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Employing the properties of the affine mappings, a very novel fractal model scheme based on the iterative function

system is proposed. We obtain the vertical scaling factors by a set of the middle points in each affine transform,

solving the difficulty in determining the vertical scaling factors, one of the most difficult challenges faced by the fractal

interpolation. The proposed method is carried out by interpolating the known attractor and the real discrete sequences

from seismic data. The results show that a great accuracy in reconstruction of the known attractor and seismic profile

is found, leading to a significant improvement over other fractal interpolation schemes.
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1. Introduction

There are many objects in nature which are so

complicated and irregular that they cannot be mod-

eled properly with the classical geometry. When clas-

sical geometry fails to serve as a tool to analyse the

complexity of such object, fractal geometry begins.

The concept of fractal geometry was first introduced

as an extension of classical geometry by Mandelbrot,

which can be used to make accurate models of physical

structures from ferns to galaxies.[1]

A fractal object is self similar in that subsec-

tions of the object are similar, in some sense, to

the whole object. No matter how small a subdi-

vision is taken, the subsection contains details no

less than the whole.[2] The fractal dimension, thus,

is introduced as a measure of the scaling property

of the features. Therefore, any irregular shaped

body, including signals and discrete sequences, whose

Housdorff–Besicovitch dimension strictly exceeds the

topological dimension, can be measured by the fractal

dimension:[3,4] many natural shapes such as coastlines,

mountains and clouds are easily described by fractal

models.

Many signals or discrete sequences, such as stock

price, seismic data, etc, are scale invariance, thus, the

best way to model such signals or discrete sequences is

to use a fractal model.[5] There are two popular ways

in which a fractal object can be constructed. One is

in terms of fractional Brownian motion, which is sta-

tistically self similar. The other involves the iterated

function system (IFS) theory,[6] which is a more gen-

eral approach than fractional Brownian motion.[5]

The IFS theory has received a great deal of

attention.[7−9] Since IFSs are capable of generating

complicated and varied functions even if maps, as few

as two (m = 2), are involved, we can find their appli-

cations in many fields, such as signal processing, com-

puter graphics, metallurgy, geology, chemistry, med-

ical sciences and other areas.[10−17] However, one of

the challenges of using IFS for modeling the discrete

sequences is the difficulty in determining the vertical

scaling factors. In Ref. [17], an algorithm of the com-

putation of the vertical scaling factor was introduced

based on the local information. This method, how-

ever, needs to employ a great many of known points

to achieve a desired data model accuracy because it

actually is a linear interpolation. The rest of the

present paper is organised as follows. In Section 2,

after analysing the IFS based on the affine transfor-

mation, we propose a very novel and simple method

to compute the vertical scaling factors, in which used

are only the uniformly distributed known points in the

discrete sequences. The underlying fundamental be-

hind the algorithm is mentioned in Section 3. The pro-

posed method is used to model two discrete sequences
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in Section 4. Finally, the conclusions are presented in

Section 5.

2. Background of IFS theory

Consider a one-dimensional signal, also known as

a time serial or a discrete sequence, in which the value

of real-valued function F (x) is measured as a function

of a real variable x in the following form:[6]

{(xn, Fn) ∈ R× R : n ∈ [0, 1, 2, . . . , N ]}, (1)

where N is a positive integer, Fn = f(xn), and the

xn’s are real numbers such that

x0 < x1 < x2 < · · · < xN . (2)

In the fractal modeling, the data set {(xn, Fn) ∈ R2 :

n ∈ [0, 1, 2, . . . , N ]} are called interpolation points.

An IFS, also known as fractal interpolation function,

corresponding to this set of data, is a continuous func-

tion f : [x0, xN ] → R such that[6]

f(xn) = Fn for n ∈ [0, 1, 2, . . . , N ]. (3)

Affine mapping or affine transform is a simple and ef-

fective way to construct an IFS. Generally the affine

transform is defined as

ωn

 x

f(x)

 =

 Ln(x)

Fn(x, y)

 for all n ∈ [1, 2, . . . , N ].

(4)

According to the IFS theory,[6] for an IFS defined in

expression 4, there is a unique nonempty compact set

G ⊂ R2, also known as attractor of the IFS, which is

the graph of the desired function f(x):

G =
N∪

n=1

ωn(G). (5)

For simplicity, we can assume that Ln(x) and Fn(x, y)

are linear functions. Thus, the affine mappings defined

in expression 4 can be expressed as

ωn

 x

y

 =

 an 0

cn dn

 x

y

+
 en

fn

 , n ∈ [1, 2, · · · , N ] .

(6)

In order to determine coefficients an, cn, dn, en and fn,

the following conditions are applied: ωn

[
x0 y0

]
=

[
xn−1 yn−1

]
,

ωn

[
xN yN

]
=

[
xn yn

]
,

n ∈ [1, 2, . . . , N ].

(7)

Thus, we can obtain the other four coefficients while

the coefficient dn are considered as a parameter for

each affine transform ωn:

an =
xn − xn−1

xN − x0
,

en =
xNxn−1 − x0xn

xN − x0
,

cn =
Fn − Fn−1

xN − x0
− dn

FN − F0

xN − x0
,

fn =
xNFn−1 − x0Fn

xN − x0
− dn

xNF0 − x0FN

xN − x0
. (8)

3. Determination of vertical scal-

ing factor

Because the vertical scaling factor must satisfy

|dn| < 1, it is also known as a contraction factor for

map ωn. By choosing the vertical scaling factor dn
in Eq. (8) for each affine transform ωn, we are able

to specify the vertical scaling produced by the trans-

formation. Therefore, the vertical scaling factor plays

a critical role in implementing a fractal interpolation.

In order to determine dn, n ∈ [1, 2, . . . , N ], we con-

sider the properties of some special points under the

affine mapping ωn, see Fig. 1.

Fig. 1. Relationship among some special points under

affine mapping.

Let xh be a mid-point of the interpolation area

[x0, xN ] and l0 denote the line connecting the two

interpolation points (x0, y0) and (xN , yN ). Let ln,

n ∈ [1, 2, . . . , N ], be the line connecting points of the

nth affine mapping (xn−1, yn−1) and (xn, yn).

Because the affine mapping is linear, line l0 is

transformed into line ln under affine mapping ωn.

Therefore, we discuss point x = xh on the x-

coordination. The two points corresponding to point

x = xh are (xh, y
1
0) on the attractor and (xh, y

0
0) on the

line ln respectively. By the affine mapping ωn, these

two points will become points (xh
n, y

0
n) and (xh

n, y
1
n)

respectively.
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The vertical length between (xh, y
1
0) and (xh, y

0
0)

is ∆y0, however it becomes ∆yn by the affine mapping

ωn. According to fundamental of the affine mapping,

the relationship can be constructed by

∆yn = dn ×∆y0. (9)

Therefore, the vertical scaling factor corresponding to

ωn can be defined as

dn =
∆y0
∆yn

, n ∈ [1, 2, . . . , N ]. (10)

4. Simulations

To testify the reliability and the validity of the

proposed fractal modeling method, we give two nu-

merical examples: one is to reconstruct a known at-

tractor and the other is to try to interpolate the dis-

crete sequence-the recorded field seismic data.

4.1.Reconstruction of known attractor

The graph of the interpolation function is G =

{(x, 2x− x2) : x ∈ [0, 2]}. According to the proposed

method in the paper, we can claim that G is the at-

tractor of the hyperbolic IFS{R2;ω1, ω2} if we choose

the data set of {(0, 0), (1, 1), (2, 0)} as the interpola-

tion points. Therefore, the two corresponding affine

mappings can be expressed as

ω1

 x

y

 =

 0.5 0

0.5 0.25

 x

y

 ,

ω2

 x

y

 =

 0.5 0

−0.5 0.25

 x

y

+

 1

1

 . (11)

As x varies over [0, 2], the term on the right-hand side

of the first equation in expression (11) yields a part of

the graph of f(x) lying in self-affine region [0, 1], while

the term on the right-hand side of the second equa-

tion yields a part of the graph of f(x) lying in interval

[l, 2]. Hence G = ω1(G)∪ω2(G). Since G ∈ H(R2) we

conclude that it is the attractor of the IFS by notic-

ing that the IFS is just-touching. The reconstructed

known attractor G by the proposed method is shown

in Fig. 2. For comparison, the same attractor recon-

structed by the method in Ref. [17] is shown in Fig. 3.

From the interpolation errors for these two methods

shown in Fig. 4, we can see that the error for the pro-

posed method is much less than that for the compared

one.

Fig. 2. Reconstructed known attractor by proposed

method.

Fig. 3. Reconstructed known attractor by compared

method.

Fig. 4. Reconstruction errors induced by proposed and

compared methods.

4.2.Reconstruction of the real discrete

sequence

In the second simulation, the recorded field seis-

mic data are considered as the graph of the IFS, and

090509-3
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we try to obtain this graph by the proposed method

with the following procedure.

(1) Select a set of points (xn, yn), n ∈ [1, 2, . . . , N ]

as the interpolation point grouped into the set

G that has been used in the Eq. (5): G =

{(xn, yn), n ∈ [1, 2, . . . , N ]}. The points selected as

the interpolation points can be distributed uniformly

or not in the sequence. In our test, the interpolation

points are uniformly distributed.

(2) Compute the affine mappings ωn, n ∈
[1, 2, . . . , N ] according to Eqs. (8) and (10).

(3) Substitute the set G = {(xn, yn), n ∈ [1, 2,

. . . , N ]} and the affine mappings ωn, n ∈ [1, 2, . . . , N ]

into Eq. (5). A new set of interpolation points will

be obtained and the procedure can be continued until

the interpolation points are dense enough to obtain

the expected interpolation resolution. Note that once

the affine mappings are obtained from the second step,

they will not change with the interpolation points ob-

tained from later circulations.

The reconstruction result can be seen in Fig. 5.

In this figure, the reconstructed traces numbers are

10, 20, 40, 65, 80, and they match the whole profile

quite well. Figure 6 shows the original and the re-

constructed waveforms obtained by the two methods.

In general, these two methods can recover the main

features of traces. However, if the traces are mag-

nified, the difference between the proposed and the

compared method becomes quite obvious, which can

be seen in Fig. 7. The trace recovered by the compared

method is not very smooth, while the one by the pro-

posed method is as smooth as the original one. This

ability is quite important in the modern seismic pro-

cessing because some other methods need dense and

regular sampling traces, such as surface-related mul-

tiple elimination and wave-equation migration. The

improvement by the proposed method in terms of in-

terpolation error can also be seen in Fig. 8. The er-

ror for each point, induced by the proposed method,

is much smaller than that induced by the compared

method, while the interpolation errors for each trace

are 2 or 3 times lower than that induced by the method

in Ref. [17], see Tabel 1.

Fig. 5. Reconstructed seismic data profiles obtained by

proposed method. Reconstructed trace numbers are 10,

20, 40, 65 and 80.

Fig. 6. Reconstructed traces obtained by proposed and

compared methods. The corresponding trace numbers are

also 10, 20, 40, 65 and 80. L means reconstructed se-

quence obtained by compared method, P represents that

by proposed method, and O refers to original sequence.

Fig. 7. Magnified part of reconstructed traces obtained

by proposed and compared methods. The corresponding

trace numbers are also 10, 20, 40, 65 and 80. L means

reconstructed sequence obtained by compared method, P

represents that by proposed method, and O refers to orig-

inal sequence.
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Table 1. Errors for each reconstructed trace by two methods.

trace number 10 20 40 65 80

the proposed method 24.3636 179.7889 70.6344 209.4774 44.6208

the compared method 292.6753 382.815 331.5845 296.1738 278.1165

Fig. 8. Reconstruction errors induced by proposed and

compared methods for reconstructed trace numbers 10,

20, 40, 65 and 80. L means reconstructed sequence ob-

tained by compared method, P represents that by pro-

posed method, and O refers to original sequence.

5. Conclusions

In this paper we derive an efficient algorithm of

performing IFS interpolation and parameter estima-

tion, say the vertical scaling factor in each affine map-

ping, for a given self-affine signal. We emphasise

goodness-of-fit to the given signal. The algorithms

are applied to two examples of self-affine signals. The

simulation results show that the robust algorithm is

strong enough to converge to the true result when the

alternative method cannot do so. Real field seismic

data are also used to test the algorithm, and the re-

sults show that the proposed algorithm achieves better

fidelity to data than the alternative algorithm. The

results also illustrate that the proposed interpolation

algorithm yields more significant improvement over

methods suggested in the previous literature.
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