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Density and temperature of fermions from quantum fluctuations
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A novel method to determine the density and temperature of a system is proposed based on quantum
fluctuations typical of fermions in the limit where the reached temperature T is small compared to
the Fermi energy ε f at a given density ρ . Quadrupole and particle multiplicity fluctuations relations
are derived in terms of T

ε f
. This method is valid for infinite and finite fermionic systems, in particular

we apply it to heavy ion collisions using the Constrained Molecular Dynamics (CoMD) approach which
includes the Fermi statistics. A preliminary comparison to available experimental data is discussed as
well. We stress the differences with methods based on classical approximations. The derived ‘quantum’
temperatures are systematically lower than the corresponding ‘classical’ ones. With the proposed method
we may get important informations on the Equation of State (EOS) of quantum Fermi systems to order
O( T

ε f
)3, in particular near the Liquid-Gas (LG) phase transition and at very low densities where quantum

effects are dominant.
© 2010 Elsevier B.V. All rights reserved.
In recent years, the availability of heavy-ion accelerators which
provide colliding nuclei from a few MeV/nucleon to GeV/nucleon
and new and performing 4π detectors, has fueled a field of re-
search loosely referred to as Nuclear Fragmentation. The charac-
teristics of the fragments produced depend on the beam energy
and the target-projectile combinations which can be externally
controlled [1–3]. Fragmentation experiments could provide infor-
mations about the nuclear matter properties and constrain the EOS
of nuclear matter [4]. From conventional nuclear physics we know
that there is a stable equilibrium state at the normal nuclear den-
sity ρ0 = 0.145–0.17 fm−3 with a compressibility in the range of
K = 180–240 MeV and a binding energy of 15–16 MeV/nucleon
[1–6]. Even though a large variety of experimental data and re-
fined microscopic models exist, to date it does not exist a method
to determine densities and temperatures reached during the col-
lisions, which takes into account the genuine quantum nature
of the system. In this work we discuss some properties at fi-
nite temperatures assuming either a classical gas or a quantum
Fermi system. We show that at the densities and temperatures of
interest the classical approximation is not valid. This is at vari-
ance with many experimental and theoretical results in heavy ion
collisions near the Fermi energy [3,7–12] which assume the clas-
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sical approximation to be valid. We base our method on fluctu-
ations estimated from an event-by-event determination of frag-
ments arising after the energetic collision. A similar method has
recently been applied to observe suppression of fluctuations in
a trapped Fermi gas [13]. We go beyond the method of [13] by
including quadrupole fluctuations as well to have a direct mea-
surement of densities and temperatures for subatomic systems
for which it is difficult to obtain such informations in a direct
way. We also suggest a method for calculating an excitation en-
ergy which should minimize collective effects and could be applied
when a limited information is available, for example if only light
cluster are measured. We apply the proposed method to micro-
scopic CoMD approach [14] which includes fermionic statistics.
The resulting energy densities and temperatures calculated us-
ing protons and neutrons display a rapid increase around 3 MeV
temperature which is an indication of a first order phase transi-
tion.

A method for measuring the temperature was proposed in
[10] based on momentum fluctuations of detected particles.
A quadrupole Q xy = 〈p2

x − p2
y〉 is defined in a direction transverse

to the beam axis (z-axis) and the average is performed, for a given
particle type, over events. Such a quantity is zero in the center of
mass of the equilibrated emitting source. Its variance is given by
the simple formula:

σ 2
xy =

∫
d3 p

(
p2

x − p2
y

)2
f (p) (1)
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where f (p) is the momentum distribution of particles. In [10] a
classical Maxwell–Boltzmann distribution of particles at tempera-
ture Tcl was assumed which gives: σ 2

xy = N̄4m2T 2
cl , m is the mass

of the fragment. N̄ is the average number of particles which could
be conveniently normalized to one. In heavy ion collisions, the
produced particles do not follow classical statistics thus the cor-
rect distribution function must be used in Eq. (1). Protons (p),
neutrons (n), tritium, etc., follow the Fermi statistics while, deu-
terium, alpha, etc., even though they are constituted of nucleons,
should follow the Bose statistics. In this work we will concentrate
on fermions only and in particular p and n which are abundantly
produced in the collisions thus carrying important informations on
the densities and temperatures reached.

Using a Fermi–Dirac distribution f (p) and expanding to O (T /

ε f )
4, where ε f = ε f 0(

ρ
ρ0

)2/3 = 36(
ρ
ρ0

)2/3 MeV is the Fermi energy
of nuclear matter, we get [15]:

σ 2
xy = N̄

[16m2ε2
f

35

(
1 + 7

6
π2

(
T

ε f

)2

+ O

(
T

ε f

)4)]
. (2)

This result is in evident contrast with the classical one: even at
zero T and ground state density ρ0, quadrupole fluctuations arise
from the Fermi motion, of course those fluctuations cannot be ob-
served until some excitation energy is given to the system and
some particle is emitted. The quadrupole fluctuations depend on
temperature and density through ε f , thus we need more informa-
tions in order to be able to determine both quantities.

Within the same framework we can calculate the fluctuations
of the p, n multiplicity distributions. These are given by [15]:

〈(�N)2〉
N̄

= 3

2

T

ε f
+ O

(
T

ε f

)3

. (3)

Substituting Eq. (3) in Eq. (2) gives the Fermi energy in terms of
quadrupole and multiplicity fluctuations which can be measured
in experiments. Knowing the Fermi energy we obtain the quantum
temperature from Eq. (3).

This is a very simple result valid in the indicated approxima-
tion. The difference with the classical case is again striking (the
ratio in Eq. (3) equal to one for a classical perfect gas). This rela-
tion has also been derived and applied to trapped Fermi gases in
[13]. These quantities, Eqs. (2)–(3), can be easily verified experi-
mentally and the corresponding densities and temperatures can be
evaluated for each physical situation.

To illustrate the strength of our approach we simulated 40Ca +
40Ca heavy ion collisions at fixed impact parameter b = 1 fm and
beam energies Elab/A ranging from 4 MeV/A up to 100 MeV/A. Col-
lisions were followed up to a maximum time t = 1000 fm/c in or-
der to accumulate enough statistics. Particles emitted at later times
(evaporation) could affect somehow the results and this might be
important especially at the lowest beam energies. The choice of
central collisions was dictated by the desire to obtain full equili-
bration. This however, did not occur especially at the highest beam
energies due to a partial transparency for some events. For this
reason the quadrupole in the transverse direction, Eq. (1), was cho-
sen. Furthermore, in order to correct for collective effects as much
as possible, we defined a ‘thermal’ energy as:〈

Eth

A

〉
= Ecm

A
−

[〈
E p(n)

N̄p(n)

〉
− 3

2

〈
E p(n)xy

N̄p(n)

〉]
− Q value (4)

where 〈 E p(n)

N̄p(n)
〉 and 〈 E p(n)xy

N̄p(n)
〉 are the average total and transverse ki-

netic energies (per particle) of protons (and/or neutrons). Q value =
N̄p(n)

Z(N)
8 MeV, similarly for protons plus neutrons. 8 MeV is the aver-

age binding energy of a nucleon, Z (N) the total charge (neutron
Fig. 1. Temperature versus thermal energy per particle derived from quantum fluc-
tuations (full symbols joined by dashed lines) compared to the classical case (open
symbols). (Top) Circles refer to protons, squares to neutrons and triangles to pro-
tons and neutrons. (Bottom) Same as above for protons. Data: down triangles from
classical quadrupole fluctuations [10], star symbols from particle ratios [9].

number) of the system and N̄ p(n) the average number of protons
(neutrons) emitted at each beam energy. For a completely equili-
brated system, the transverse kinetic energy (times 3/2) is equal
to the total kinetic energy and the term in the square brack-
ets cancels. All the center of mass energy, Ecm

A , is converted into
thermal energy (plus the Q value). In the opposite case, say an al-
most complete transparency of the collision, the transverse energy
would be negligible and the resulting thermal energy would be
small. Our approximation will account for some corrections, and
this will become more and more exact when many fragment types
are included in Eq. (4) [10]. However, this approximation might be
important in experiments where only some fragment types are de-
tected or if, because of the time evolution of the system, different
particles are sensitive to different excitation energies, for instance
if some particles are produced early or late in the collision.

In Fig. 1 (top) we plot the estimated temperatures at various
‘thermal’ energies both for the quantum (full symbols) and classi-
cal approximations (open symbols). As we see the quantum case is
systematically lower than the classical one. We also notice a differ-
ence if the T are estimated from the proton distributions (circles),
or neutrons (squares) or the sum of the two (triangles). This is
clearly a Coulomb effect which gets smaller as expected at higher
energies as we will demonstrate more in detail below. The back-
bending observed at T ≈ 3 MeV for all cases indicates a liquid-gas
phase transition, in particular we observe that such a back-bending
is more marked for the protons case as first discussed by Gross
[16]. In the bottom part of Fig. 1, we compare the protons results
to experimental data. The down triangles are derived using the
‘classical’ quadrupole fluctuations [10] thus should be very simi-
lar to our classical results and the agreement is reasonable at the
lowest excitation energies. However, we stress that the experimen-
tal data were obtained for different systems at a fixed 35 MeV/A
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Fig. 2. Classical temperatures versus quantum temperatures. Symbols as in Fig. 1,
open symbols refer to Bauer’s approximation, Eq. (6).

beam energy. In particular projectile like fragments (PLF) were iso-
lated and analyzed and the excitation energy was obtained from all
fragments differently from Eq. (4). Thus there might be a mismatch
in the abscissa and this could be especially important for large ex-
citations. Also the detector acceptance might be important. Similar
considerations apply to the data [9] obtained using double particle
ratios (star symbols) [7]. In the latter case, classical approximations
are used as well [7], the underlying assumption is that all those
particles are sensitive to the same density and temperature. If T
and ρ ‘seen’ by different particles are different, then the results
give some kind of ‘averaging’. Furthermore, the densities must be
small and the temperatures high, i.e. T /ε f � 1, as stressed in the
original proposal to measure temperatures from double ratios [7].
These classical validity conditions are not recovered in this work
and most probably in the data since the measured temperatures in
this beam energy regime are relatively small and different density
estimates give still densities of the order of ( 1

3 − 1
6 ) of the ground

state density of a nucleus [9,10,12]. In the top part of Fig. 1 we see
that temperatures are different for protons and neutrons at a given
excitation energy (clearly a Coulomb effect), thus we expect that
other particles might give different T . This implies that different
particle ratios might produce different results as well [9].

Using Eqs. (1)–(2), we can easily show that, in the region of
validity, the ‘classical’ Tcl is always larger than the ‘quantum’ tem-
perature T :

Tcl =
√

4ε2
f

35
+ 2π2

15
T 2. (5)

A similar result has been found by Bauer [17] in order to explain
the large ‘apparent’ temperature observed in particles spectra. In
[17] a relation between the final (classical) temperature T ′

cl and
the input Fermi–Dirac T was found:

T ′
cl ≈

2ε f

5

[
1 + 5π2

12

(
T

ε f

)2]
. (6)

The ratio T
ε f

entering the equations above can be directly obtained

from Eq. (3). Even though Eqs. (5)–(6) might look different at first
sight, they give very similar results as can be seen in Fig. 2 where
the classical Tcl is plotted versus the quantum one. Bauer’s ap-
proximation, Eq. (6), is given by the open symbols. The “difference”
between the equations is minimized if one actually expands Eq. (5)
to second order in T

εF
. Thus the quantum temperatures are smaller

than derived when fitting experimental results with a classical ap-
Fig. 3. Temperature divided the Fermi energy versus density normalized to the
ground state one derived from quantum fluctuations, Eqs. (1)–(3). Symbols as in
Fig. 1. The top energy scale refers to the neutron case.

proximation. The reason of such small quantum temperatures is
the Fermi energy entering Eq. (5) or (6).

In Fig. 3 we plot the ratio T
ε f

directly obtained from Eq. (3),

versus reduced density which is obtained from Eqs. (2) and (3).
The highest T

ε f
corresponds to the lowest beam energy as well

and gives the lowest density, especially for the neutrons case. The
top energy scale in the figure is for illustration purposes only and
it refers to the neutron case. In fact at the same beam energy,
p and pn might measure a different T

ε f
ratio respect to n. This re-

sult might be surprising at first, but it simply tells us that at the
lowest energies nucleons from the surface of the colliding nuclei
come into contact. Those nucleons are located in a low density
region, especially neutrons which do not feel the Coulomb field.
Thus this is the average density explored by the participant nu-
cleons. In general it is quite different from the maximum density
reached during the collisions for which other particles, such as
energetic photons, are more suitable probes [1,2]. With increas-
ing beam energy, the overlapping region increases and more and
more fermions are emitted. At about Elab/A ≈ 20 MeV/A a large
number of nucleons are excited and the emission from surface be-
comes a volume emission. This explains the minimum in the plot,
which is due to the increase of T and ε f when deeper regions of
the nuclei are affected. Fragmentation starts around the beam en-
ergy which gives the minimum in the plot, where we observe a
power law in the mass distribution as well. The lowest density (as
well as T ) is explored by the neutrons only. Notice that at high
densities the pn results are even a factor of two higher than p or
n cases. Such a feature is not clear but we will see a more reg-
ular behavior of those quantities below. It is important to stress
that the ratio plotted in Fig. 3 is always smaller than one which
confirms the approximations used in Eqs. (1)–(6).

The best way to visualize the results is by plotting the energy
density ε = 〈 Eth

A 〉ρ versus temperature as in Fig. 4. Now different
particle types scale especially at high T where Coulomb effects are
expected to be small. A rapid variation of the energy density is
observed around T ≈ 2 MeV for neutrons and T ≈ 3 MeV for the
other cases which indicates a first order phase transition [11]. No-
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Fig. 4. Energy density versus temperature. Symbols as in Fig. 1.

tice that a ‘plateau’ in the caloric curve i.e. 〈 Eth
A 〉 versus T [8,9]

has been experimentally observed around Tcl ≈ 6 MeV. Such a
value agrees with our classical approximation plotted in Fig. 1,
but differs greatly with the quantum results, Fig. 4. The critical
temperature derived taking into account quantum features differs
of almost of a factor two from temperature data obtained us-
ing classical approximations. Thus collisions of nuclei at various
bombarding energies offer the possibility to explore a phase tran-
sition sensitive to quantum effects and to study the similarities
with other quantum systems such as trapped Fermi gases [13]. It
is important to stress that our derivation is essentially based on
a free Fermi gas approximation, similarly to trapped Fermi gases
which are weakly interacting. If the interaction becomes important,
say at high densities, then the problem of strongly fermionic sys-
tems must be addressed properly. For instance the compressibility
at the relevant temperature and density should enter Eq. (3). We
know from Giant Monopole Resonance studies that the experimen-
tal compressibility can be reasonably reproduced using a Fermi gas
approximation [5,6], thus further validating Eq. (3). If this feature is
just a ‘coincidence’ must be further explored both theoretically and
experimentally especially near the phase transition. We also no-
tice that Coulomb effects become negligible at around T = 3 MeV
where the phase transition occurs. The smaller role of the Coulomb
field in the phase transition has recently been discussed experi-
mentally in the framework of the Landau’s description of phase
transitions [18].

In conclusion, in this work we have addressed a general method
for deriving densities and temperatures of fermions. The method
has a validity O ( T

ε f
)3 and higher order terms might be included if

needed. In the framework of the Constrained Molecular Dynamics
model, which includes Fermi statistics, we have discussed colli-
sions of heavy ions below 100 MeV/A and obtained densities and
temperatures at each bombarding energy. Knowing the thermal
energy of the system, we can derive the energy density and tem-
perature reached during the collision. We have been able to bridge
low energy phenomenology, i.e. particles evaporation from the sur-
face, with the fragmentation of the system. Because of its general
validity the approach could be applied to any fermionic system
but for temperatures below the corresponding Fermi energies. We
are also thinking about trapped Fermi gases [13] where the com-
plete EOS could be derived following our method. Our approach is
completely at variance with previous ones based on classical me-
chanics. The results we have obtained here in a model case confirm
that the classical approximation is unjustified. The tools we have
proposed can be easily generalized to other fermion types, tritons,
helions, etc., and a comparative study of the EOS for different par-
ticles will be very interesting. We have seen in this work that dif-
ferent particles like neutrons and protons explore different density
and temperature regions. Open problems such as Mott transitions,
pairing, etc., in low density matter might be addressed through a
detailed study of the EOS using different fermions. A more con-
clusive study could be achieved if Boson-like particles could be
included in the approach. This aspect will be the goal of our fu-
ture work.
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