uses ampli-
tude to eliminate clutter. However, the Eigenfilter usually
works in a batch mode and it has poor spatial resolution,
which makes the signals from the artery center less influ-
ential to the whole data set.
Fig. 7. Relationship between the single-ensemble geometry
filter (SGF) and down-mixing high-pass filter (DM HPF).
DISCUSSION

Relationship with other eigen-based filters
All eigen-based filters require the estimation of the

auto-correlation matrix, on which the orthogonal expan-
sion is performed. The fundamental difference behind
each eigen-based method is their various approaches to
estimate this auto-correlation matrix.

For the multi-ensemble Eigenfilter, rk(l) is esti-
mated by:

rkðlÞ5
XN
n5 1

xnðkÞx�nðk2lÞ (18)

where N is the number of ensembles used inside a certain
depth window.

For the Hankel-SVD filter, rk(l) is estimated by each
single ensemble (Yu and Cobbold 2008):

rkðlÞ5
XM

2
1k1l

m5 k1l

xðmÞx�ðm2lÞ (19)

Comparing (19) with (18), it is seen that the estima-
tion is performed by the temporally stationary points
within one ensemble instead of spatially stationary
multiple ensembles along the depth.

For the SGF, rk(l) estimations are obtained by (13). It
is different from the Hankel-SVD approach because an
exponential clutter model is assumed as discussed in
the subsection basic model. Using (13), an auto-
correlation matrix with size M can be achieved. On the
contrary, the size of the counterpart estimated by the
Hankel-SVD is less than M/2. As more eigenvectors
can be extracted, each Doppler ensemble is decomposed
into more orthogonal components and the proposed
method can be more effective in representing clutters
that span a wider spectrum. Notice that the SGF can
only deal with sample volumes whose CBR is beyond
zero. On the other hand, the Hankel-SVD filter can only
deal with sample volumes where clutter velocity is below
blood velocity when a frequency based dynamic order
selection scheme is involved (Yu and Cobbold 2008).
Relationship with the down-mixing high-pass filter
The DM HPF proposed by Thomas and Hall is

a ‘‘semi-adaptive’’ clutter filter. The input signal is first
down-mixed using the estimated uc before applying
a conventional HPF to remove clutter components.
From Tables 1 and 2 we can see that uc is also
estimated in the first step for the proposed SGF.
Furthermore, in (8), a series of complex exponential
values are utilized to construct the Toeplitz matrix A.
All these facts lead to an idea that the SGF may have
links to the DM HPF.

Based on the derivations inAppendixC,we found that
A only has one nonzero eigenvalue l1 which equals M.
The eigenvector corresponding to l1 is expressed by:

u1 5
1ffiffiffiffiffi
M

p

2
664

1
a1

«
aM21

3
775 (20)



Fig. 8. In vivo color flow imaging (CFI) using down-mixing high-pass filter (DMHPF) with stopband and passband cutoff
frequencies set to (a) 100 Hz and 200 Hz, order 5 (b) 200 Hz and 300 Hz, order 6. Unit for the color bar is m/s. Comparing
to Figure 5, it can be seen that the down-mixing high-pass filter (DMHPF) is pretty sensitive to preset parameters such as
stopband and passband cutoff frequencies, which shows another advantage of the single-ensemble geometry filter

(SGF) filter.
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Therefore, once we had the variable a defined in the
subsection statistical perspective, the eigenvector u1 can
be determined without involving any complicated matrix
manipulation such as the SVD. Table 6 lists the steps for
the final simplified version of SGF.

This simplified SGF is theoretically identical to the
original and modified version of SGF described in
Tables 1 and 2. However, the SVD is no longer needed,
which will greatly release the time burden for the
original SGF algorithm. In other words, the original SGF
can be totally replaced by the simplified SGF without
making any differences. Computational complexity
comparison will be discussed in the next subsection.

The similarities between the SGF and DM HPF are:
(1) they both require the estimation of clutter Doppler
frequency shift uc beforehand; and (2) they both are
single-ensemble filters.

The differences between the SGF and DM HPF are:
(1) digital filter design specifications (i.e., cutoff
frequency, filter order etc.) are required for the DM
HPF but not for the SGF; and (2) proper initialization
techniques are required for the DM HPF but not for
the SGF.

Eventually, the SGF can be regarded as an adaptive
notch filter whose stopband is centered on the estimated
Table 7. Computational co

Clutter filter Type O(M x)

DM HPF Single-ensemble M 2

Eigenfilter Multi-ensemble M 3

Hankel-SVD Single-ensemble M 3

RED Recursive M 3

SGF (simplified) Single-ensemble M 2

DM5 down-mixing; HPF5 high-pass filter; SVD5 singular value decomp
geometry filter.
clutter Doppler shift uc. From this point of view, the
SGF and DM HPF are working under a same framework.
The links between the SGF and DM HPF can be depicted
by Figure 7.

Comparing Figure 6a and f, it can be seen that when
the stopband is narrow and around to zero, the effect of
the DM HPF is close to that of the SGF as we expected.
As the stopband cutoff frequency goes higher, more and
more low velocity pixels are removed as shown in
Figure 8a and b. Moreover, the DM HPF will cause an
estimation bias toward higher velocities (CFI image
becomes brighter) if a wide transition-band exists. On
the other hand, the SGF does not suffer from these filter
design uncertainties because it requires no input except
for the Doppler ensemble.
Computational complexity
Generally, the computational complexity of the

single-ensemble filter is higher than that of the multi-
ensemble filter. It is because the single-ensemble filtering
procedure has to be repeated for every sample volume
along each beam line. On the other hand, the eigen-
based methods are usually slower due to the SVD
calculation.
mplexity comparison

O(N x) O(M x N y) Time (s)

N 1 M 2N 1 0.98
N 1 M 2N 1 0.12
N 1 M 3N 1 68.98
N 1 M 3N 1 8.97
N 1 M 2N 1 1.55

osition; RED5 recursive eigen-decomposition; SGF5 single-ensemble



Table 8. Requirements and properties of different clutter filters

Clutter filter Type
Temporal stationary

requirement
Spatial stationary

requirement
CBR . 0
requirement ub . uc requirement

Auto-correlation
matrix size

DM HPF Single-ensemble Low Low High Low N/A
Eigenfilter Multi-ensemble Low High Medium Low M
Hankel-SVD Single-ensemble High Low Low High No more than M/2
RED Recursive Low Medium Medium Low M
SGF Single-ensemble High Low High Low M

DM5 down-mixing; HPF5 high-pass filter; SVD5 singular value decomposition; RED5 recursive eigen-decomposition; SGF5 single-ensemble
geometry filter.
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Suppose the ensemble size is M and the number of
axial sample volume is N along each beam line, the
complexity of the clutter filter is determined by not
only M but also N (the number of CFI beam lines is not
involved here because the applied clutter filters only
use echo reflected from one direction). Table 7 lists the
computational complexity of different clutter filters on
the order of M, N and their cross term Mx Ny.

From Table 7 we can see that on the order of M, the
complexities of the simplified SGF and DM HPF are
lower than the others because it does not involve the
SVD. On the order of cross term MxNy, the Eigenfilter
is identical to the DM HPF because it does not need iter-
ation for each beam line although it involves the SVD.
For the rest two filters, their complexities are relatively
high because they both require iterative calculations of
the SVD. Using the same in vivo data, the actual time
consumptions of different clutter filters for a complete
CFI image are listed in the last column of Table 7. It
can be seen that compared with the RED, time consump-
tion of the SGF and Hankel-SVD is much lower. This is
mainly because the Hankel-SVD is not implemented by
the built-in SVD algorithm optimized by MATLAB.
Compared with the Hankel-SVD and RED, the SGF is
faster because it involves nothing but basic matrix opera-
tions. Interestingly, we notice that the eigen-based Eigen-
filter is even faster than the DM HPF. This may be caused
by two reasons: (1) with a smallM applied in the CFI, the
order ofM does not affect the actual time consumption as
much as the term Nx, orMxNy; and (2) the optimized SVD
and matrix operations built in MATLAB greatly reduces
the real-time consumption of the Eigenfilter. But for the
single-ensemble filters, iterations are inevitable and
may cause a lot of time consumption in MATLAB codes.

Based on all the discussions above, major require-
ments and properties of existing clutter filters are summa-
rized in Table 8.
CONCLUSIONS

The eigen-based clutter filter consists of two general
types: the multi-ensemble filter and the single-ensemble
filter. The latter one can perform clutter rejection within
one sample volume and it is more suitable for CFI
scenarios with highly spatial varying tissue motions
(e.g., transthoracic coronary imaging) (Yu and
Løvstakken 2010). However, as the only existing single-
ensemble method, the Hankel-SVD decomposes each
Doppler ensemble into less than M/2 components, which
is not effective for sample volumes with complex clutter
movements.

In this article, the single-ensemble geometry filter is
proposed as a novel single-ensemble clutter rejection
method. It is based on a simple exponential clutter model
and it interprets the whole clutter suppression process
from a geometry perspective, which gives us a more intu-
itive explanation of the proposed algorithm. The SGF has
been validated by both simulations and in vivo experi-
ments. Results show that the proposed method can
achieve a great spatial adaptability and after proper
simplification, its actual computational complexity is
much lower than other eigen-based methods. More
in vivo studies combined with turbulent flow and arterial
stenosis will be carried in the future to further validate the
effectiveness of the proposed method in clinical
applications.
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APPENDIX A

The analytic Lissajous ellipse equation can be determined from
the definition: 


x5Refxð0Þg5 kc cosðucÞ
y5Refxð1Þg5 kc cosðuc1ucÞ (A1)

Using the definition in (A1), we have the analytic ellipse equation
in the plane x-y:

x21y222xy cosuc 5 k2c sin
2uc (A2)

To determine its tilt angle, we rotate the ellipse by q degrees
counter-clockwise. The relationship between the new x’-y’ plane and
the old x-y plane becomes:


x5 x0cosq2y0 sinq
y5 x0sinq2y0 cosq

(A3)

Substituting (A3) into (A2), we get:

ð122sinq cosq cosucÞx21ð112sinqcosqcosucÞy2
22
�
cos2q2sin2q

�
cosucx

0y0 5 k2c sin
2uc

(A4)

To make (A4) standard, the coefficient before the term x0y0 has to
be zero, which gives:

q5
p

4
1
kp

2
; or uc 5

p

2
1kp; ðk5 0; 1; 2;.Þ (A5)

When uc is p/2 1 kp, the ellipse becomes a circle. Otherwise, the tilt
angle of the ellipse will be either 45� (when 2p/2 , uc ,p/2) or
135� (when p/2 , uc , 3p/2). Once the cross term x0y0 is removed,
eqn (A4) becomes standard. Replacing sinqcosq with 1/2 (suppose
q 5 45�) in (A4), we have:

x02�
kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
11cosuc

p �21 y02�
kc

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12cosuc

p �2 5 1 (A6)

Finally, we have a standard ellipse equation described by (A6)
with its original tilt angle being 45�or 135�.

APPENDIX B

For an arbitrary M, we have the definition:8>>>><
>>>>:

x0 5 kc cosðucÞ
x1 5 kc cosðuc1ucÞ
x2 5 kc cosðuc12ucÞ

«
xM21 5 kc cosðuc1ðM21ÞucÞ

(B1)

where x0, . xM21 are the dimension indexes. Only real parts are
included for simplification.

Select two equations arbitrarily from (B1):

xp 5 kc cosðuc1pucÞ
xq 5 kc cosðuc1qucÞ (B2)

where p, q 5 0, 1, ., M21 and p , q. Using (A2), it can be derived
from (B2) that

x2p1x2q22xpxqcosðq2pÞuc 5 k2csin
2ðq2pÞuc (B3)

Therewill beC2
M21 5MðM21Þ=2 equations defined by (B3) with

different p and q in total. Summing up all theseM(M21)/2 equations, we
get:

ðM21Þ
XM21

p5 0

x2p22
XM21

p;q5 0

p,q

xpxqcosðq2pÞuc 5 k2c
XM21

p5 1

p sin2ðM2pÞuc

(B4)

Comparing (B4) and (4), we can determine the entries of the
matrix A. Let apq 5 aqp*, we get:

A52
6666664

M21 2cosðucÞ 2cosð2ucÞ / 2cosðM21Þuc

2cosðucÞ M21 2cosðucÞ / 2cosðM22Þuc

« « 1 « «

2cosðM22Þuc / 2cosðucÞ M21 2cosðucÞ
2cosðM21Þuc / 2cosð2ucÞ 2cosðucÞ M21

3
7777775

(B5)

It can be seen that (B5) is exactly the real part of (8). If we replace
the cosine series in (B5) with complex exponential series, eqn (8) can be
obtained finally.
APPENDIX C

According to the definition of variable a in subsection statistical
perspective

a5
XM22

m5 0

x�ðmÞxðm11Þ
.����XM22

m5 0

x�ðmÞxðm11Þ
���� (C1)

where a is a complex number with unit modulus. Therefore, let

a5 ejq (C2)
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where is q an arbitrary augment. Substituting (C2) into (14),
Rellipse 5

2
664

e0jq e2jq / e2ðM21Þjq

ejq e0jq / «
« « 1 e2jq

eðM21Þjq / ejq e0jq

3
7755

2
664

e0jq

ejq

«
eðM21Þjq

3
775� eojq ejq / eðM21Þjq ��

5M

0
BB@
2
664

e0jq

ejq

«
eðM21Þjq

3
775
, ffiffiffiffiffi

M
p

1
CCA
0
BB@
2
664

e0jq

ejq

«
eðM21Þjq

3
775
, ffiffiffiffiffi

M
p

1
CCA

H (C3)
Due to the fact that Rellipse is a Toeplitz matrix constructed by
a series of complex exponential values, only the first eigenvalue will
be nonzero (much larger than the other M-1 eigenvalues):

Rellipse 5
PM
i5 1

liuiu
H
i

5 l1u1u
H
1 1

PM
i5 2

liuiu
H
i

zl1u1u
H
1

(C4)
Comparing (C4) to (C3), we get:
8>>><
>>>:

u1 5
1ffiffiffiffiffi
M

p

2
664

e0jq

ejq

«
eðM21Þjq

3
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1ffiffiffiffiffi
M

p
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l1 5M
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