
A Combined Static and Dynamic Software Birthmark Based on Component
Dependence Graph

Xiaoming Zhou1 Xingming Sun1 Guang Sun1,2 Ying Yang1

1. School of Computer & Communication, Hunan University, China, 410082
2. Hunan Finacial & Economic College, China, 410082

{linghuchong168, sunnudt, simon5115, ying.yung}@163.com

Abstract

Software birthmarking provides an effective

approach to detect software theft by computing the
similarity of unique characteristics between the
suspected program and the original. In this paper, we
present and empirically evaluate a novel birthmarking
technique which uniquely identifies a program based
on static and dynamic component dependence graphs
of it. To argue the advantage of the technique, the
credibility and reliability against semantics-preserving
transformations are evaluated. Experimental results
show that our technique is more stable than the WPP
birthmark proposed by Myles and Collberg.
Additionally, it complements the previously proposed
birthmarking techniques which are only static or
dynamic.

1. Introduction

Currently, a number of techniques have been used to
prevent, discourage, and detect theft. Among the
effective techniques for detecting, software
birthmarking is still a relatively new area. A software
birthmark relies on a unique characteristic, or set of
characteristics, that is inherent to a program to uniquely
identify it[1]. Similar birthmarks of two programs
suggest that one is copy of the other. For existing
birthmarking techniques, birthmarks can be classified
as two categories. Static birthmarks extract the
statically available information in the program code,
for example the types or initial values of the fields[2].
Myles and Collberg have shown that the details of code
are easily altered by using simple code obfuscation
techniques like code removal or splitting of
variables[3]. Dynamic birthmarks, in contrast, rely on
information gathered from the execution of the
program[3,4]. Thus, it is more difficult to foil in a
semantics-preserving way.

Rather than gathering the static characteristics of the
program, Myles et al. have represented an advisable
dynamic birthmark WPP, and evaluated its
performance on a small Java program[3]. The WPP
birthmark is a slightly modified version of Whole
Program Paths technique which is used to compact a
program’s dynamic control flow graphs (DCFG)[5].
More specifically, it collects all the compact DCFG
and regards them as a program’s birthmarks. To
compute the similarity of two programs’ birthmarks,
the distance of each pair of DCFGs between them must
be computed by calculating the maximum common
subgraph (MCS) of the DCFGs. However, calculating
MCS for general graphs is a NP-complete problem[6],
which leads the WPP birthmark to extremely low
efficiency for the large programs. Moreover, as
mentioned by the authors, it is fragile to program
optimization as well, including loop transformations
and inline functions. Therefore, the WPP birthmark
still lacks sufficient practicability and resiliency.

In this paper, we present a novel software
birthmarking technique based on component
dependence graph (CDG). CDG birthmark employs
both static and dynamic component dependence graphs
in the program. In particular, we abandon to compute
the distance of each pair of dynamic CDGs with graph
isomorphism algorithm. Instead, we predigest them to
unordered trees in order to facilitate the computation.
Thus, our technique is more efficient and convenient
for large programs. In addition, such component level
graphs are less affected by code obfuscation techniques
than code level graphs. So, our CDG birthmark holds
highly resiliency to various semantics-preserving
transformation attacks.

The rest of the paper is organized as follows.
Section 2 discusses the related works. Section 3
introduces the basic idea of our birthmark technique
and then describes its implementation in detail.
Experimental results are also presented and discussed
in Section 4. Section 5 draws the conclusion.

International Conference on Intelligent Information Hiding and Multimedia Signal Processing

978-0-7695-3278-3/08 $25.00 © 2008 IEEE

DOI 10.1109/IIH-MSP.2008.145

1416

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 6, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

2. Related Works

In order to protect the intellectual property for
software producers, many software protection
techniques have been proposed. Among them, software
watermarking is a well-known technique[7-9]. Its basic
idea is to identify the originator by imperceptibly
embedding a copyright notice into a program.
Unfortunately, watermarking is not always feasible
because adversaries also can embed their own
watermarks. As a result, it will fail to identify who is
the originator. Moreover, the performance loss of the
watermarked program and the constraint of program
size should be taken into account after the insertion of
the watermark information.

Comparing to software watermarking, software
birthmarking is very different. It does not like a
watermark to add code to a program in order to indicate
copyright. Instead a birthmark relies on an inherent
characteristic of the program to show that one program
is a copy of another, and cannot determine original
author. To the best of our knowledge, some birthmarks
have been proposed so far. Firstly, Tamada, et al.
proposed four typical static birthmarks aiming for Java
class files: constant values in field variables (CVFV),
sequence of method calls (SMC), inheritance structure
(IS), and used classes (UC)[2]. Unfortunately, Collberg
and Myles have demonstrated such static birthmarks
even tend to be vulnerable to basic program
transformations in their WPP birthmark. However, as
we will see in Sect. 4 the WPP birthmark also is weak
to commercial obfuscators.

Code clone is another technique which could be
used for the copy detection of programs[10]. For a
software product, a code clone is a set of code
fragments in its source files. The theft is doubted when
the code clone is found in other software products.
Unfortunately, just like plagiarism detection technique,
the drawback is that they are only suitable for the
source code level. Nevertheless, software products are
often distributed without the source code. In addition,
the technique operates statically and without
considering the presence of sophisticated obfuscation
techniques.

3. Birthmark based on component

dependence graph

3.1. Main idea of the birthmark

No matter how complex the program is obfuscated
by semantics-preserving transformations, usually, the
component dependent graphs of it are

unmodified[11,12]. Therefore, the birthmark, resulted
from the component dependence graphs, will holds
highly resiliency to code transformation techniques.
Before making the birthmark more clearly, two
component dependences and component dependence
graphs are described at first:

Definition 1 Data Dependence (DD): Let p, q be
different components of a program, DD (p, q, N, V)
denote p has a DD on q with the following three
conditions:

1) V is a variable or type defined in component q,
and N is a method of component p,

2) N uses V when executing,
3) V dose not belong to the inherited class which

is in other components.
Definition 2 Control Dependence (CD): Let p, q be

different components of a program, CD (p, q, N, F)
denote p has a CD on q with the following three
conditions:

1) F is a method defined in component q, and N is
a method of component p,

2) N calls F when executing,
3) F dose not belong to the inherited class which

is in other components.
Definition 3 Local Dynamic Component

Dependence Graph (LDCDG): Let each component as
a vertex, a LDCDG of a program will be a 4-tuple
LDCDG = (V, E, CD, DD), where

 V is a set of finite vertices which are traversed
by a method in the invoked procedure,

 VVE ×⊆ is the set of edges,
 CD: denotes control dependence defined as the

above assigning to the edges,
 DD: denotes data dependence just as CD.

Definition 4 Global Static Component Dependence
Graph (GSCDG): Differing from the LDCDG, the
GSCDG unify the DD and CD as component
dependence, and a GSCDG of a program is a general 3-
tuple GSCDG = (V, E, D), where

 V is a set of finite vertices of all components
just lied in the folder,

 VVE ×⊆ is the set of edges,
 D: denotes the data dependence or the control

dependence.
The LDCDGs and the GSCDG are regarded as the

birthmark of the program, which is called combined
static and dynamic component dependence graph
birthmark (CDG birthmark). For the original and the
suspected program, the GSCDG of them provides a
bijective function for their components, and the
LDCDGs decide their similarity. The cooperative
relationship of the GSCDG and the LDCDGs will be
introduction in next section.

1417

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 6, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

Figure 1. The framework of the CDG birthmark used to detect the software theft

3.2. Detection framework of the birthmark

Figure 1 illustrates the framework of software theft
detection system based on component dependence
graph. For two programs A and B, GS1 and GS2 denote
their GSCDG, LD1 and LD2 express all their LDCDGs
respectively. In the detection procedure, we extract GS1
and GS2 at first, and then build a bijective function for
the vertexes of their maximal common subgraph with
existent graph isomorphism algorithm[13]. Thus, the
vertexes of a LDCDG in LD2 will be mapped to the
form in GS1 if they accord with the bijective function.
Under such condition, the similarity of the two
programs is obtained by computing the ratio of
common part found in LD1 and LD2 versus LD1, which
will be defined as S in Sect 3.4. A theft has occurred
only the similarity value is larger than the pre-
determined threshold є, otherwise, it is not. The
detailed processes will be expanded in next two
sections.

3.3. Extraction of GSCDG & LDCDGs

For the GSCDG, since some existent tools are
sophisticated for component dependence analysis, we
obtain it easily with the analysis tool Reflector[14].
The extraction procedure for the LDCDGs is slightly
difficult, because all the dynamic execution traces with
a given input must be analyzed to obtain a LDCDG.
However, since no .NET code can hide from the
profiling API in the .NET Framework 2.0. Moreover,
Microsoft has developed a profile tool with it for .NET
program, which is called CLR Profiler[15]. The call
graph analysis of the Profiler provides us a visual
graph for the library calls and all the calls information
can be exported to a local file. With the call graph
information, Figure 2 shows the schematic
construction process for a LDCDG. The call graph
record is shown on the left, and the LDCDG is shown
on the right. In that way, therefore, the LDCDGs of a
program are obtained handily.

Figure 2. A schematic process turns a call graph
into a LDCDG

3.4. Similarity of LDCDGs

As we have seen in Figure 1, the central operation
for theft detection is to compute the similarity of the
LDCDGs. It seriously impacts on the quality of the
CDG birthmark. Let LD1 and LD2 be the all LDCDGs
for the original and the suspected program
respectively, we compare the similarity of them by
computing the ratio found in both of them versus the
LD1 which can be described as follows:

%100
||

||),(
1

21
21 ×=

LD
LDLDLDLDS ∩

To find the common part of LD1 and LD2 is to detect
some LDCDGs in LD2 whether also reside in LD1,
which is a graph matching process. However, due to
the graph matching problems usually are NP-hard[6],
moreover, LD1 and LD2 are enormous as a rule, the
matching process will be time-consuming even
unattainable. Therefore, we have taken two strategies
to facilitate the matching computation. Let g1 and g2 be

1418

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 6, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

LDCDGs in LD1 and LD2 respectively, the detailed
process is described as follows:

First, instead of only considering the structure
similarity for g1 and g2, the vertex names of them are
taken for matching. At first, the vertexes in g2 should
be mapped to g1 with the bijective function introduced
in Sect 3.2, and then if a vertex name of g1is different
to g2 in matching process, the current matching is
failed at once.

Second, we compress g1 and g2 to two unordered
trees with depth no more than three since they are
simple directed graphs and their scale is small
generally. In order to offset the losing information in
the compact trees, we name the nodes for system
components (SC) with their names, but for developer's
own components (DC) with exclusive labels. Thus, a
LDCDG that starts with a DC p will be compressed to
a tree T by using the following five steps.

step 1 Initialize T with p.
step 2 If p has a DD on a DC q for the first

time, let qd be a child node of T.
step 3 If p also has a CD on a DC q with a

method f for the first time, and f holds a
direct DD and CD set S with other
vertices, let qc be another child node of
p, every element of S be the child node
of q.

step 4 If p has a DD/CD on a SC r with u,
where u is a data type or method with a
real name, let u a child node of p.

step 5 Repeat Steps 2 through 4 until all the
DD and CD of p are traversed.

For example, Figure 3 shows a schematic
transformation from a LDCDG to an unordered labeled
tree that only the vertex y is discarded. Our experiment
in Sect.4 has showed that the impact on the veracity
loss for the theft detection is negligible.

Furthermore, the matching computation for g1 and
g2 is transformed into unordered tree matching. Many
algorithms have been proposed for unordered tree
matching. However, we consider that the breadth-first
traversal algorithm is suitable for our small-scale trees.

4. Performance Evaluation

A good birthmarking technique should show low
similarity between independently written programs, as
well as indicate high similarity between same source
programs. More precisely, the quality of it depends

crucially on two properties introduced by Myles[3].
We just repeat them as follows:

Property 1(Credibility): Let A and B be
independently written programs which accomplish the
same task. Then we say f is a credible measure if

)()('AfAf ≠ .
Property 2(Reliability): Let 'A be a program

obtained from A by applying semantics-preserving
transformation T. Then we say f is resilient to T if

)()('AfAf = .
Apart from the two properties, the yardstick to

decide whether a software theft has taken place or not
must be concerned as well. For this problem, Myles
(2006) assumed that a software theft takes place
between two programs A and B with birthmarks SA and
SB and a critical value є, only the following two
conditions are satisfied:

 A and B with the same external behavior
 1−S(SA, SB)< є
In our experiment, just as Myles let є = 0.2, we also

set it to 0.2. However, smaller values are desirable but
may lead to more false judgments.

4.1. Credibility

To evaluate the credibility of the DGB birthmark,
we employed four pairs of large applied programs in
our experiment and each pair of them with similar
functions. The reason for choosing such programs is
that an eligible birthmark not only can distinguish
different programs, in addition, it should be applied in
practice. Therefore, the programs in our experiment all
are famous software in .NET like the CodeSmith (a
famous code generator)[16]. Moreover, to ensure the
experimental results are fully convincing, we
thoroughly executed each pair of programs with the
varied and thousands of same inputs. Table 1 shows
comparison results. From the table, for the
MonoDevelop and CSharpStudio, their birthmarks
show the lowest similarity (only 0.01). The highest
similarity between two distinct programs NLucene and
DotLucene is 0.29. Subsequently, however, we have
discovered that NLucene is just the .NET
implementation of Lucene which is a full-text search
engine written in Java. At the same time, DotLucene is
based on the Lucene.NET, which was also a .NET
extended edition of the Lucene. This implies that our
DGB birthmark can effectively distinguish the origin
of a program even though they offer the similar
functionality.

1419

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 6, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

Figure 3. An illustration of the procedure involved in predigesting a LDCDG to an unordered labeled tree

Table 1. Similarity percentage found using CDG
birthmark in each pair of similar programs

Function Subject I Subject II Similarity

IDE for C# MonoDevelop C# Studio 0.01

Search Engine NLucene DotLucene 0.29

Unit Testing dotunit NUnit 0.09

Code
Generator CodeSmith Codematic 0.16

4.2. Reliability

To evaluate the resistance ability of the DGB
birthmark against semantics-preserving
transformations, we conducted a study with two
commercial obfuscators. Xenocode is a famous
commercial code obfuscation tool for .NET programs.
Its control flow obfuscation converts compiled IL code
into "spaghetti code" by inserting decoy branches and
re-ordering instructions, confusing hackers and
crashing decompilers[11]. Dotfuscator is another
commercial obfuscator, and the manufacturer of it has
been the sole supplier of obfuscation technology for
Microsoft[12]. Hence, they are strongly enough to
handle all our subjects.

For our study, first, we obfuscated each the above
mentioned program to two different versions by using
Xenocode and Dotfuscator. Then, for each original and
its two obfuscated versions, we orderly executed them
with same inputs over thousands times and each time
with different input. Results showed that the similarity
of LDCDGs extracted from each pair of original and
obfuscated version was 100%. Hereby, it indicates that
our DGB birthmark holds highly resilience to
semantics-preserving transformations.

In addition, the WPP birthmark, which collects
compact code control flow graphs of a program and
regards them as birthmarks, is similar to our CDG
birthmark. Thus, we also implemented the same
evaluation of it to testify which birthmark holds a

better performance to code obfuscation. The
experimental results show that the WPP birthmark can
hardly tell apart any an original from obfuscated
versions. Moreover, the highest similarity measured for
the original NLucene and an obfuscated version was
only 0.05, whereas our CDG birthmark always yields
1.0. Therefore, our CDG birthmark performs more
resilience over the WPP birthmark.

5. Conclusions and Future Work

In this paper, we expand on the idea of a
combination of static and dynamic birthmarking
technique, which is based on component dependence
graph. The credibility and reliability experiments
against semantics-preserving transformations have
been evaluated. We have shown in the first evaluation
that the dynamic dependence graph set is highly
characteristic for large programs. The birthmark
therefore holds appropriate credibility to distinguish
independently written programs. Unlike prior works,
the CDG birthmark does not operate at the code level.
Instead, it works at module level. It is thus much
harder to foil by code obfuscation. In particular, the
second experiment has demonstrated that it is more
efficient to immune to state-of-the-art obfuscators than
the WPP birthmark.

However, since the CDG birthmark works at
altitudinal abstract module-level, we know that some
independently written small programs with only one or
two components may show very similar birthmark.
Besides, it may be weak to detect library theft. For
example, only a part of important components of the
original program are stolen (e.g., modules) to use in
other products. In that case, the similarity of the
original and the suspected program may be a low
value. Nevertheless, our work in this paper is only
preliminary and our future work will concentrate on
the improved detection ability for small programs and
library theft. In addition, we will conduct a more

1420

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 6, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

extensive evaluation of the CDG birthmark with more
combinations of obfuscations.

Acknowledgments

This work is supported by the National Natural
Science Foundation of China under Grant No.
60573045; the National Research Foundation for the
Doctoral Program of Higher Education of China
No.20050532007.

6. References

[1] G. Myles and C. Collberg, “k-gram based software
birthmarks”, In Proceedings of SAC, 2005.

[2] H. Tamada, M. Nakamura, A. Monden and K. Matsumoto,
“Detecting the theft of programs using birthmarks”,
Information Science Technical Report NAIST-IS-
TR2003014 ISSN 0919-9527, Graduate School of
Information Science, Nara Institute of Science and
Technology, Nov 2003.

[3] G. Myles and C. Collberg, “Detecting software theft via
whole program path birthmarks”, In Information Security,
7th International Conference, 2004.

[4] D. Schuler, V. Dallmeier and C. n. Lindig, “A Dynamic
Birthmark for Java”, ASE'07, November 49, 2007.

[5] James R. Larus, “Whole program paths”, In ACM
SIGPLAN Conference on Programming Language Design
and Implementation (PLDI 99), 1999.

[6] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness,
Freeman and Company, 1979.

[7] C. Collberg, E. Carter, S. Debray, A. Huntwork, C. Linn,
and M. Stepp, “Dynamic path-based software watermarking”,
In ACM SIGPLAN Conference on Programming Language
Design and Implementation, 2004.

[8] J. Nagra, C. Thomborson, “Threading software
watermarks”, In 6th International Information Hiding
Workshop, 2004.

[9] D. Curran, M. O. Cinneide, N.J. Hurley, and G.C.M.
Silvestre, “Dependency in software watermarking”, In First
International Conference on Information and Communication
Technologies: from Theory to Applications, 2004, pp.311-
324.

[10] T. Kamiya, S. Kusumoto, and K. Inoue, “Ccfinder: A
multi-linguistic-based code clone detection system for large
scale source code”, IEEE trans. on Software Engineering,
2002, pp.654-670.

[11] http://www.xenocode.com/

[12] http://www.preemptive.com/products/dotfuscator/

[13] L. P. Cordella, P. Foggia, C. Sansone and M. Vento, “A
(Sub)Graph Isomorphism Algorithm for Matching Large
Graphs”, IEEE Transactions on Pattern Analysis and
Machine Intelligence, October 2004, p.1367-1372.

[14] http://www.aisto.com/roeder/dotnet/

[15]http://msdn.microsoft.com/msdnmag/issues/03/09/NETP
rofilingAPI/

[16] http://www.codesmithtools.com/downloadrequest.asp

1421

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on May 6, 2009 at 00:16 from IEEE Xplore. Restrictions apply.

