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Abstract

Based on the theory of elastodynamics and employing image method, the multiple scattering and dynamic stress in a
semi-infinite slab of functionally graded materials with a circular cavity are investigated. The analytical solution of this
problem is derived, and the numerical solutions of the dynamic stress concentration factor around the cavity are also pre-
sented. The effects of the distance between the cavity and the boundaries of the semi-infinite slab, the incident wave number
and the non-homogeneity parameter of materials on the dynamic stress concentration factors are analyzed. Analyses show
that the dynamic stress around the cavity increases with increasing non-homogeneity parameter of materials and incident
wave number. The boundaries of the semi-infinite slab have great effect on both the maximum dynamic stress and the dis-
tribution of dynamic stress around the circular cavity, and the effect increases with increasing incident wave number.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Functionally graded materials (FGMs) are the new generation of composites, and important area of mate-
rial science research. The physical parameters of the materials can change gradually in one direction, such as
the heat conductivity, specific heat and mass density. All the properties have many potential applications, e.g.,
thermal barrier coating, thermal protection of the reentry capsule, etc. As an example, having a smooth tran-
sition region between a pure metal and pure ceramic would result in a new type of materials, which combines
the desirable high temperature properties and thermal resistance of a ceramic with the fracture ductility of a
metal [1-3].
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Nomenclature

Lo shear modulus of materials at the position of x =0
Do density of materials at the position of x =0

p non-homogeneity parameter of materials

a radius of the circular cavity

b, ¢, ¢» the distance between the center of the cavity and the boundaries of the semi-infinite slab
Tyz, Ty anti-plane shear stress

u displacement field in materials

Cs wave speed of shear waves

) circular frequency of the incident waves
k wave number of elastic waves

w(x,y) function introduced for derivation
z=x+1iy complex variable in the physical plane

z =x — iy the conjugate complex value of z = x + iy
HD(-) the nth Hankel function of the first kind

A, mode coefficients of the scattered waves
Re(z) the real part of complex variable z

Im(z) the image part of complex variable z

p wave number in the x-direction
' wave number in the y-direction
u incident wave field
u® scattered wave field
uP propagating wave in functionally graded materials
U displacement amplitude of the wave fields
Ju(+)  the nth Bessel function of the first kind
HD(-) the wy Hankel function of the first kind
Tys radial shear stress
70 the maximum magnitude of the stress in the incident direction

DSCF dynamic stress concentration factor

To meet the requirements of engineering design, it is necessary to make cutouts in functionally graded
material structures, and some failures such as cavities and cracks may also occur in the structures. Under
dynamic loads, the stress around and near the discontinuities may increase sharply, which causes the decrease
of the strength and service life of the structures. The theoretical analysis and experimental investigations of
this problem have received considerable attention over past several decades [4-8].

Using the boundary element method, Rice and Sadd [4] investigated the propagation and scattering of SH
waves in semi-infinite homogeneous materials containing subsurface cavities, and the numerical solution of the
dynamic stress around the cavity was obtained. By making use of Laplace and Fourier integral transforms and
a numerical Laplace inversion technique, Li and Weng [5] presented the dynamic stress intensity factor of a
cylindrical crack located in a functionally graded material interlayer between two coaxial elastic dissimilar
homogeneous cylinders and subjected to a torsional impact loading, and the effect of parameters on dynamic
stress intensity factor was also analyzed. Assuming an exponential spatial variation of the elastic properties,
Ueda [6] adopted the Fourier transform technique to compute the dynamic stress intensity factor of the sur-
face crack in a layered plate with a functionally graded non-homogeneous interface, and analyzed the effect of
the geometric and material parameters on the variations of dynamic stress intensity factors. Applying the
method of finite element, Rousseau and Tippur [7] analyzed the effect of different elastic gradient profiles
on the fracture behavior of dynamically loaded functionally graded materials having cracks parallel to the
elastic gradient. Based on the integral equation for the crack in a non-homogeneous medium with a contin-
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uously differentiable shear modulus, Chan et al. [8] studied the dynamic stress of the crack under shear waves
in FGMs.

Although these numerical methods are very useful tools for these problems, it is also very important to
determine the physical behavior of the problems with analytical method. Pao and Chao [9] studied the elastic
wave scattering and dynamic stress concentration in a thin plate with cutouts, and the analytical and numer-
ical solutions of the problem were presented. Image method was also applied to investigate analytically the
elastic wave scattering and dynamic stress concentration in the plate having a circular cavity [10] and in
the semi-infinite thin plate with a cutout [11].

It is well known that many practical engineering structures have boundaries, and are not ideally infinite.
However, because the boundaries of structures reflect the elastic waves and vibration, complex problems such
as the multiple scattering of elastic waves may arise. Most recently, Fang et al. have studied the strain energy
density around a circular cavity buried in semi-infinite functionally graded materials subjected to shear waves
[12]. The main objective of this paper is to extend the work by Fang et al. [12] to the semi-infinite slab of func-
tionally graded materials with a circular cavity. The multiple scattering and dynamic stress resulting from the
circular cavity are investigated. The wave fields are expanded by employing wave functions expansion method,
and the expanded mode coefficients are obtained by satisfying the boundary condition of the cavity. Image
method is used to satisfy the boundary condition of traction free surfaces. The analytical solution of this prob-
lem is presented. The effects of the geometric and material parameters on the dynamic stress concentration
factors around the cavity are also analyzed.

2. Wave motion equation and its solution

A semi-infinite slab of functionally graded materials is considered, which is depicted in Fig. 1. A circular
cavity with radius « is buried in the slab, the distances between the center of the cavity and the boundaries
of the semi-infinite slab are b, ¢; and ¢,. An anti-plane shear wave is incident on the semi-infinite edge in
the positive x-direction.

For mathematical convenience, the shear modulus and density of materials vary continuously in the
x-direction, the variations of them are assumed by

u(x) = poexp(2fx), p(x) = pyexp(2px), (1)

where uy and pg are the shear modulus and density of materials at the position of x = 0, respectively, and f is a
non-homogeneity parameter which denotes the exponent of spatial variation of the shear modulus and density

a

(5]

upe™ sinfq(c, + y)]e”

Fig. 1. A semi-infinite slab of functionally graded materials with a circular cavity.
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of materials [2]. Though the variations are unrealistic, it would allow us to comprehend the effect of material
gradient on the dynamic stress around the cavity and can provide references for reducing the dynamic stress.
The anti-plane governing equation in materials is described as

ot ot Qu
Xz yz " 2
x oy o @)

where t,. and 7, are the anti-plane shear stresses, and u is the total wave field in materials.
The constitutive relations of anti-plane shear displacement are

Qu Ou
=g = HE 3)

Substitution of Eq. (3) into Eq. (2) yields the following equation

u du ou 1 d%u
T, ¥/ ks 4
e 0y? TP 2 o2’ @)

where ¢, = /1ty/p, is the wave speed of shear waves.
The steady solution of the problem is investigated. Let u = Uexp(—iwt?), Eq. (4) can be changed into the
following equation

oU
V2U+2[3§+k2U:0, (5)

where o is the circular frequency of the incident waves, and k = w/c; is the wave number of elastic waves.
The form of the solution of Eq. (5) can be proposed as

U = exp(—fpx)w(x, ), (6)

where w(x, ) is the function introduced for derivation.
Substituting Eq. (6) into (5), one can see that function w(x,y) should satisfy the following equation

V2w + k*w = 0, (7)

where x = (k> — %)"/2. 1t should be noted that k> > f2.

According to Egs. (5)—(7), it can be seen that there exist elastic waves with the form of Ue
upexp(—px)e™ " which denotes the propagating wave with its amplitude of vibration attenuating in the
x-direction.

In the following, in order to concisely express the scattering fields of many image cavities, the complex
variable method is applied. The complex variables z = x + iy and z = x — iy are introduced, then Eq. (7)
can be transformed into the equation about the variables of z and z [14,15]

o*w K\ 2
et (5)w-o ®)

The general solution of the scattered field ° resulting from the circular cavity in FGMs is expressed as
[12,13]

—iwt __

u* = exp(—prcos0) ’Z;)OA,,Hil)(Kr)ei(”o‘w” = exp(—fRez) n;oc A,H\V (k|2]) (é) e i, 9)
where HV(-) is the nth Hankel function of the first kind and denotes the outgoing waves, 4,, determined by
satisfying the boundary condition of the cavity are the mode coefficients of the scattered waves, and Re(z) de-
notes the real part of complex variable z. It should be noted that all wave fields have the same time variation

—iwt

e ', which is omitted in all subsequent representations for notational convenience.
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3. The excitation of elastic waves and the total wave field
Consider an anti-plane shear wave propagating along the positive x-direction. Based on the constructive

interference theory of wave fields, the propagating wave u” in the semi-infinite slab of functionally graded
materials can be described as

u’ = f (y) exp(—px) exp(ipx). (10)
The solution of Eq. (10) should satisfy Eq. (4), and then the following expression can be obtained

f(v) = Acos(qy) + Bsin(gy), (11)
wzhere 2p ar21d g are the longitudinal and transversal wave numbers, respectively, and p> =i’ —¢° =
k"= p"—q

Suppose that the upper and lower boundary conditions are free of traction. Thus, function f{y) should
satisfy the following equation

flen)u(x) =0,  f(=c2)ulx) =0. (12)
So, the transversal wave number is expressed as

nw

Cl+C2

q= (n=0,1,2,...). (13)
Substitution of Eq. (13) into Eq. (10) yields the expression of propagating wave in functionally graded
materials

= Bsin[g(c, + y)] exp(—fx) exp(ipx). (14)

The reflected waves are described by employing image method. Note that the » = 1 mode is investigated in this

paper.
By using wave function expansion method and Eq. (14), the incident wave field can be proposed as [12,13]

u® = ug exp(—px) sinfg(c, + y)]e?**?) = uy sinfg(c, + y)]e P Z i"J,(pr)e"’, (15)
where g is the displacement amplitude of the incident waves, p is the wave number in the x-direction, and J,,(*)
is the nth Bessel function.

Considering the multiple scattering at the boundaries of x = —b, y=¢; and y = —¢, (¢; > 0,¢, > 0) and
using image method [12,13], the total scattered field resulting from the circular cavity can be described, in
polar coordinate system, as

u® = exp(—prcos 0) { Z AHY (1r)e™ + Z A, (=1)"HD (1" Yo"

Z Z AH D (1, )" + Z A (—=1)"H]( m)ei"%]}. (16)

n=—00 n=—0o0

To express concisely the scattering fields of many image cavities, the total scattered field is expressed in the
form of complex variable [14,15]

| 20 A () + 30 A== (F=5)

n=—00 n=-—oo

00 4 .
XZ:C:fOCZZA"HI (lz = Zlm|)(| —Zm|>

m=1 I=1

u® = exp[—fRe(z)

00

o0 4 —n
An nH1 _ . Z =20 — Zim 17
30 3 A = =z () . a7

n=—o00 m=1 [=1
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where zo= —2b, zy,=12(mL — ¢;), z3,=12mL, z3,=—-12[(m—1) L+ c¢], z4,=—-2imL, L=c|+ c,,
m=1,2,...

The total wave field in materials is taken to be a superposition of the incident waves and the scattered
waves, 1.e.

u=uV 4+ 4", (18)

4. Determination of mode coefficients and dynamic stress concentration factor

Without loss of generality, the case that the boundary condition is free of traction is investigated. The
boundary condition is that the radial shear stress is equal to zero, i.e.

du

Trz|r:a = #(r’ 0) ar — = O (19)
Substituting Eq. (18) into Eq. (19), the following equations can be obtained:
+00
> EX,=E, (20)
where
£, = e () explpre@)] | 0D () + 1P w2 (F22) ]
2l |1 |z — 2o

+ exp[—pBRe(z)] {g {Hﬁ,ljl (xlz]) — HSzlJr)l(K|Z|)} (é)n + i iHﬁl”(rdz = Zml) (Ij : 2:|>n

m=1I=1
o 4 n N
erz; Z(—l) Hf,l>(;c|z — 20 — Zin) (m>
+%K(—1)ni |z —z|Re (z—%) [Hfl‘,)l(;qz —zo]) = HWY, (k]2 — Zo|)} (; : 2')
+ in(—l)"% m(ZLZ(JH,SI)(Kz — zo) (; = 2|> n
N

m ‘Z_Zlm|
- ol 2=z \" z z—Zm \"
in— ") Im HW (k|z — 2, "
32 i (=) (e (=2

Z—20 —Zim \
x I:Hr(llf)l(K‘Z — 20 _Zlm|) _H,(1]+)1(K|Z—Z0 —Z]m|)i| (#)

o 4 1 z z—zy—2Z "
1V (1 o LT A0 T 2m
+Z Z( 1)"in E Im(z—zo—z;m)H” (k|z — zo Zlm|)(|Z_ZO_Zlm|) ) (21)
E = —upe PP _ B cos Osin[g(c, + y)] + {gsin 0 cos|g(cs + y)] + ipcos Osin[g(cs + y)]}}
= —upe PP _Bcos Osin[g(c, + )] + {gsin 0 cos[q(c, + )] + ipcos Osin[g(c, + y)]}}

o0

x Y i (pr)e™, (22)

n=-—00

and X, = A4,,.
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Multiplying by e at both sides of Eq. (20), and then integrating from —= to =, the following expressions
can be obtained

+00
Y EX,=E (s=0,£1,%2,...), (23)

n=—00

here the elements of E, and E; are determined by the following equations
1 [T : 1 [ .
Em — En —is0 0 Ev — E —is0 0. 24
o 2m /, i edo, E 2n /,,I ed (24

Note that Eq. (23) is the infinite algebraic equation system determining mode coefficients 4,,. Functions " (-)
and J,(*) are both convergent, so the solution of Eq. (23) can be obtained by truncating » and s [10,12,13].

In the following analysis, it is convenient to make the variables dimensionless. To accomplish this step, we
may introduce a representative length scale a, where a is the radius of the circular cavity. The following dimen-
sionless variables and quantities have been chosen for computation: the incident wave number is ka = 0.01—
2.0, the distance between the center of the cavity and the semi-infinite boundary is b/a = 1.1-5.0, the distance
between the center of the cavity and the upper boundary is ¢;/a = 3.0-8.0, the distance between the center of
the cavity and the lower boundary is ¢,/a = 3.0-8.0, and the non-homogeneity parameter is fa = —0.1 to 0.1.

According to the definition of the dynamic stress concentration factor (DSCF), the DSCF is the ratio of the
hoop shear stress around the cavity and the maximum stress [13]. Thus, the DSCF around the circular cavity
in the semi-infinite slab of functionally graded materials is expressed as

DSCF = |tg. /0], (25)

e = i, )% o = (= Z) expl~fRe(2) { > 4D (1)

00 —n % o0 4 n
+> An(—l)"Hgl>(K|z—zo)(Z ZO) + Y A4y ZH511>(K|Z—Z,M|)(Z Z"")
n=-00 |Z_Z°‘ n=-00 m=1 =1 |Z_Zlm|

00 00 4 . . —n
=3 S S AH Pz = 20—zl
n=—oco m=1 I=1 |Z—Zo —sz|
1 W Z\"
+ Refe) P AREE) {—Kn_Z;A (ell) — ., (k) (ﬂ>
K z 1 z—z0\ "

- z z—2z\ "
—1)"4,inR HW (k|z — 0
S e L] s

00 00 4 n
K z 1 ) Z— Zjy
30 303 Sttt () [ ) = 8 o = )] (2
00 00 4 z z—1z n
+ AninRe( )H}g” K|z = Zpm ( "’)
2 2 2 inke(o e == (2
00 00 4
K z
- Z Z 5(—1)nAn|Z—Zo—sz|lm<7>
n=—o0 m=1 [=1 Z—2Z20 — Zim

Z—20 —Zim \"
X |:Hn1 1(K|Z—ZO —Z[m|) HSH—I( |Z_ZO Zlm|):| (#)

|z — z0 — Zim]

00 00 4 —n
S P b RITEN S I FER e
— Z =20 = ZIm

|z — zo — zim]

1 /=1
+ uoe P u(r,0){(p — ip) sin Osin[g(c, + y)] + g cos 0 cos[q(c, + y)] e+, (26)
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here 7y is the maximum magnitude of the stress in the incident direction, and 7o(r,0) = (B + pz)% =
(k* + m?/L*):.

5. Numerical examples

Fatigue failures often occur in the regions with high stress concentration, so an understanding of the dis-
tribution of the dynamic stress around the cavity is very useful in structural design.

According to the expression of DSCF, the DSCFs around the circular cavity are computed. It is found that
the truncations of n, s and m at 12 in Egs. (23) and (26) give practically adequate results at any desired wave
numbers.

Fig. 2 illustrates the angular distribution of the DSCFs around the circular cavity with parameters: § =0,
bla=1.1, ¢;/a = 8.0, cy/a = 8.0. Note that in this case the upper and lower boundaries have no effect on the
DSCFs around the cavity. It can be seen that when the distance is b/a = 1.1, because of the multiple scattering
of elastic waves between the cavity and the semi-infinite edge, the DSCFs at the positions near the semi-infinite
edge are greater than that at the symmetrical positions about the y axis. The DSCFs around the cavity increase
with increasing incident wave number. When the incident wave number is relatively great, the edge of the semi-
infinite structure has greater effect on the distribution of the DSCFs around the cavity.

Fig. 3 illustrates the angular distribution of the DSCFs around the circular cavity with parameters: f =0,
bla=15.0, ¢;/a= 8.0, c;/a = 8.0. It can be seen that the maximum dynamic stress decreases with the increase of

© 3 ==ka=05

Fig. 2. Angular distribution of dynamic stress around the cavity (8 =0, b/a = 1.1, ¢;/a = 8.0, cx/a = 8.0).

D 3 -~~ka=0.5

Fig. 3. Angular distribution of dynamic stress around the cavity (8 =0, b/a = 5.0, ¢;/a = 8.0, cx/a = 8.0).
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- Ba=-0.05
— Ba=0.05

210,

Fig. 4. Angular distribution of dynamic stress around the cavity (ka = 2.0, b/la = 1.1, ¢;/a = 8.0, c2/a = 8.0).

the value of b/a, and the angular distributions of DSCF's are approximatively symmetric about both axes. The
above results show good agreement with those in literature [3].

Fig. 4 illustrates the angular distribution of the DSCFs around the circular cavity with parameters:
ka=0.1, bfa=1.1, ¢;/a = 8.0, co/a = 8.0. It can be seen that the DSCFs around the cavity increase with
increasing non-homogeneity parameter of materials. As the non-homogeneity parameter increases, the effect

Fig. 5. Angular distribution of dynamic stress around the cavity (ka = 2.0, b/la = 5.0, ¢;/a = 8.0, c2/a = 8.0).

@™ mmog =105

Fig. 6. Angular distribution of dynamic stress around the cavity (fa = 0.05, b/a = 1.1, ¢;/a = 3.0, cz/a = 8.0).
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of the edge of semi-infinite materials increases. The edge makes the position of the maximum dynamic stress
having a trend of shifting towards the illuminated side of the cavity. The trend of shifting is more evident when
the non-homogeneity parameter is greater.

Fig. 5 illustrates the angular distribution of the DSCFs around the circular cavity with parameters:
ka=0.1, b/a=5.0, c;/a = 8.0, c»/a = 8.0. One can see that when the distance ratio of b/a is great, the effect
of non-homogeneity parameter on the distribution of DSCF decreases.

Fig. 6 illustrates the angular distribution of the DSCFs around the circular cavity with parameters:
Pa=0.05, bla= 1.1, ¢;/a=3.0, cz/a = 8.0. It can be seen that due to the effect of the upper boundary, the
maximum dynamic stress has a trend of shifting towards the illuminated side of the cavity, and the greater
the incident wave number, the greater the effect of the upper boundary on the DSCF distribution around
the cavity. In this case, the dynamic stresses at the position of 0 =0 and = are greater than those in Figs. 2
and 4.

Fig. 7 displays the angular distribution of the DSCFs around the circular cavity with parameters:
Pa=0.05, b/la=5.0, ¢c;/a=3.0, c;/Ja=8.0. It can be seen that the dynamic stress at the position of 6 =0
and 7 becomes great. Comparing the results with those in Fig. 6, one can see that as the distance ratio of
b/a increases, the distribution of the dynamic stress around the cavity is about symmetry about the y axis.
However, the dynamic stresses near the upper boundary are less than that near the lower boundary.

Fig. 7. Angular distribution of dynamic stress around the cavity (fa = 0.05, b/a = 5.0, ¢;/a = 3.0, cz/a = 8.0).

25

DSCF

0.5 1 I 1 1 1 I L 1 1

Fig. 8. Dynamic stress concentration factor as a function of b/a (8 =0, 0 = n/2, ¢;/a = 8.0, cz/a = 8.0).
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Fig. 8 shows the dynamic stress at the position of & = /2 as a function of the distance ratio b/a with param-
eters: =0, ¢;/a = 8.0, c»/a = 8.0. The dynamic stress at 0 = n/2 decreases as the value of b/a increases. When
the value of b/a is greater than a certain number, the dynamic stresses tend to be invariable, and the number
increases as the wave number increases. It is clear that the dynamic stress increases with increasing wave num-
ber. When the value of b/a is small, the variation of dynamic stress with incident wave number is great. How-
ever, if the value of b/a is great, the variation is small. It is also clear that if the wave number is small, the
variation of dynamic stress with the value of b/a is small.

Fig. 9 shows the dynamic stress at the position of § = /2 as a function of the distance ratio b/a with param-
eters: fa = 0.05, ¢1/a = 8.0, ¢»/a = 8.0. From Figs. 8 and 9, one can see that when the value of b/a is small, the
dynamic stress at the position of 0 = n/2 increases with increasing non-homogeneity parameter of FGMs.
However, when the value of b/a is great, the variation of the dynamic stress with non-homogeneity parameter
is small.

Fig. 10 presents the dynamic stress at the position of 8 = ©/2 as a function of the distance ratio b/a with
parameters: fa = 0.05, ¢;/a = 3.0, ¢,/a = 8.0. It can be seen that the DSCFs first decrease with the distance
ratio b/a, and then tend to be invariable as b/a further increase. Comparing the results with those in
Fig. 9, it is found that because the maximum dynamic stress has a trend of shifting towards the illuminated

30— T T T T T v T T

DSCF

bla

Fig. 9. Dynamic stress concentration factor as a function of b/a (fa =0.05, 0 = n/2, ¢1/a = 8.0, cz/a = 8.0).

20,

ka=2.0

DSCF

Fig. 10. Dynamic stress concentration factor as a function of b/a (fa = 0.05, 6 = =/2, ¢;/a =3.0, ¢s/a = 8.0).
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3.0 T T T T T T T T T T

28 o
¢/a=80.c,/a=8.0
26} J
L 24t 1
&)
g 22t ¢/a=30.c,/a=8.0
20} J

1.8}

1.6

4
05 06 07 08 00 10 11 12 13 14 15 16

bla

Fig. 11. Dynamic stress concentration factor as a function of ka (fa=0.1, 0 = /2, bla=1.1).

side of the cavity, the dynamic stress at 0 = /2 becomes small. It is also clear that the variation of dynamic
stress with the value of b/a decreases as the value of c¢;/a decreases.

Fig. 11 shows the dynamic stress at the position of 0 = =/2 as a function of dimensionless wave number ka
with parameters: fa = 0.1, b/a = 1.1. It can be seen that the DSCFs increase as the dimensionless wave num-
ber increases, and then tend to be invariable as ka further increases. Because of the effect of the upper and
lower boundaries, the maximum dynamic stress deviates from the position of 0 = n/2. So when the distance
between the center of the cavity and the upper boundary decreases, the dynamic stress at this position
decreases. In the region of low frequency, if the distance between the center of the cavity and the upper bound-
ary is small, the variation of the dynamic stress with dimensionless wave number is small. However, when the
distance between the center of the cavity and the upper boundary is great, the variation of the dynamic stress
with dimensionless wave number is great in the region of low frequency.

6. Discussion

Through examples, one can see that for the semi-infinite homogeneous materials, our results are in good
agreements with the solutions in previous literatures. The non-homogeneity parameter of materials has great
effect on the values and distribution of the dynamic stress concentration factors around the cavity when the
distance ratios of b/a, ¢;/a and c»/a are small. The dynamic stress around the circular cavity increases with
increasing non-homogeneity parameter and incident wave number. When the values of b/a and ¢,/a are small,
the distribution of the maximum dynamic stress varies greatly, and deviates from the position of 0 = n/2. The
effects of the distance ratios of b/a, ¢;/a and ¢,/a on the angular distribution of the DSCFs around the cavity
also increase with increasing dimensionless wave number. The maximum dynamic stress around the cavity
increases greatly with an increase of the frequency of dynamic load when the values of b/a and ¢,/a are small
and the frequency of dynamic load is relatively high.

7. Conclusions

The elastodynamic problem of a circular cavity in a semi-infinite slab of functionally graded materials
under anti-plane shear waves is analyzed by employing image method and wave functions expansion method.
The case that the cavity is free of traction is investigated. The analytical solution and numerical solution of the
dynamic stress concentration factors around the cavity are presented and analyzed.

It can be concluded from this paper that to reduce the dynamic stress and avoid fatigue failures in semi-
infinite exponentially graded materials, it is proposed that the non-homogeneity parameter should be less than
zero in the x-direction in Fig. 1, namely, the shear modulus and density of semi-infinite functionally graded
materials decrease in the x-direction. The smaller the value of b/a, the smaller the non-homogeneity parameter
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should be. When the values of c¢i/a or ¢»/a are smaller, the corresponding value of b/a should be greater. We
should also choose greater values of b/a, c;/a and c,/a when designing the semi-infinite functionally graded
materials under higher frequency load.

The analytical solutions presented in this paper may be useful for the dynamical analysis and strength
design for the structure of FGMs and the analysis of fracture problems in FGMs.
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