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Abstract
We extend the multiple-scattering theory (MST) to out-of-plane propagating
elastic waves in 2D periodical composites by taking into account the full
vector character. The formalism for both the band structure calculation and the
reflection and transmission coefficient calculation for finite slabs is presented.
The latter is based on a double-layer scheme, which obtains the reflection and
transmission matrix elements for the multilayer slab from those of a single layer.
Being more rapid in both the band structure and the transmission coefficient
calculations for out-of-plane propagating elastic waves,our approach especially
shows great advantages in handling the systems with mixed solid and fluid
components, for which the conventional plane wave approach fails. As the
applications of the formalism, we calculate the band structure as well as the
transmission coefficients through finite slabs for systems with lead rods in an
epoxy host, steel rods in a water host and water rods in a PMMA host.

1. Introduction

In recent years, there has been growing interest in classical wave propagation in periodic
composite materials. The study of photonic crystals has taken the lead, with the theoretical
prediction and experimental realization of photonic bandgaps [1, 2]. Recently, the focus
has been extended to the study of acoustic and elastic waves in periodic composites termed
phononic crystals [3–13].

In most theoretical and experimental studies of 2D phononic crystal, elastic waves have
been assumed to propagate in the plane perpendicular to the cylinders, i.e., the wavevector has
no component along the axis of the cylinders. Under such an assumption, the in-plane polarized
and the out-of-plane polarized modes are decoupled. Of particular interest has been the search
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for the absolute bandgap, defined as the gap common to both polarizations. For a 2D phononic
crystal that displays an absolute bandgap for in-plane propagation, it might be of interest to
know the extent to which the elastic waves can propagate out of plane while an absolute bandgap
can still be seen in the corresponding band structure. The existence of such a gap would affirm
the possibility of guiding elastic waves propagating perpendicularly to the plane of period,
which not only constitutes the basis of many newly arisen research fields such as the acoustic-
optical interaction in the photonic crystal fibres, but also has many important technological
applications such as ‘phononic crystal fibres’ [11–13]. Another immediate application of this
study concerns guiding the elastic waves in the plane of period when some defaults are added
or dropped if the bandgap still exists even when the wavevector component along the cylinder’s
axis is not exactly zero.

In fact, there have been a few papers [11–13] involved in the band structure calculations
for the out-of-plane propagating elastic waves in 2D phononic crystals by using the plane wave
(PW) method [11, 12] or the finite element method (FEM) [13]. However, to the best of our
knowledge, there is no publication about the transmission and reflection coefficient calculations
for obliquely incident elastic waves in 2D finite slabs, which, however, makes up another very
important aspect of theoretical investigation of phononic crystals. In addition, it is well known
that for the band structure calculation the PW method [3–6, 11, 12] has a convergence problem
when dealing with systems of either very high or very low filling ratios, or of large elastic
mismatch. Meanwhile, the PW method cannot be used to calculate the transmittance and
reflectance since it assumes either an infinite structure or periodic boundary conditions. The
PW method is also less effective when dealing with disordered systems. On the other hand,
although the FEM [13] is capable of dealing with the band structure calculation, it is also
not applicable to the transmission coefficient calculation. In contrast, the multiple-scattering
theory (MST) [7–10] has the fastest convergence speed in the band structure calculation for
2D or 3D phononic crystals composed of cylindrical or spherical objects for both ordered and
disordered systems. At the same time, a layer MST theory [7] for 3D phononic crystals has
also been successfully implemented, thus enabling rigorous calculation of the transmission and
reflection coefficients for a slab of periodically arranged scatterers, and providing a direct way to
compare theory with experiment. Furthermore, the special power of the MST approach consists
in its ability in handling the phononic crystals with components of large elastic mismatch; a
typical example is that of mixing solid and fluid components, for which the PW method has a
convergence problem or completely fails.

In this paper, we present a rigorous multiple-scattering formalism for calculating both the
band structure and the transmission coefficients for 2D elastic systems when the wavevector
has nonzero component along the normal of the periodic plane. As the applications of the
formalism, we perform the calculations for three 2D systems, including lead cylinders in
epoxy, steel cylinders in water and water cylinders in PMMA matrix. The paper is organized
as follows: the MST equations for the elastic waves in a 2D system are presented in section 2,
and accordingly the 2D layer MST is presented in sections 3 and 4. Some numerical results
and discussions are given in section 5, followed by a brief summary in section 6. Technical
details of the theory are presented in the appendices.

2. Multiple-scattering theory for elastic waves

Multiple scattering of elastic waves by particles has been extensively studied during the last
20 years [7–10], and the scattering of in-plane incident elastic waves by a 2D periodic array
of cylinders has also been studied very recently [8]. In this section, we present MST in its
modern form for obliquely incident elastic waves scattered by a 2D periodic arrangement of
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cylinders, and formulate the MST equations so that they are convenient to use in numerical
calculations.

In a homogeneous medium, the elastic wave equation may be written as

(λ + 2µ)∇(∇ · �u) − µ∇ × ∇ × �u + Dω2 �u = 0, (1)

where D is the density, and λ and µ are the Lamé constants of the medium. For an oblique
incident elastic wave, the wavevector �k has projections both on the plane of period i.e., the
x–y plane, and along the axis of the cylinders, i.e., the z axis. That is to say, �k = �kxy + kzêz ,
where �kxy is the projection on the x–y plane and kzêz is the projection along the z axis. In
the same way, the position vector �r could also be decomposed into components parallel and
perpendicular to the x–y plane respectively: �r = �ρ + zêz , where �ρ is the component parallel
to the x–y plane and zêz is the component along the z axis. If we further define α and β as
α2 + k2

z = ω2 D
λ+2µ

and β2 + k2
z = ω2 D

µ
, respectively, then the general solution of equation (1) can

be expressed as

�u(�r) =
∑

nσ

[anσ
�Jnσ (�r) + bnσ

�Hnσ (�r)], (2)

where �Jnσ (�r) and �Hnσ(�r) are, respectively, defined as

�Jn1(�r) = ∇[Jn(αρ)einφeikz z]

�Jn2(�r) = ∇ × [êz Jn(βρ)einφeikz z]

�Jn3(�r) = 1

β
∇ × ∇ × [êz Jn(βρ)einφeikz z],

(3)

and

�Hn1(�r) = ∇[Hn(αρ)einφeikz z]

�Hn2(�r) = ∇ × [êz Hn(βρ)einφeikz z]

�Hn3(�r) = 1

β
∇ × ∇ × [êz Hn(βρ)einφeikz z],

(4)

where Jn(x) is the cylindrical Bessel function and Hn(x) is the Hankle function of the first
kind. In equation (2), the index σ , ranging from 1 to 3, stands for three kinds of modes:
σ = 1 is for the longitudinal modes, and σ = 2, 3 represent the two transverse modes. When
the coefficients bnσ are zero, �u(�r) represents the incoming wave, and anσ = 0 implies that
�u(�r) consists of only the outgoing wave. In a composite medium, the displacement in each
homogeneous region obeys equation (1), and thus can be expressed in the form of equation (2).
By regarding the composite medium as composed of a host matrix and embedded scatterers,
the incident wave for scatterers i may be expressed as

�uin
i (�ri) =

∑

nσ

ai
nσ

�J i
nσ (�ri ), (5)

where �ri is measured from the centre of scatterer i . The wave scattered by scatterer i may be
expressed as

�usc
i (�ri ) =

∑

nσ

bi
nσ

�H i
nσ (�ri). (6)

According to MST, the wave incident on a given scatterer consists of two parts. One is the
externally incident wave �uin(0)

i (�ri ), which may be expanded as

�uin(0)

i (�ri ) =
∑

nσ

ai(0)
nσ

�J i
nσ (�ri ). (7)
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The second part is the sum of all the scattered waves except those from scatterer i , given by

�uin
i (�ri) − �uin(0)

i (�ri ) =
∑

j �=i

∑

n′′σ ′′
b j

n′′σ ′′ �H j
n′′σ ′′(�r j ), (8)

where �ri and �r j refer to the position of the same spatial point measured from scatterer i and j ,
respectively. With �Ri( j) denoting the position of scatterer i( j), we have �r j = �ri − ( �R j − �Ri ).
It may be proved that (see appendix A for details)

�H j
n′′σ ′′(�ri − ( �R j − �Ri )) =

∑

nσ

Gn′′σ ′′nσ ( �R j − �Ri ) �J i
nσ (�ri ), (9)

where G is the so-called vector structure constant, and is given by

Gnσn′σ ′( �R) =
{

Xα
nn′( �R) σ = σ ′ = 1

Xβ

nn′( �R) σ = σ ′ = 2, σ = σ ′ = 3,
(10)

and Xκ
nn′( �R) is the so-called structure constants for scalar waves, defined as

Xκ
nn′( �R) = Hn′−n(κ R)e−i(n′−n)φR , (11)

where κ = α, β and φR is the argument of �R. By defining Gi j
n′′σ ′′nσ = Gn′′σ ′′nσ ( �R j − �Ri ),

�H j
n′′σ ′′(�r j ) may be expressed as

�H j
n′′σ ′′(�r j ) =

∑

nσ

Gi j
n′′σ ′′nσ

�J i
nσ (�ri). (12)

For a given scatterer, the scattered displacement field is completely determined from
the incident field through the scattering matrix. There is a relation between the expansion
coefficients A = {a j

nσ } and B = {b j
nσ }:

b j
n′′σ ′′ =

∑

n′σ ′
t j
n′′σ ′′n′σ ′a

j
n′σ ′, (13)

where the scattering matrix T = {tnσn′σ ′ } can be obtained from the elastic Mie scattering
solution of a scatterer. Substituting equations (5), (7), (12) and (13) into equation (8), we
arrive at ∑

jn′σ ′
[δi jδnn′δσσ ′ −

∑

n′′σ ′′
t j
n′′σ ′′n′σ ′ G

i j
n′′σ ′′nσ ]a j

n′σ ′ = ai(0)
nσ . (14)

This is the final equation for a multiple-scattering system. It has the general form of the scalar
KKR theory. For a finite and/or disordered system, we must solve this equation in order to
investigate the system response to external perturbations. The normal modes of the system may
be obtained by solving the following secular equation, in the absence of an external incident
wave:

det

∣∣∣∣∣δi jδnn′δσσ ′ −
∑

n′′σ ′′
t j
n′′σ ′′n′σ ′ G

i j
n′′σ ′′nσ

∣∣∣∣∣ = 0. (15)

For a periodic system, equation (15) may be transformed to

det

∣∣∣∣∣δss ′δnn′δσσ ′ −
∑

n′′σ ′′
t s ′
n′′σ ′′n′σ ′ Gss ′

n′′σ ′′nσ (�k)

∣∣∣∣∣ = 0, (16)

where s and s′ label the scatterers in the unit cell with position vector �os and �os ′ , and Gss ′
n′′σ ′′nσ (�k)

is defined as

Gss ′
n′′σ ′′nσ (�k) =

∑

�R
Gn′′σ ′′nσ (�os ′ − �os − �R) exp(i�k · �R), (17)

where the sum
∑

�R is over all lattice sites. The solution of equation (16) gives the band
structure of an elastic periodic system.
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Figure 1. 2D phononic crystal consisting of a sequence of identical monolayers, with �a1 and �a2
being primitive vectors.

(This figure is in colour only in the electronic version)

3. Elastic wave scattering by a planar layer of scatterers

The study of elastic wave scattering by a periodic array of scatterers has a long history. In
this section and the next, we formulate MST in a layer-by-layer approach for calculating the
transmission and reflection from a finite slab of periodically arranged scatterers. We assume
that a layer of cylinder scatterers are located periodically on sites �Rn of a 1D lattice along the
x axis, where �Rn = n�a1, with n being integer and �a1 being the primitive vector along the x
axis. The y axis is assumed to point to the right of the x–z plane (as shown in figure 1).

A plane elastic wave obliquely incident on the cylinders may be expressed in general as

�uin±
α (�r) =

∑

g

�uin±
αg (�r) =

∑

g

�V in±
αg exp(i�k±

αg · �ρ) exp(ikzz),

�V in±
αg × (�k±

αg + kzêz) = 0,

�uin±
β (�r) =

∑

g

�uin±
βg (�r) =

∑

g

�V in±
βg exp(i�k±

βg · �ρ) exp(ikzz),

�V in±
βg · (�k±

βg + kzêz) = 0,

(18)

�k±
αg =

(�k‖ + �g,±
√

α2 − |�k‖ + �g|2
)
,

�k±
βg =

(�k‖ + �g,±
√

β2 − |�k‖ + �g|2
)
,

(19)

where �uin±
α (�r) and �uin±

β ( �ρ) represent the longitudinal and transverse plane elastic waves,
respectively, the sign + means incident from the left of the plane (incident along positive y),
and − means incident from the right of the plane (incident along negative y). Here, �g = n 2π

a1
êx

is one of the 1D reciprocal lattice vectors along the x axis. Thus, the incident plane elastic
waves may be expressed as

�uin(�r) = �uin
α (�r) + �uin

β (�r) =
∑

sg

�uins
αg (�r) +

∑

sg

�uins
βg (�r). (20)
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The incident elastic waves can also be expanded in the cylinder coordinate basis:

�uin(�r) =
∑

nσ

anσ
�Jnσ (�r), (21)

or, more explicitly,

�uin
α (�r) =

∑

n

an1 �Jn1(�r),

�uin
β (�r) =

∑

n

an2 �Jn2(�r) +
∑

n

an3 �Jn3(�r),
(22)

where the coefficients anσ derived from �V in±
αg and �V in±

βg (see appendix B for the details), may
be expressed as

an1 =
∑

sg

�V ins
αg · Ags

n1,

an2 =
∑

sg

�V ins
βg · Ags

n2,

an3 =
∑

sg

�V ins
βg · Ags

n3,

(23)

with �Ags
nσ defined as

�Ags
n1 = in−1

α2 + k2
z

exp(−inφs
�kαg

)(�ks
αg + kzêz),

�Ags
n2 = in−1

β2
exp(−inφs

�kβg
)(�ks

βg × êz),

�Ags
n3 = in

β2 + k2
z

exp(−inφs
�kβg

)

(
−kz

β
�ks
βg + β êz

)
.

(24)

In general, the wave scattered by a scatterer i may be expanded as
∑

nσ bi
nσ

�H i
nσ (�ri ), which

is completely determined by the incident waves plus the scatterer parameters and geometry.
The total scattered wave contains contributions from all the scatterers in the plane:

�usc(�r) =
∑

inσ

bi
nσ

�H i
nσ (�ri ). (25)

According to the Bloch theorem, we have

�usc(�r) =
∑

nσ

bnσ

∑

�R
exp(i�k‖ · �R) �Hnσ (�r − �R) (26)

where {bnσ } are the expansion coefficients (defined above) for the central scatterer, with the
superscript omitted. It may be proved (see appendix C for the details) that B = Z A,

Z = [I − T GTr(�k‖)]−1T, (27)

where A = {anσ }, B = {bnσ }, T = {tnσn′σ ′ } is the scattering matrix for a single scatterer, and
G = {Gnσn′σ ′(�k‖)} with

Gnσn′σ ′(�k‖) =
∑

�R

′
exp(i�k‖ · �R)Gnσn′σ ′(− �R). (28)

Here the sum over �R covers the whole two-dimensional lattice, excluding �R = 0. We use the
method presented in [14] to evaluate the sum in equation (28). The superscript Tr of G in
equation (27) denotes transposition.
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It can be shown (see appendix D for details) that
∑

�R
exp(i�k‖ · �R) �Hn1(�r − �R) =

∑

g

�Bg±
n1 exp(i�k±

αg · �ρ) exp(ikzz),

∑

�R
exp(i�k‖ · �R) �Hn2(�r − �R) =

∑

g

�Bg±
n2 exp(i�k±

βg · �ρ) exp(ikzz),

∑

�R
exp(i�k‖ · �R) �Hn3(�r − �R) =

∑

g

�Bg±
n3 exp(i�k±

βg · �ρ) exp(ikzz),

(29)

where

�Bg±
n1 = 2(−i)n−1

a1

√
α2 − |�k‖ + �g|2

exp(inφs
�kαg

)(�k±
αg + kzêz),

�Bg±
n2 = 2(−i)n−1

a1

√
β2 − |�k‖ + �g|2

exp(inφs
�kβg

)(�k±
βg × êz),

�Bg±
n3 = 2(−i)n−2

a1

√
β2 − |�k‖ + �g|2

exp(inφs
�kβg

)

(
kz

β
�k±
βg − β êz

)
,

(30)

and the sign + means y > 0 and − means y < 0. Thus,

�usc(�r) = �usc±
α (�r) + �usc±

β (�r)

=
∑

g

�V sc±
αg exp(i�k±

αg · �ρ) exp(ikzz) +
∑

g

�V sc±
βg exp(i�k±

βg · �ρ) exp(ikzz), (31)

where

�V sc±
αg =

∑

n

bn1 �Bg±
n1 ,

�V sc±
βg =

∑

n

(bn2 �Bg±
n2 + bn3 �Bg±

n3 ).
(32)

By substituting equation (23) into (27) and then substituting the resulting expression into
equation (32), we obtain

�V scs
αg =

∑

s ′g′
(Mss ′

αgαg′ · �V ins ′
αg′ + Mss ′

αgβg′ · �V ins ′
βg′ ),

�V scs
βg =

∑

s ′g′
(Mss ′

βgαg′ · �V ins ′
αg′ + Mss ′

βgβg′ · �V ins ′
βg′ ),

(33)

where Mss ′
kk′ is defined as

Mss ′
αgαg′ =

∑

nn′
�Bgs

n1 Zn1n′1 �Ag′s ′
n′1 ,

Mss ′
αgβg′ =

∑

nn′
( �Bgs

n1 Zn1n′2 �Ag′s ′
n′2 + �Bgs

n1 Zn1n′3 �Ag′s ′
n′3 ),

Mss ′
βgαg′ =

∑

nn′
( �Bgs

n2 Zn2n′1 �Ag′s ′
n′1 + �Bgs

n3 Zn3n′1 �Ag′s ′
n′1 ),

Mss ′
βgβg′ =

∑

nn′
( �Bgs

n2 Zn2n′2 �Ag′s ′
n′2 + �Bgs

n2 Zn2n′3 �Ag′s ′
n′3 + �Bgs

n3 Zn3n′2 �Ag′s ′
n′2 + �Bgs

n3 Zn3n′3 �Ag′s ′
n′3 ).

(34)
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Equation (33) may be expressed in matrix form:
[ �V sc+

α

�V sc+
β

]
=

[
M++

αα M++
αβ

M++
βα M++

ββ

]
·
[ �V in+

α

�V in+
β

]
+

[
M+−

αα M+−
αβ

M+−
βα M+−

ββ

]
·
[ �V in−

α

�V in−
β

]
,

[ �V sc−
α

�V sc−
β

]
=

[
M−+

αα M−+
αβ

M−+
βα M−+

ββ

]
·
[ �V in+

α

�V in+
β

]
+

[
M−−

αα M−−
αβ

M−−
βα M−−

ββ

]
·
[ �V in−

α

�V in−
β

]
,

(35)

where �V ins
k and �V scs

k are column matrices and Mss ′
kk′ are square matrices, defined as

�V ins
k = [ �V ins

kg1
�V ins

kg2
· · · �V ins

kgn−1
�V ins

kgn
]Tr ,

�V scs
k = [ �V scs

kg1
�V scs

kg2
· · · �V scs

kgn−1
�V scs

kgn
]Tr , (36)

Mss ′
kk′ =




Mss ′
kg1k′g1

Mss ′
kg1 k′g2

· · · Mss ′
kg1 k′gn−1

Mss ′
kg1 k′gn

Mss ′
kg2 k′g1

Mss ′
kg2 k′g2

· · · Mss ′
kg2 k′gn−1

Mss ′
kg2 k′gn

...
...

. . .
...

...

Mss ′
kgn−1 k′g1

Mss ′
kgn−1 k′g2

· · · Mss ′
kgn−1 k′gn−1

Mss ′
kgn−1k′gn

Mss ′
kgn k′g1

Mss ′
kgn k′g2

· · · Mss ′
kgn k′gn−1

Mss ′
kgn k′gn




. (37)

The Mss ′
kk′ give the scattering of the incident plane elastic waves by a layer of periodically

arranged scatterers.

4. Calculation of the transmission and reflection coefficients

To facilitate the derivation of the relevant formulae that follow, we write the displacement
fields on both sides of the scattering plane in an alternative way. By naming the left side side 1
and the right side side 2, the wave travelling from the left to the right on side 1 and that along
the opposite direction may be written as

[ �V +
α (1)

�V +
β (1)

]
=

[ �V in+
α

�V in+
β

]
,

[ �V −
α (1)

�V −
β (1)

]
=

[ �V sc−
α

�V sc−
β

]
+

[ �V in−
α

�V in−
β

]
.

(38)

Similarly, on the right side, i.e., side 2, we have
[ �V +

α (2)

�V +
β (2)

]
=

[ �V in+
α

�V in+
β

]
+

[ �V sc+
α

�V sc+
β

]
,

[ �V −
α (2)

�V −
β (2)

]
=

[ �V in−
α

�V in−
β

]
.

(39)

Substituting equation (35) into (38) and (39), we obtain
[ �V +

α (2)

�V +
β (2)

]
=

[
I + M++

αα M++
αβ

M++
βα I + M++

ββ

]
·
[ �V +

α (1)

�V +
β (1)

]
+

[
M+−

αα M+−
αβ

M+−
βα M+−

ββ

]
·
[ �V −

α (2)

�V −
β (2)

]
,

[ �V −
α (1)

�V −
β (1)

]
=

[
M−+

αα M−+
αβ

M−+
βα M−+

ββ

]
·
[ �V +

α (1)

�V +
β (1)

]
+

[
I + M−−

αα M−−
αβ

M−−
βα I + M−−

ββ

]
·
[ �V −

α (2)

�V −
β (2)

]
.

(40)

One should note that all the plane-wave expansions, including the incident and scattered waves,
are referred to the central scatterer in the plane. If we shift the centre of expansion by −�a2/2



Elastic wave propagation in phononic crystals 3743

for waves on side 1 and by �a2/2 for waves on side 2, where �a2 is the translation vector of the
1D layer in forming a 2D crystal (as shown in figure 1), then
[ �V +

α (2)

�V +
β (2)

]
=

[
Q++

αα Q++
αβ

Q++
βα Q++

ββ

]
·
[ �V +

α (1)

�V +
β (1)

]
+

[
Q+−

αα Q+−
αβ

Q+−
βα Q+−

ββ

]
·
[ �V −

α (2)

�V −
β (2)

]
,

[ �V −
α (1)

�V −
β (1)

]
=

[
Q−+

αα Q−+
αβ

Q−+
βα Q−+

ββ

]
·
[ �V +

α (1)

�V +
β (1)

]
+

[
Q−−

αα Q−−
αβ

Q−−
βα Q−−

ββ

]
·
[ �V −

α (2)

�V −
β (2)

]
.

(41)

where

�Qss ′
kk′ = φs

kφ
s ′
k′ δkk′ δss ′ + φs

k Mss ′
kk′ φ

s ′
k′ , (42)

with matrices φs
k defined as

φs
k =





exp(si�ks
kg1

· �a2/2)

. . .

exp(si�ks
kgn

· �a2/2)



 . (43)

Once the Q matrices for one scattering plane are determined, one can easily obtain the Q
matrices of a slab with two scattering planes [15]. The procedure can be repeated to obtain the
Q matrices for a slab with 2n scattering planes, with n being an arbitrary integer. The proper
combination of these slabs enables us to obtain the Q matrices for a slab with any number of
scattering planes.

Once the Q matrices of a multilayer slab are obtained, we can completely determine the
transmitted and reflected waves from equation (41), given incident waves. Since the flux is
given by (λ+2µ)ω( �Vαg · �V ∗

αg)
�kαg and µω( �Vβg · �V ∗

βg)
�kβg for a longitudinal plane elastic wave and

transverse plane elastic wave, respectively, the transmittance T and reflectance R for elastic
waves from a slab (with the normal direction along the y axis) is given by

T (R) =
∑

g{(λ + 2µ) �V trn(ref)
αg · �V trn(ref)∗

αg k+
αgy + µ �V trn(ref)

βg · �V trn(ref)∗
βg k+

βgy}∑
g{(λ + 2µ) �V in

αg · �V in∗
αg k+

αgy + µ �V in
βg · �V in∗

βg k+
βgy}

(44)

with �V in
α(β)g, �V ref

α(β)g and �V trn
α(β)g being components of the incident wave, reflected wave and

transmitted wave, respectively, and ∗ denoting complex conjugation. The requirement for
energy conservation implies that the absorbance ξ for a system with loss is given by

ξ = 1 − T − R. (45)

5. Numerical results and discussion

To check our formalism and program, we first take a test band structure calculation for a 2D
phononic crystal formed with Pb cylinders arranged in a square lattice in epoxy matrix with
filling ratio x = 0.30, for which it had been shown in previous literature [8] that there exists a
wide complete gap in the case of normal incidence, i.e., when the wavevector of incident wave
has no component along the z direction. The materials parameters used in our calculation
are D = 11.4 g cm−3, cl = 2.16 km s−1, cl/ct = 2.51 for Pb, and D = 1.18 g cm−3,
cl = 2.54 km s−1, cl/ct = 2.19 for epoxy. Figure 2(a) shows the band structure calculated for
the system when kz = 0, which is in agreement with that calculated with ‘pure’ 2D MST [8].
This shows that our formalism and program are convincing. Moreover, the calculation is
reasonable fast. For the case of 30% filling ratio, only about 20 min on an AMD Athlon
1.54 GHz machine (with 256 megabyte memory) is required to complete the whole band
structure calculation.
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Figure 2. Band structures of elastic waves propagating in a square lattice consisting of Pb cylinders
in epoxy matrix with filling ratio x = 0.30 for (a) γz = 0, (b) γz = 0.15, and (c) γz = 0.45. a is
the lattice constant; c is the transverse velocity in epoxy.

Then we alter the normalized wavevector component γz = kza/2π and increase it from
zero gradually. Figures 2(b) and (c) show the band structures calculated when the normalized
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Figure 3. Projection of the phononic crystal band structure in the (kx , ky) plane onto the (kz, ω)

plane, for the phononic crystal consisting of Pb cylinders arranged in a square lattice in epoxy
matrix with filling ratio x = 0.30. White regions indicate the absolute bandgaps in the (kx , ky)

plane. a is the lattice constant; c is the transverse velocity in epoxy.

wavevector component γz equals 0.15 and 0.45, respectively. Evidently, the results for
γz = 0.15 differ significantly from those for γz = 0. The most striking difference is that
the dispersion curves for the lowest-frequency branches, in the case γz �= 0, do not tend to
zero anymore as both kx and ky tend to zero. As a result, a bandgap below the first band opens
up in the phononic band structure for nonzero γz , whose width increases as γz increases [11].

In order to demonstrate the evolution of the elastic gaps more clearly, in figure 3 we show
the projected band structures in the (kx, ky) plane onto the reduced frequency ωa

2πc , normalized
wavevector γz plane, where c is the transverse velocity in epoxy. The white regions indicate
absolute bandgaps in the (kx, ky) plane. Several absolute bandgaps for nonzero out-of-plane
wavevectors are visible, and no propagation and no vibration are allowed in these regions. The
width of the low-frequency bandgap, labelled (a) in figure 3, increases monotonically from
zero with increasing γz . When γz increases, the width of gap (b) that exist from ωa

2πc = 0.51 to
ωa
2πc = 0.60 initially increases until γz = 0.42, then decreases and vanishes at γz = 0.86. Gap
(c) appears at γz = 0.26 and vanishes at γz = 0.64. Evidently, there still exists a wide complete
gap even if kz is nonzero. It establishes that a high-density material arranged periodically in a
low-density and relatively soft material always favours bandgaps, whether the incoming wave
is normally or obliquely incident onto the 2D phononic crystal.

It is also evident in figure 3 that when the wavelength λz along the z axis is smaller than
a/0.4 one isolated branch appears which is delimited by gap (a) and gap (c). If λz is kept
constant, these modes are flat branches in the (kx, ky) plane, just like the lowest band already
shown in figure 2(c). Consequently, their group velocities (∂ω/∂kx, ∂ω/∂ky) are zero in the
(x, y) plane, and energy propagates along the cylinder axes [11, 12]. In addition, there are no
allowed states from zero up to a certain frequency when kz is greater than zero. This is because
the slowest wave propagating in epoxy matrix is the bulk epoxy transverse mode, irrespective
of the values of kx and ky. Then gap (a) always exists, and extends at least over the triangle
below the bulk epoxy transverse mode, as shown in figure 3.

On the experimental side, usually the quantity which is the most convenient to measure is
the transmission coefficient or the reflection coefficient of a finite phononic crystal slab. Thus
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Figure 4. The transmission coefficients along the �X and �M directions of a 16-layer Pb–epoxy
phononic crystal slab for a longitudinal incident wave (solid line) and for a transverse incident
wave (dashed line for σ = 2 transverse mode) when the incident angle is θ = 25◦. a is the lattice
constant; c is the transverse velocity in epoxy.

if we could figure out the transmittance or reflectance theoretically, it would make possible the
straightforward comparison of the computational result with the experimental data. Based on
this idea, in figure 4 we plot the transmission coefficient along the �X and �M directions of a
16-layer Pb–epoxy phononic crystal slab both for longitudinal incident wave and for transverse
incident wave when the incident angle is θ = 25◦ (in this paper, the incident angle is defined
as sin θ = kz/k). Strictly speaking, the eigenmodes of the 2D phononic crystal are mixed
modes, consisting of both longitudinal modes and transverse modes. However, if �kx = 0,
i.e., the incident wavevector has no component along the x direction, and the frequency is not
very high, which is just the situation considered in this paper, only the �g = 0 component is
a propagating wave and its amplitude is much larger than other components. Therefore, only
the �g = 0 component will couple with the external incident wave. As a result, in the phononic
crystal slab only longitudinal modes could be excited by a longitudinal incident wave and only
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Figure 5. The transmission coefficients along the �X direction of a 16-layer Pb–epoxy phononic
crystal slab for a longitudinal incident wave when the incident angle θ is 20◦, 40◦ , 60◦ and 80◦ ,
respectively. a is the lattice constant; c is the transverse velocity in epoxy.

transverse modes could be excited by a transverse incident wave. But for higher frequency or
for �kx �= 0, mixed modes could be easily excited. For this reason, we separate the transmission
coefficient of the longitudinal mode from those of the transverse mode. As shown in figure 4,
in the case of 25◦ incident angle, the first common bandgap for both the longitudinal mode and
the transverse mode along the �M direction exist from ωa

2πc = 0.54 to ωa
2πc = 0.67, while along

the �X direction the first common bandgap begins at ωa
2πc = 0.53 and vanishes at ωa

2πc = 0.69.
Therefore, a complete bandgap exists in the range of (0.54–0.67) in the unit of the reduced
frequency.

In fact, all the gaps will shift to the higher frequency range with increasing the incident
angle θ whether the longitudinal mode or the transverse mode is concerned. For example, in
figure 5 we plot the transmission coefficient along the �X direction of a 16-layer Pb–epoxy
phononic crystal slab for a longitudinal incident wave when the incident angle θ is 20◦, 40◦,
60◦ and 80◦, respectively. Evidently, as θ increases, the first gap becomes larger and larger and
shifts to the higher frequency range, and at the same time all other the gaps also shift to the higher
frequency range. It is easy to understand such a variation of gap with the incident angle. For a
given frequency, the bigger the incident angle, the smaller the projection of the wavevector in
the x–y plane kxy , which means that for a bigger incident angle we must increase the frequency
in order to let the in-plane projection kxy arrive at the threshold value at which the gap begins to
exist for a smaller incident angle. As a result, the gap will shift to higher frequency for a bigger
θ . It also gives us the suggestion that we could tailor the gap frequency range according to the
demands by just tuning the incident angle of the incoming elastic wave without changing the
structure of the 2D phononic crystal. In addition, the complete bandgap for different incident
angles may have a common frequency range for a given structure. This property can be useful
for technological applications of periodic structures such as the ‘phononic crystal fibres’, for
which the propagation of elastic waves is along the normal to the periodic plane.

It is well known that the PW method cannot deal with the systems with mixed solid and
fluid components, which include two cases: the first is the system formed with solid cylinders
arranged in fluid, and the second is the reverse of the first, with fluid cylinders arranged in a
solid matrix. In order to use the PW method to study the band structures of the system with
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Figure 6. Band structures of acoustic wave in the phononic crystals consisting of Fe cylinders in
water arranged in (a) a square lattice and (b) a hexagonal lattice, with filling ratio x = 0.35 for
γz = 0.60. a is the lattice constant; c is the acoustic wave velocity in water.

solid inclusions in fluid, one has to neglect the transverse mode excited in solid inclusions and
simply treat the solid as a fluid, where only longitudinal modes exist. This approximation only
holds when the solid component is stiff enough that the wave propagation in the surrounding
fluid can hardly refract into the solid. For the second case, the PW method completely fails.
Recently, a treatment for the case is proposed by use of the PW method in which an artificial
transverse velocity is introduced into the fluid [16]. However, the MST approach can easily
handle the systems with mixed solid and fluid components, either a solid component in a fluid
or a fluid component in a solid. In the following, we first apply our MST approach to calculate
the band structure and transmission coefficient for Fe cylinders immersed in water, arranged
in both a hexagonal lattice and a square lattice, and then calculate the band structure for the
reverse problem, i.e., water-filled cylindrical holes drilled in a PMMA matrix.

Figures 6(a) and (b) show the band structures of acoustic waves for steel cylinders
immersed in water arranged in a square lattice and a hexagonal lattice, respectively. Both
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Figure 7. The transmission coefficients along the �J and �X directions of a 32-layer Fe–water
phononic crystal slab for a longitudinal incident wave when the incident angle θ is 0◦ , 10◦ , 20◦
and 30◦ , respectively. a is the lattice constant; c is the acoustic wave in water.

structures have the same filling ratio 0.35. The material parameters used here are D =
1.0 g cm−3, cl = 1.49 km s−1 for water, and D = 7.67 g cm−3, cl = 6.01 km s−1, cl/ct = 1.86
for steel. As shown in figure 6, bandgaps are not observed in the case of γz = 0.6 when the
filling fraction is 0.35. In fact, at this filling fraction, the complete bandgap is very small for a
square lattice and does not exist for a hexagonal lattice even in the case of normal incidence,
i.e., γz = 0. In order to create and enlarge the complete bandgap for a nonzero γz value, an
effective method is to increasing the filling fraction of the Fe cylinders, which has already been
verified by our band structure calculations not shown here.

Moreover, we could plot the transmission–frequency curve for the Fe–water system as
we have done for the solid–solid system. Since only a longitudinal wave could propagate in
the fluid matrix, we merely need to consider the longitudinal incident mode now. In figure 7,
we plot the transmission coefficients along the two high symmetry directions for a hexagonal
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Figure 8. Band structures of elastic waves in the phononic crystals consisting of water cylinders
in a PMMA matrix arranged in a square lattice, with filling ratio x = 0.40 for (a) γz = 0, and (b)
γz = 0.40. a is the lattice constant; c is the transverse velocity in PMMA.

lattice, i.e., �J and �X directions, of a 32-layer Fe–water phononic crystal slab when the
incident angle θ is 0◦, 10◦, 20◦ and 30◦, respectively. The same as the solid–solid phononic
crystal, all the gaps will shift to higher frequency range with the increase of θ for both the �J
and the �X directions. This behaviour can be explained with a similar analysis as above.

For the reverse problem, i.e., water cylinders in a PMMA matrix, it is a little complex;
three kinds of modes coexist in such a case. Figure 8 shows the band structures for a phononic
crystal consisting of water cylinders arranged in a square lattice in a PMMA matrix with filling
fraction x = 0.40. As shown, there is no gap for both in-plane propagation and out-of-plane
propagation with γz = 0.4. Further calculations indicate that there is no gap in the whole
range of the filling fraction for any value of kz component. For water cylinders arranged in a
PMMA matrix in a hexagonal lattice no gap is found either. It seems that it is really a difficulty
to realize the bandgap in such a system.
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6. Concluding remarks

In summary, we have extended the multiple-scattering theory to out-of-plane propagating
elastic waves in 2D composite and show that the approach has a rapid convergence speed in
both the band structure and the transmission coefficient calculations for 2D phononic crystals
composed of cylinders in a matrix material. An interesting advantage is its power in handling
the system with mixing solid and fluid components for which the plane wave method complete
fails. The application of the MST approach to three 2D systems, that is, lead cylinders in
epoxy, steel cylinders in water, and water cylinders in a PMMA matrix, are calculated.
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Appendix A

In this appendix, we prove equations (9) and (10), where the vector structure constant Gnσn′σ ′

is defined by the relation

�Hnσ (�r − �R) =
∑

n′σ ′
Gnσn′σ ′( �R) �Jn′σ ′(�r). (A.1)

It is known that

Hn(k| �ρ − �ρ ′|)einφ ′′ =






∞∑

n′=−∞
Jn′−n(kρ

′)Hn′(kρ)ein′φ−i(n′−n)φ ′
ρ > ρ ′

∞∑

n′=−∞
Hn′−n(kρ

′)Jn′(kρ)ein′φ−i(n′−n)φ ′
ρ < ρ ′,

(A.2)

where φ, φ′ and φ′′ are the arguments of �ρ, �ρ ′ and �ρ − �ρ ′, respectively. Because ρ < R is
always satisfied since the field point is within a unit cell, we have

Hn(α| �ρ − �R|)einφ ′′ =
∑

n′
Hn′−n(αR)e−i(n′−n)φ ′

Jn′(αρ)ein′φ

=
∑

n′
Xα

nn′( �R)Jn′(αρ)ein′φ, (A.3)

where Xα
nn′( �R) = Hn′−n(αR)e−i(n′−n)φ ′

, and φ, φ′, and φ′′ are the arguments of �ρ, �R, and
�ρ − �R, respectively.

Since the translation vector �R is always in the x–y plane, by decomposing the vector �r − �R
as �r − �R = ( �ρ + zêz) − �R = ( �ρ − �R) + zêz , we have

�Hn1(�r − �R) = �Hn1(( �ρ − �R) + zêz)

= ∇[Hn(α| �ρ − �R|)einφ ′′
eikz z]

= ∇
[∑

n′
Xα

nn′( �R)Jn′(αρ)ein′φeikz z

]

=
∑

n′
Xα

nn′( �R)∇[Jn′(αρ)ein′φeikz z]
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=
∑

n′
Xα

nn′( �R) �Jn′1(�r)

=
∑

n′σ ′
Xα

nn′( �R)δ1σ ′ �Jn′σ ′(�r). (A.4)

Comparison of equation (A.1) with the last line of equation (A.4) gives

Gn1n′σ ′( �R) = Xα
nn′( �R)δ1σ ′ . (A.5)

We now turn to �Hn2(�r − �R); we see that

�Hn2(�r − �R) = �Hn2(( �ρ − �R) + zêz)

= ∇ × [êz Hn(β| �ρ − �R|)einφ ′′
eikz z]

= ∇ ×
[
∑

n′
Xβ

nn′( �R)êz Jn′(βρ)ein′φeikz z

]

=
∑

n′
Xβ

nn′( �R)∇ × [êz Jn′(βρ)ein′φeikz z]

=
∑

n′
Xβ

nn′( �R) �Jn′2(�r), (A.6)

from which we obtain

Gn2n′σ ′( �R) = Xβ

nn′( �R)δ2σ ′ . (A.7)

To get the expression for �Hn3(�r − �R), we use (1/β)∇× to act on equation (A.6), leading to

�Hn3(�r − �R) = 1

β
∇ ×

[
∑

n′
Xβ

nn′( �R) �Jn′2(�r)

]

=
∑

n′
Xβ

nn′( �R)

[
1

β
∇ × �Jn′2(�r)

]

=
∑

n′
Xβ

nn′( �R) �Jn′3(�r), (A.8)

from which we get

Gn3n′σ ′( �R) = Xβ

nn′( �R)δ3σ ′ . (A.9)

Appendix B

In this appendix, we prove equations (23) and (24). According to equation (18), we have

�V in±
αg (�r) ‖ (�k±

αg + kzêz). (B.1)

By using the identity

exp(i�ks
αg · �ρ) =

∑

n

in Jn(αρ) exp[−in(φs
�kαg

− φ �ρ)], (B.2)

with φs
�kαg

denoting the azimuth angle of �ks
αg, we can obtain that

�V ins
αg exp(i�ks

αg · �ρ) exp(ikzz)

= �V ins
αg ·

�ks
αg + kzêz

i|�ks
αg + kzêz |2

∇ exp[i(�ks
αg + kzêz) · ( �ρ + zêz)]
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= �V ins
αg ·

�ks
αg + kzêz

i(α2 + k2
z )

∇
{

∑

n

in Jn(αρ) exp[−in(φs
�kαg

− φ �ρ)] exp(ikzz)

}

=
∑

n

in−1

α2 + k2
z

�V ins
αg · (�ks

αg + kz êz) exp(−inφs
�kαg

) �Jn1(�r). (B.3)

Since

�uin
α (�r) =

∑

sg

�V ins
αg exp(i�ks

αg · �ρ) exp(ikzz) =
∑

n

an1 �Jn1(�r), (B.4)

we have

an1 = in−1

α2 + k2
z

∑

sg

�V ins
αg · (�ks

αg + kzêz) exp(−inφs
�kαg

) =
∑

sg

�V ins
αg · �Ags

n1, (B.5)

with

�Ags
n1 = in−1

α2 + k2
z

exp(−inφs
�kαg

)(�ks
αg + kzêz). (B.6)

On the other hand, according to equation (18) we have

�V ins
βg (�r)⊥(�ks

βg + kzêz). (B.7)

Moreover, if we define vector �m1 and �m2 as

�m1 = �ks
βg × êz,

�m2 = −kz

β
�ks
βg + β êz,

(B.8)

we can prove that �m1 ⊥ �m2 ⊥ (�ks
βg + kzêz). Then �V ins

βg can be decomposed as the linear
combination of �m1 and �m2:

�V ins
βg (�r) = l1 �m1 + l2 �m2, (B.9)

with

l1 = �V ins
βg · (�ks

βg × kzêz)/β
2,

l2 = �V ins
βg ·

(
−kz

β
�ks
βg + β êz

) /
(β2 + k2

z )
(B.10)

so that

�uin
β (�r) =

∑

sg

�V ins
βg exp(i�ks

βg · �ρ) exp(ikzz)

=
∑

sg

l1 �m1 exp(i�ks
βg · �ρ) exp(ikzz) +

∑

sg

l2 �m2 exp(i�ks
βg · �ρ) exp(ikzz)

=
∑

sg

l1

i
∇ × [êz exp(i�ks

βg · �ρ) exp(ikzz)]

+
∑

sg

l2

β
∇ × ∇ × [êz exp(i�ks

βg · �ρ) exp(ikzz)]

=
∑

sg

l1

i

∑

n

in exp(−inφs
�kβg

) �Jn2(�r) +
∑

sg

l2

β

∑

n

in exp(−inφs
�kβg

) �Jn3(�r)

=
∑

sg

∑

n

�V ins
βg · (�ks

βg × kzêz)

β2
in−1 exp(−inφs

�kβg
) �Jn2(�r)
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+
∑

sg

∑

n

�V ins
βg · − kz

β
�ks
βg + β êz

(β2 + k2
z )

in exp(−inφs
�kβg

) �Jn3(�r)

=
∑

n

∑

sg

�V ins
βg · �Ags

n2
�Jn2(�r) +

∑

n

∑

sg

�V ins
βg · �Ags

n3
�Jn3(�r)

=
∑

n

[an2 �Jn2(�r) + an3 �Jn3(�r)] (B.11)

where

an2 =
∑

sg

�V ins
βg · Ags

n2,

�Ags
n2 = in−1

β2
exp(−inφs

�kβg
)(�ks

βg × êz),

(B.12)

an3 =
∑

sg

�V ins
βg · Ags

n3,

�Ags
n3 = in

β2 + k2
z

exp(−inφs
�kβg

)

(
−kz

β
�ks
βg + β êz

)
.

(B.13)

Appendix C

In addition to the externally incident wave, the incident wave for the central scatterer includes
the contributions from all the other scatterers in the scattering plane:∑

i �=0

∑

nσ

bi
nσ

�Hnσ (�ri)

=
∑

nσ

bnσ

∑

�R

′
exp(i�k‖ · �R) �Hnσ (�r − �R)

=
∑

nσ

bnσ

∑

�R

′
exp(i�k‖ · �R)

∑

n′σ ′
Gnσn′σ ′(− �R) �Jn′σ ′(�r)

=
∑

nσ

a′
nσ

�Jnσ (�r), (C.1)

where

a′
nσ =

∑

n′σ ′
bn′σ ′ Gn′σ ′nσ (�k‖). (C.2)

For the explicit expression of Gnσn′σ ′(�k‖), see equation (28). The total incident wave for the
central scatterer in the plane is thus

∑
nσ (anσ + a′

nσ ) �Jnσ (�r). It follows that

bnσ =
∑

n′σ ′
tnσn′σ ′(an′σ ′ + a′

n′σ ′), (C.3)

where T = {tnσn′σ ′ } is the scattering matrix of the central scatterer. To write equation (C.3) in
the matrix form, we have

B = T (A + A′) = T [A + GTr(�k‖)B]; (C.4)

thus

B = Z A, (C.5)

where the Z matrix is defined as

Z = [I − T GTr(�k‖)]−1T, (C.6)

with I being the unit matrix.
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Appendix D

In this appendix, we prove equations (29) and (30). We first introduce the formula [17]

H0(kρ) = 1

π

∫ +∞

−∞
exp(ik ′

x x + i
√

k2 − k ′2
x |y|)

√
k2 − k ′2

x

dk ′
x = 1

π

∫ +∞

−∞
exp(i�k ′± · �ρ)√

k2 − k ′2
x

dk ′
x (D.1)

where �k ′± = (k ′
x,±

√
k2 − k ′2

x ), satisfying |�k ′±| = k, and the sign + (−) corresponds to y > 0
(y < 0). If k ′2

x > k2,
√

k2 − k ′2
x takes the value i

√
k ′2

x − k2.
By using another identity

exp(−i�k ′± · �ρ0) =
+∞∑

n=−∞
(−i)n exp(−inφ±

�k′ + inφ �ρ0)Jn(kρ0), (D.2)

with φ±
�k′ being the azimuth angle of �k ′±, we can get

H0(k| �ρ − �ρ0|) = 1

π

∫ +∞

−∞
exp(i�k ′± · �ρ)√

k2 − k ′2
x

[
+∞∑

n=−∞
(−i)n exp(−inφ±

�k′ + inφ �ρ0)Jn(kρ0)

]
dk ′

x .

(D.3)

In the cylindrical coordinates, if ρ > ρ0, the addition theorem gives

H0(k| �ρ − �ρ0|) =
+∞∑

n=−∞
Jn(kρ0)Hn(kρ) exp[in(φ �ρ − φ �ρ0)]. (D.4)

Multiplying equations (D.3) and (D.4) by exp(imφ �ρ0) and integrating φ �ρ0 from 0 to 2π

and eliminating the item Jm(kρ0), we can establish that

Hn(kρ) exp(inφ �ρ) = (−i)n

π

∫ +∞

−∞
exp(i�k ′± · �ρ)√

k2 − k ′2
x

exp(inφ±
�k′ ) dk ′

x . (D.5)

Therefore∑

�R
Hn(k| �ρ − �R|) exp(inφ �ρ− �R) exp(ikzz) exp(i�k‖ · �R)

= (−i)n

π

∫ +∞

−∞
exp(i�k ′± · �ρ)√

k2 − k ′2
x

exp(inφ±
�k′ ) exp(ikzz)

∑

�R
exp[i(�k‖ − �k ′±) · �R] dk ′

x .

(D.6)

Noting that
∑

�R
exp[i(�k‖ − �k ′±) · �R] = 2π

a1

∑

g

δ(�k‖ + �g − k ′
x êx), (D.7)

we have∑

�R
Hn(k| �ρ − �R|) exp(inφ �ρ− �R) exp(ikzz) exp(i�k‖ · �R)

= 2(−i)n

a1

∑

g

exp(i�k±
g · �ρ)

√
k2 − |�k‖ + �g|2

exp(inφ±
�kg

) exp(ikzz), (D.8)

with

�k±
g =

(�k‖ + �g,±
√

k2 − |�k‖ + �g|2
)

(D.9)

and φ±
�kg

being the argument of �k±
g .
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According to equation (D.8), we can establish that∑

�R
exp(i�k‖ · �R) �Hn1(�r − �R)

= ∇
[
∑

�R
Hn(α| �ρ − �R|) exp(inφ �ρ− �R) exp(ikzz) exp(i�k‖ · �R)

]

=
∑

g

2(−i)n−1

a1

√
α2 − |�k‖ + �g|2

exp(inφ±
�kαg

)(�k±
αg + kzêz) exp(i�k±

αg · �ρ) exp(ikzz)

=
∑

g

�Bg±
n1 exp(i�k±

αg · �ρ) exp(ikzz), (D.10)

where

�Bg±
n1 = 2(−i)n−1

a1

√
α2 − |�k‖ + �g|2

exp(inφ±
�kαg

)(�k±
αg + kzêz). (D.11)

In the same way,∑

�R
exp(i�k‖ · �R) �Hn2(�r − �R)

=
∑

g

2(−i)n−1

a1

√
β2 − |�k‖ + �g|2

exp(inφ±
�kβg

)(�k±
βg × êz) exp(i�k±

βg · �ρ) exp(ikzz)

=
∑

g

�Bg±
n2 exp(i�k±

βg · �ρ) exp(ikzz), (D.12)

where

�Bg±
n2 = 2(−i)n−1

a1

√
β2 − |�k‖ + �g|2

exp(inφ±
�kβg

)(�k±
βg × êz). (D.13)

Similarly,∑

�R
exp(i�k‖ · �R) �Hn3(�r − �R)

= 1

β
∇ ×

∑

�R
exp(i�k‖ · �R) �Hn3(�r − �R)

=
∑

g

2(−i)n−2

a1

√
β2 − |�k‖ + �g|2

exp(inφ±
�kβg

)

(
kz

β
�k±
βg − β êz

)
exp(i�k±

βg · �ρ) exp(ikzz)

=
∑

g

�Bg±
n3 exp(i�k±

βg · �ρ) exp(ikzz), (D.14)

with

�Bg±
n3 = 2(−i)n−2

a1

√
β2 − |�k‖ + �g|2

exp(inφ±
�kβg

)

(
kz

β
�k±
βg − β êz

)
. (D.15)
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