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A Cube-Based Scheme of IE-ODDM-MLFMA
for Electromagnetic Scattering Problems

Wei-Dong Li, Hou-Xing Zhou, and Wei Hong, Senior Member, IEEE

Abstract—A cube-based scheme of integral-equation-based
overlapped domain decomposition method with multilevel fast
multipole algorithm (IE-ODDM-MLFMA) is proposed for the
analysis of electromagnetic (EM) scattering problems. In this
scheme, each bottom cube is located either inside an iterative
region or inside the corresponding incident region, and the it-
erative and incident regions are complementary to each other
from the bottom cube point of view, which makes it convenient to
implement the ODDM in the frame of the MLFMA. Numerical
examples are presented to validate the proposed scheme.

Index Terms—Electromagnetic (EM) scattering, multilevel fast
multipole algorithm (MLFMA), overlapped domain decomposi-
tion method (ODDM).

I. INTRODUCTION

T HE method of moments (MoM) [1] with RWG functions
[2] is widely used for formulating 3D electromagnetic

(EM) scattering problems. It needs memory to store
the matrix and operations to perform the matrix vector
product via an iterative solver. The fast multipole method
(FMM) [3] and its multilevel version, multilevel fast multi-
pole algorithm (MLFMA) [4], lower them to and

, respectively. However, the MLFMA still suffers
from the consumption of CPU time and storage when solving
very large problems.

Based on the integral-equation-based overlapped domain
decomposition method (IE-ODDM) [5] and the MLFMA,
an IE-ODDM-MLFMA scheme was developed in the au-
thors’ previous work [6] to further enhance the efficiency of
the MLFMA and to make larger problems solvable. In this
scheme, the outer iteration is very fast-convergent due to the
spurious edge effect of the current in each subdomain being
effectively depressed, and the dominant memory requirement
for plane-wave expansions in the MLFMA is significantly
reduced. However, when the aggregation and disaggregation
for a pair of iterative and incident regions are implemented,
RWG elements in the bottom cubes are always identified by
the attribute of being located inside the iterative or incident
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region. Additionally, cumbersome details [6] are needed to
implement the near-part matrix vector product and to construct
the preconditioner for the iterative region. This is caused by the
dual roles of the bottom cubes located inside a pair of iterative
and incident regions, i.e., both the leaves of the oct-tree for the
iterative region and those of the oct-tree for the corresponding
incident region.

In this letter, a modification is made for the buffer region in
the bottom cubes located both inside the iterative region and in-
side the corresponding incident region, which generates a new
pair of iterative and incident regions. Each new iterative region
is complementary to the corresponding incident region from
the bottom cube point of view. Based on the new iterative and
incident regions, a novel IE-ODDM-MLFMA scheme is con-
structed with a little modification in the frame of the MLFMA,
which greatly simplified the implementation of the IE-ODDM-
MLFMA.

II. CUBE-BASED SCHEME OF IE-ODDM-MLFMA

An arbitrarily shaped perfectly electric conducting (PEC)
object illuminated by plane waves is considered. Because the
ODDM combined with the MoM and the MLFMA was detailed
respectively in [5] and [6], here we only review the formulas
briefly. The ODDM is expressed in matrix form as

(1)

where

(2)

is the vector of the current coefficients to be solved in the
th iterative region during the th outer iteration; is the

vector of the latest solved current coefficients in the th subdo-
main during the th or th outer iteration. For other nota-
tion details, please refer to [5] and [6]. The MLFMA solving (1)
is implemented on the basis of the oct-tree for ; the MLFMA
for the matrix vector products in (2) is implemented on the basis
of both the oct-tree for and the oct-tree for the th incident
region .

Note that some bottom cubes, located both inside and in-
side , contain not only RWG elements in , but also those
in . Hence, is complementary to from the RWG el-
ement point of view. This also motivates us to call here the
IE-ODDM-MLFMA scheme the RWG-based scheme for short-
ening.

The bottom cubes mentioned play dual roles in the RWG-
based scheme, i.e., both leaves of the oct-tree for the iterative
region and those of the oct-tree for the incident region .
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When dealing with the bottom cubes located both inside and
inside , careful treatments [6] are needed as
follows.

1) RWG elements in the above bottom cubes are always iden-
tified by the attribute of being located inside or to
perform the aggregation and disaggregation for the corre-
sponding region.

2) When the near-part matrix vector products in (1) and (2)
are performed, respectively, the current coefficients corre-
sponding to the RWG elements outside and are en-
forced to be zeros, respectively.

3) To construct the preconditioner for , some elements are
extracted from the block diagonal submatrices in the tra-
ditional MLFMA to form some new block diagonal sub-
matrices and the inverses of the new block submatrices are
needed.

A new version of the IE-ODDM-MLFMA, here called the
cube-based scheme for shortening, will be proposed, in which
each bottom cube plays one and only one role—i.e., either a leaf
of the oct-tree for the iterative region or a leaf of the oct-tree for
the corresponding incident region.

As a simple example, a PEC plate is considered, as shown
in Fig. 1. During an outer iteration, the inner subdomain to be
solved and the light gray region as its buffer region (as defined
in [5] and [6]) compose an iterative region , and the other
subdomains compose the corresponding incident region . The
bottom cubes, surrounded by the dashed lines, are located both
inside and inside due to containing both the RWG ele-
ments (light gray) in and the ones (dark gray) in . The
buffer region in each bottom cube is further extended by adding
the incident region in the bottom cube, which means that the
RWG elements colored by dark gray in the cube are converted
into the additional buffer region as shown in Fig. 1. Then, the
new buffer region consists of the light and dark gray regions.
Consequently, the above bottom cubes and the ones entirely
located inside compose a new iterative region ; the re-
maining bottom cubes are entirely located inside the , and
then compose a new smaller incident region . In this way,
each bottom cube is either a leaf of the oct-tree for the new iter-
ative region or a leaf of the oct-tree for the new incident region.
In other words, a new iterative region is complementary to the
corresponding new incident region from the bottom cube point
view, which is evidently different from the RWG-based scheme
and is the basis of the implementation of the cube-based scheme.

In the following, is an arbitrary bottom cube being lo-
cated inside , where denotes the lowest level
of the oct-tree for the entire domain. The cube-based scheme can
be formulated through the MLFMA, respectively, in (1) and (2),
where and are replaced with and for ,
respectively. The electric field integral equation (EFIE) is con-
sidered as an example.

The action of the current in on that in for (1)
consists of the near and far interactions

(3)

Fig. 1. The new iterative and incident regions. Light gray and dark gray rep-
resent the original buffer region and the additional buffer region, respectively,
and the dashed lines denote the bottom cubes located both inside the original
iterative region and inside the corresponding incident region.

where denotes the vector of current coefficients in the
neighboring bottom cube of , and denotes
the integral over the unit sphere. The element of the vector

—i.e., plane-wave expansion for —is

(4)

where . When ,

(5)

where denotes the highest level of the oct-tree for and
the set of neighboring cubes of . The incoming wave

expansions for in (5) originate from those for the parent
cube and the outgoing wave expansions for the unneigh-
boring cube whose parent cube is neighboring to

, where vanishes when .
is the translation operator [4], where ,
and are the centers of and , respectively. The out-
going wave expansion for is

(6)

where is the current coefficient of the RWG function .
The action of the current in on that in for (2)

is written as

(7)

where and employed in

are obtained by replacing with in (5) and (6),
respectively. denotes the highest level of the oct-tree for .
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TABLE I
NUMBERS OF THE INNER ITERATIONS (INSIDE AND OUTSIDE BRACKETS, RESPECTIVELY, FOR THE RWG-BASED SCHEME AND THE CUBE-BASED SCHEME),

RELATIVE RESIDUAL ERRORS OF THE OUTER ITERATIONS, AND CPU TIME (MINUTES) FOR THE CUBE-BASED SCHEME AND THE RWG-BASED SCHEME

FOR A PEC SPHERE

Fig. 2. RCS results for a PEC sphere obtained from the Mie series and the
cube-based scheme, respectively. � is measured from the �-axis in the �-� plane.

It is observed from (3) and (7) that the near-part matrix vec-
tors can be multiplied directly. The formulas (6) and (4) in-
dicate that the aggregation and the disaggregation can be per-
formed without involving such cumbersome details as in the
RWG-based scheme. Hence, the cube-based scheme is more
conveniently implemented than the RWG-based scheme in the
frame of the MLFMA.

Because the iterative region becomes larger and the incident
region smaller, the leaves of the oct-tree for the iterative region
increase and the nodes of the tree remain unchanged; the leaves
of the oct-tree for the incident region lessen, and the nodes of
the tree may decrease. Hence, the memory requirement in (1)
increases, and that in (2) may decrease. However, we are con-
cerned about whether the cube-based scheme loses its solution
accuracy compared with the RWG-based scheme, which will be
answered in Section III.

III. NUMERICAL EXAMPLES

In this section, we consider EM scattering problems from a
PEC sphere and a PEC cylinder, respectively, to validate the
cube-based scheme. In all considered cases, the incident wave is
an -polarized plane wave propagating along the -axis. The
simulations are performed on a personal computer with 3.0-GHz
CPU and 2.0-GB RAM. The block-diagonal, incomplete lower

and upper triangular matrices (DILU) preconditioner [6] is used
to speed up the iterative solution of the cube-based scheme,
the RWG-based scheme, and the traditional MLFMA, respec-
tively. The near-part matrices in the three schemes are stored by
using the approach in [7], and their memory requirements are
not taken into consideration in comparison.

A PEC sphere of radius is first considered, as shown in
Fig. 2. Its surface is averagely split into four subdomains by
the dashed line, where 74 304 unknowns are involved. In the
MLFMA, 106.28 MB and 54.21 min are used to reach the rel-
ative error of 0.001. Fig. 2 compares the radar cross-section
(RCS) results obtained from the Mie series [8] and the cube-
based scheme, respectively, and shows that the RCS result after
three outer iterations from the cube-based scheme agrees well
with the analytical solution. The results from one to three outer
iterations show that the cube-based scheme is fast convergent.

Table I lists the numbers of the inner iterations, relative
errors of the outer iterations, and CPU time for each outer iter-
ation of the cube-based scheme and the RWG-based scheme.

and (see [6, eq. (15) and (16)]) for the
cube-based scheme are the same order of magnitude as those
for the RWG-based scheme, respectively, and they decrease
evidently as the outer iteration increases. CPU time for the
cube-based scheme after two and three outer iterations is 23.7
and 38.45 min, respectively, and hence, the time is reduced by
56.28% and 29.07%, respectively, compared to the MLFMA.
As seen from Table I, the time for the cube-based scheme is
slightly more than that for the RWG-based scheme. This is
because the iterative region of the former is slightly larger than
that of the latter, and thus the solution time grows. The memory
requirements of the cube-based scheme and the RWG-based
scheme are 51.62 and 52.48 MB, respectively, which means
that the storages are reduced by 51.43% and 50.62%, respec-
tively, compared to the MLFMA. The reason for the different
storages between the two schemes can be found in Table II,
in which the bottom cubes located inside each incident region
for the cube-based scheme are 110 fewer than those for the
RWG-based scheme.

The next example is a PEC cylinder with its radius and
height , as shown in Fig. 3. The surface is split into four
subdomains by the dashed lines, where 285 180 unknowns are
involved. In the MLFMA, 366.76 MB and 234.81 min are used
to reach the relative error of 0.001. Fig. 3 shows that the cube-
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TABLE II
NUMBERS OF THE CUBES LOCATED INSIDE EACH INCIDENT REGION

AT DIFFERENT LEVELS FOR THE CUBE-BASED SCHEME

AND THE RWG-BASED SCHEME

Fig. 3. RCS results for a PEC cylinder obtained from the cube-based scheme
and the MLFMA. � is measured from the �-axis in the �-� plane.

based scheme after three outer iterations gives nearly the same
result as the MLFMA. RCS results in Fig. 4 show that the cube-
based scheme has a good convergence behavior.

CPU time for the cube-based scheme after two and three
outer iterations is 98.36 and 154.24 min, respectively, and
hence, the time is reduced by 58.11% and 34.31%, respectively,
compared to the MLFMA. The memory requirements of the
cube-based scheme and the RWG-based scheme are 165.72 and
169.13 MB, respectively, and then the storages are reduced by
54.82% and 53.89%, respectively, compared to the MLFMA.
The cube-based scheme requires slightly less storage than the
RWG-based scheme due to the fewer cubes in each incident
region at levels 4, 5, and 6.

IV. CONCLUSION

In this letter, a cube-based scheme is proposed for simplifying
the implementation of the IE-ODDM-MLFMA for the analysis

Fig. 4. RCS results convergence for a PEC cylinder.

of electromagnetic scattering problems. Each iterative region
in this scheme is complementary to the corresponding incident
region from the bottom cube point of view. Numerical examples
have demonstrated the validity and efficiency of the cube-based
scheme in dealing with some EM scattering problems.
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