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A Comparison of Posterior Cramer–Rao Bounds
for Point and Extended Target Tracking
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Abstract—This letter presents a theoretical comparative study of
the performance bounds for point and extended target tracking. As
a result of the additional information provided by the high-resolu-
tion sensors, the posterior Cramer–Rao lower bound (PCRLB) of
the kinematic target states is proven to be always smaller under the
extended target tracking framework than the point target model.
Three assumptions about the two kinds of target models, which
are satisfied in most target tracking problems, are presented as a
sufficient condition of the inequality. This comparison result sug-
gests the use of the extended target model to potentially achieve
better performance in tracking applications. The superior perfor-
mance bound is also illustrated with an elliptically modeled ex-
tended target tracking example.

Index Terms—Elliptical target model, extended target tracking,
posterior Cramer–Rao lower bound (PCRLB), tracking bound.

I. INTRODUCTION

M OST conventional target tracking algorithms consider
a target to be a single point source and estimate the

target states through the incoming positional measurements of
the target centroid. However, the point target model is no longer
suitable for many cases because recent high-resolution sensors
can resolve multiple point features on a single extended target.
The use of high-resolution measurements is referred to as ex-
tended target tracking [2]–[4].

An extended target can be modeled as a rigid body, a semi-
rigid body, or a set of point features. As a result of the com-
plexity and nonlinearity of the extended target tracking model,
the main focus of the extended target tracking problem is non-
linear filtering algorithms under various assumptions. In con-
trast to the point target tracking systems that only use the po-
sitional measurement of the target centroid, the extended mea-
surements provided by high-resolution sensors, such as target
extent, can provide extra information to improve target identifi-
cation and data association [2].

Moreover, we will prove in this letter that the extended high-
resolution measurements are not only able to provide new infor-
mation, but also to improve the estimation accuracy of the con-
ventional dynamic states of the target centroid, assuming that
there is a correlation between the conventional target states and
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the new measurements. The posterior Cramer–Rao lower bound
(PCRLB) provides a powerful tool to determine a bound on the
optimal achievable accuracy of target state estimation. An effi-
cient and general recursive formulation of the PCRLB has been
derived in [1] and will be utilized in our derivation.

The tracking problem in our discussion does not concern
the influence of missed detections and false alarms. However,
the conclusion can be generalized directly to an environment
with false alarms and missed detections by the Information
Reduction Factor (IRF) [6], Measurement Sequence Condi-
tioning (MSC ) [7], and Measurement Existence Sequence
Conditioning (MESC) [8] approaches.

II. PROBLEM STATEMENT

A. General State and Measurement Models

Let us consider the discrete-time, nonlinear filtering problem
with additive Gaussian process and measurement noise. Let
(of dimensionality ) be the state vector and be the time
step; the state dynamic equation is given by

(1)

where is the state transitional function which may be non-
linear, and is zero-mean Gaussian noise with a nonsingular
covariance matrix .

The measurement model we consider includes a single sensor
and a single measurement vector (of dimensionality ) at
each sampling time, which is formulated as

(2)

where is a (potentially) nonlinear function of the target
state, and is a zero-mean Gaussian measurement noise with
a nonsingular covariance matrix .

B. Recursive Form of the PCRLB

The closed form of the optimal solution of the nonlinear fil-
tering problem defined by (1) and (2) is usually unachievable.
However, the theoretically best achievable performance can be
calculated in the form of the posterior Cramer–Rao lower bound
(PCRLB).

Let denote any unbiased estimator of based on mea-
surements ; the covariance of has a lower
bound that is expressed as follows [5]:

(3)

where is referred to as the Fisher information matrix (FIM).
The inverse is the PCRLB. The inequality in (3) means that
the difference is a non-negative definite matrix.
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Tichavsky et al. [1] provided a Riccati-like recursion to cal-
culate the FIM . When the dynamic and measurement models
are expressed by (1) and (2), respectively, the FIM is computed
recursively as

(4)

where

(5)

is the measurement contribution, and and are the Jaco-
bians of the nonlinear functions and , i.e.,

, .

C. Point and Extended Target Tracking

To compare the performance bounds for different models, we
denote the point and extended target model with the superscripts

and , respectively. Thus, the state and measurement equations
of the point and extended models are

(6)

and

(7)

respectively, where

(8)

The relationship between the two models obeys the following
assumptions.

Assumption 1: The state vector of the point model is part of
that of the extended model:

(9)

The component represents the conventional target states,
such as the position and velocity of the target centroid, and the
extended part is the additional state of the extended target,
such as the target size and shape.

Assumption 2: The evolution of the conventional part of the
extended target state is the same as that of the point model and
is hence independent of the additional part, i.e.,

(10)

(11)

where is a function to obtain the left-upper sub-
matrix. The initial FIMs of both models also obey the submatrix
relationship:

(12)

Assumption 3: The measurement equation of the extended
target model is also an extension of that of the point target
model. Meanwhile, the new measurement is correlated with the
conventional target states, and the conventional measurement is
independent of the extended measurements:

(13)

and

(14)

As a result, the additional measurements can provide extra in-
formation about the conventional target states.

In most of the extended target tracking frameworks [2]–[4],
the tracking model consists of target centroid kinematics and
parameters of target extension, completely satisfying the three
assumptions presented above.

III. COMPARISON OF THE PCRLBS

A. PCRLBs of Point and Extended Models

The FIMs of point and extended target tracking, denoted as
and , can be calculated recursively. We prove that the

left-upper submatrix (of dimensionality ) of is
always less than , which suggests that we can potentially
obtain better tracking performance by constructing the extended
target model with the additional measurements. The problem
can be written as

(15)

B. The Self-Defined Model

Calculating the left-upper submatrix of the PCRLB of (15) is
quite inconvenient. To illustrate the influence of the new mea-
surements, we define another extended target tracking model
(denoted as superscript ), which has the same state space and
dynamic equation as the extended target model “ ”, and the
same measurement equation as the point target model “ ”; the
self-defined model is written as

(16)

(17)

where , , , and the initial
FIM .

C. Relationship Between the PCRLBs

Note that the extended part of the target state of the defined
model evolves totally independently; hence, the conventional
target state evolution is completely the same as that of the point
target model. Thus, the left-upper submatrix of
is always equal to :

(18)

Thus, (15) is equivalent to

(19)

Intuitively, from model “ ” to model “ ,” the estimation accu-
racy should be improved entirely with the help of the extended
measurements:
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Fig. 1. Elliptical model for extended target.

(20)

The proof of (20) is given in the Appendix, and (19) is a direct
inference.

IV. AN EXTENDED TARGET TRACKING EXAMPLE

The previous theoretical result is illustrated here in an ex-
ample of tracking an extended target that is modeled by an el-
lipse [2], [4]. The radar sensor obtains the measurement of the
extent of the target along the line-of-sight (LOS) and perpendic-
ular to the LOS, in addition to the conventional position mea-
surement of the target centroid, as shown in Fig. 1.

The target is moving with nearly constant velocity (NCV),
and the point tracking model is of the conventional form:

(21)

(22)

where , ,

,
, and is the time interval between measure-

ments.
The state vector of the extended target tracking problem is

extended to , where and are the length
of the main axis and the aspect ratio of the ellipse, respectively.
The dynamic and measurement models of the problem are

(23)

and

(24)

where , is composed of two parts,
as defined in (13), and is dependent on both the conven-
tional target states and the extended target states:

(25)

where and are the down-range and cross-range ex-
tent of the target, respectively, and is the angle between the
LOS and the velocity vector, denoted as the VLOS angle:

(26)

Fig. 2. Comparisons of PCRLBs using the point and extended target models
for (a) position ��� �� and (b) velocity � ��� ���.

In our simulation, the observer is static and at the origin of
the coordinate system, while the target moves with initial ve-
locity in the direction with the VLOS angle .
The initial position of the target is (15 000, 10 000). The param-
eters of the ellipse are and . The initial FIM
is . The covariance of the state
noise is , and the measure-
ment noise is zero-mean white Gaussian noise with standard de-
viations: , , , and . The time
interval is . All the parameter units are in the metric
system.

The PCRLB is calculated using the recursion (4). As shown
in Fig. 2, the tracking PCRLBs of the position and the velocity
of the target centroid using the extended model are always less
than the ones found using the point target model.

In Fig. 2(b), the PCRLBs of the velocities of the extended
target model in both the and directions decrease sharply
upon the arrival of the measurements (the initial values are
equivalent). The improvement in the bound is a result of the
measurements of target extent being dependent on the target
velocity.

V. CONCLUSION

This letter presented a theoretical comparison of the tracking
performance bound of target centroid dynamics under point and
extended target models. The PCRLB of the conventional target
states was proven to be always smaller with the extended target
model by assuming that the extended target states and measure-
ments are extensions of those of the point target (the conven-
tional parts of the target states and measurements of the two
models are the same), and the new measurements are correlated
to the conventional target states.

The theoretical result reveals that the extended target tracking
framework could potentially improve the tracking accuracy of
the dynamic states of the target centroid with the information
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provided by high-resolution sensors. The conclusion was also
verified on a common extended target tracking example.

APPENDIX

We prove the result by induction. We will show that

(27)
For convenience, we define and as

(28)

(29)

Hence, the PCRLBs for model “ ” and “ ” are written as

(30)

(31)

We denote

(32)

It follows from the inductive statement (27) that

(33)

and then we can obtain

(34)

On the other side, the measurement contributions of the two
models are defined as

(35)

and

(36)

where the Jacobians can be calculated as (from Assumption 3)

(37)
and

(38)
Thus we can then obtain

(39)

and

(40)

It then follows from (39) and (40) that

(41)

Hence,

(42)

From (30), (31), (34), and (42), we can show that

(43)

and therefore

(44)

Note that the initial FIMs for both model “ ” and “ ” are the
same , so (20) holds for all .
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