
European Journal of Operational Research 201 (2010) 966–970
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Short Communication

A note on the single machine scheduling to minimize the number
of tardy jobs with deadlines

Cheng He a,b,*, Yixun Lin a, Jinjiang Yuan a

a Department of Mathematics, Zhengzhou University, Zhengzhou, Henan 450052, People’s Republic of China
b Institute of Science, Information Engineering University of PLA, Zhengzhou, Henan 450001, People’s Republic of China
a r t i c l e i n f o

Article history:
Received 23 June 2008
Accepted 11 May 2009
Available online 18 May 2009

Keywords:
Scheduling
Number of tardy jobs
Deadline
Independent set
0377-2217/$ - see front matter � 2009 Elsevier B.V. A
doi:10.1016/j.ejor.2009.05.013

* Corresponding author. Address: Department of M
versity, Zhengzhou, Henan 450052, People’s Republic

E-mail address: hech202@sina.com (C. He).
a b s t r a c t

It is known that the single machine scheduling problem of minimizing the number of tardy jobs is poly-
nomially solvable. However, it becomes NP-hard if each job has a deadline. Recently, Huo et al. solved
some special cases by a backwards scheduling approach. In this note we present a dual approach—for-
wards greedy algorithms which may have better running time. For example, in the case that the due
dates, deadlines, and processing times are agreeable, the running time of the backwards scheduling algo-
rithm is Oðn2Þ, while that of the forwards algorithm is Oðn log nÞ.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The single machine scheduling problem of minimizing the
number of tardy jobs, denoted by 1k

P
Uj, is one of the classical

problems that have polynomial-time algorithms. Some generaliza-
tions are extensively studied in the literature (see [1]). Among
them, Lawler [5] showed that the problem with deadline con-
straint, namely 1j�djj

P
Uj, is NP-hard. In a recent paper of Huo

et al. [3], polynomial-time algorithms are presented for the follow-
ing special cases:

(1) di 6 dj implies �di 6
�dj and pi 6 pj;

(2) pi P pj implies di � dj 6 pi � pj;
(3) a combination of the above two cases.

They used a backwards scheduling approach based on the con-
cept of tight schedule.

In this note we propose a dual approach, the forwards greedy
algorithms. This approach is based on the concept of independence
system. As is well known, theory of independence system and mat-
roid plays an important role in combinatorial optimization [6]. It is
natural to ask which scheduling problems can be efficiently solved
by using this theoretic tool.

Let us recall the concept of independence system [4,6]. Let E be
a finite set and I# 2E a family of subsets of E. Then ðE;IÞ is called
an independence system if (i) ; 2 I; (ii) I 2 I; I0 # I) I0 2 I. Here,
ll rights reserved.

athematics, Zhengzhou Uni-
of China.
the subsets in I are called independent sets and those in 2E nI
are called dependent sets. Moreover, a matroid is an independence
system that the greedy algorithm solves its maximum weight inde-
pendent set problem for any weight function. In the sequel, we will
establish an independence system for the considered scheduling
models and show that a greedy algorithm works.

The rest of this note is organized as follows. In Section 2, we
study Case (1), called the case of agreeable data. In Section 3, we
apply the same approach to Case (2), called the case with convexity
condition. Section 4 discusses the case of equal processing time.

2. The case of agreeable data

We are given n jobs J1; J2; . . . ; Jn with the processing times
p1; p2; . . . ; pn, due dates d1; d2; � � � ; dn, and deadlines �d1;

�d2; . . . ; �dn

respectively. We consider the special case that di 6 dj implies
�di 6

�dj and pi 6 pj, denoted by 1j�dj; agreeablej
P

Uj in short. With-
out loss of generality, we assume that all jobs have been indexed
such that

d1 6 d2 6 � � � 6 dn; p1 6 p2 6 � � � 6 pn;
�d1 6

�d2 6 � � � 6 �dn:

We denote by E ¼ f1;2; . . . ; ng the set of jobs. Let SjðrÞ and CjðrÞ de-
note the starting time and completion time, respectively, of job j in
the schedule r.

Definition. For a subset S # E, the modified due dates are defined
by

d0j ¼
dj if j 2 S
�dj if j 2 E n S

ðj ¼ 1;2; . . . ;nÞ:
(

mailto:hech202@sina.com
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

C. He et al. / European Journal of Operational Research 201 (2010) 966–970 967
Here, jobs j 2 S are said to be normal (their due dates are un-
changed) and jobs j 2 E n S are said to be relaxed (each due date dj

is postponed to �djÞ. A subset S # E is called an independent set if there
exists a schedule r of all jobs without tardy jobs with respect to
fd0jgðCjðrÞ 6 d0j for all j). Such a schedule is called a feasible schedule
for S.

Note that if there exists a schedule without tardy jobs (i.e., all
jobs are on time), then the schedule in EDD order (the earliest due
date first rule) will do the same. So, in order to decide whether a set
S is independent or not, we need only construct the schedule rðSÞ
in the EDD order with respect to fd0jg. A set S is independent if and
only if rðSÞ is feasible (all jobs are on time). We will call this
schedule rðSÞ the checking schedule.

It is clear that a subset S0 of an independent set S is also inde-
pendent, as S0 has fewer restriction. Therefore all independent sets
of E form an independence system ðE;IÞ. Moreover, we have the
following obvious fact:

Lemma 2.1. Problem 1j�dj; agreeablej
P

Uj is equivalent to finding an
independent set with maximum cardinality in ðE;IÞ.

So our problem is to solve the maximum independent set prob-
lem in ðE;IÞ. It is known in [7] that the problem 1k

P
Uj can be

solved by the greedy algorithm of the corresponding independence
system, i.e., a dual version of the Moore algorithm. Now we apply a
similar algorithm to the present case. Assume that the problem
1j�dj; agreeablej

P
Uj is feasible (i.e., ; is independent). Otherwise

we have nothing to do.

Greedy Algorithm

(0) Let E ¼ f1;2; . . . ;ng be the set of jobs in EDD order with respect
to fdig. Set S ¼ S0 ¼ ;.

(1) If E ¼ ;, then stop.
(2) Choose a job k 2 E with the smallest processing time pk; when

there is a tie, choose the one with the smallest dk (and further
the smallest �dk). Set E :¼ E n fkg.

(3) If S [fkg is independent, then set S :¼ S [fkg; otherwise set
S0 :¼ S0 [fkg. Return to (1).

To prove the correctness of the algorithm, let us see the follow-
ing key lemma.

Lemma 2.2. Consider the first step of the algorithm. If S ¼ f1g is
independent, then there exists a maximum independent set I contain-
ing job 1 and 1 is scheduled first in a feasible schedule for I. If S ¼ f1g
is not independent and �d1 6 d2, then there exists a maximum
independent set I such that 1 is scheduled first in a feasible schedule
for I (but 1 R I).

Proof. We show the first statement. Let I be a maximum indepen-
dent set but 1 R I. Suppose that i is the first job in r ¼ rðIÞ, where
i – 1. Then p1 6 pi and �d1 6

�di. We construct a schedule r0 from r
by exchanging i and 1. Since Ciðr0Þ ¼ C1ðrÞ 6 �d1 6

�di and
C1ðr0Þ ¼ p1 6 d1, we see that i meets its deadline and 1 is on time
with respect tor0. Moreover, the jobs between 1 and i are completing
no later (as p1 6 pi) and those after i are unchanged. Therefore r0 is a
feasible schedule for I� ¼ ðI n figÞ [f1g and 1 is scheduled first in it.

The second statement is more obvious. Since f1g is dependent,
it cannot be included in any maximum independent set. So
d01 ¼ �d1 6 d2 6 � � � 6 dn, thus 1 can be scheduled first in an EDD
order with respect to fd0jg, i.e., scheduled first in rðIÞ for a
maximum independent set I. This completes the proof. h

Theorem 2.3. Greedy Algorithm correctly solves the problem
1j�dj; agreeablej

P
Uj.
Proof. We show the result by induction on n. It is trivially true for
n ¼ 1. Suppose the assertion holds for the case with less than n
jobs. By Lemma 2.2, if S ¼ f1g is independent, then there exists
an optimal solution I containing job 1 and 1 is scheduled at the first
position of its feasible schedule. So we can solve the problem by
fixing 1 at the first place, as this does not change the optimal value.
Using the inductive hypothesis to the remaining n� 1 jobs, the
result follows.

If S ¼ f1g is dependent and �d1 6 d2, we can also fix 1 at the first
place and use the inductive hypothesis. Otherwise ð�d1 > d2Þ we
postpone job 1 and consider job 2. Let fkg be the first independent
set in the algorithm. Then d0i ¼ �di for 1 6 i 6 k� 1. If �d1 6 dk, then 1
is always scheduled at the first place for an EDD order of fd0jg. Thus
1 can be fixed at the first place as before. Otherwise
dk <

�d1 6 � � � 6 �dk�1, we claim that there exists a maximum
independent set I containing job k which is at the first place of
r ¼ rðIÞ. To see this, assume that I is a maximum independent set
with the first job i, where i > k. So pk 6 pi and �dk 6

�di. Similar to
Lemma 2.2, let r0 be the schedule which results from r by
exchanging i and k. Then Ciðr0Þ ¼ CkðrÞ 6 �dk 6

�di and the jobs
between i and k are completing no later (as pk 6 pi). Thus r0 is a
feasible schedule for I� ¼ ðI n figÞ [fkg, proving the claim. There-
fore we can fix k at the first place and go to the induction
procedure, completing the proof. h

The above Greedy Algorithm is only an elementary framework,
which may take much time to decide the independence (feasibility).
In the following we propose an implementation scheme which can
save some running time. Herein, the current S is not necessarily an
independent set, but just a temporary candidate and some jobs may
be dropped from it later. S0 is also a temporary set for abandoned
jobs (its jobs will be reconsidered in the subsequent steps). More-
over, we use E to denote the current set of jobs under consideration,
which may include some ones in S0. This E is always treated as a list
sequenced by the EDD order with respect to the modified due dates
fd0jg. So, if a job k that replaces dk by �dk is put into E, we have to re-
order the jobs in E [fkg. Suppose that E was originally sequenced
by d0j1 6 d0j2 6 � � � d

0
jm

. Then k will be inserted at the place q such that
d0jq�1

6
�dk 6 d0jq . That is, make them to satisfy the new EDD order. It is

known in sorting technique that this can be done in Oðlog jEjÞ time
(say, by using binary search). In addition, we denote
S ¼ fi1; i2; . . . ; ilg as an ordered set (l ¼ jSj). Notice that we use the
updating dk to represent d0k in the algorithm process.

Algorithm 1.

Step 0: Sequence all jobs in E ¼ f1;2; . . . ;ng so that
d1 6 d2 6 � � � 6 dn and pi 6 pj if di ¼ djði < jÞ, and further
�di 6

�dj if di ¼ dj and pi ¼ pjði < jÞ.
Step 1: Construct the initial schedule p0 ¼ rð;Þ, i.e., the schedule

according to the order of E. If p0 is infeasible with respect
to f�djg, then stop (the problem is infeasible). Otherwise let
S ¼ S0 ¼ ;; t ¼ l ¼ 0.

Step 2: If E ¼ ;, then stop (the current S is a maximum indepen-
dent set).

Step 3: Take the first job k in E.

(3.1) If t þ pk 6 dk and k R S0, then set E :¼ E n fkg; l :¼

lþ 1; S :¼ S [fkg; il :¼ k, and t :¼ t þ pk.
(3.2) If t þ pk 6 dk and k 2 S0, then set E :¼ E n fkg;

t :¼ t þ pk.
(3.3) If t þ pk > dk and k R S0, then set S0 :¼ S0 [fkg; dk :¼ �dk,

and adjust the order of E (shift k to the place satisfying
EDD order).

(3.4) If t þ pk > dk and k 2 S0ðdk ¼ �dkÞ, then we have t > 0
(otherwise pk >

�dk, the problem is infeasible, con-
tradicting the decision of Step 1). Set

968 C. He et al. / European Journal of Operational Research 201 (2010) 966–970
S :¼ S n filg; S0 :¼ S0 [filg; dil :¼ �dil ; E :¼ E [filg, and
adjust the order of E (shift il to the place satisfying
EDD order). Reset t :¼ t � pil

and l :¼ l� 1.

Return to Step 2.
Note that when we go back from (3.4) to Step 2 (namely to Step
3), job k is still contained in E as its first element. So we execute
Step 3 on k again. If (3.2) occurs, then we get rid of k from E; If (3.4)
occurs, the last job of S (the current il) is shifted from S to S0. We
keep on running the procedure in this way.

Theorem 2.4. Algorithm 1 correctly solves the problem
1j�dj; agreeablej

P
Uj in Oðn log nÞ time.

Proof. Let SI and S0I be the final sets of S and S0, respectively, in
Algorithm 1. Meanwhile, let S0 and S00 be the final sets of S and S0,
respectively, in the Greedy Algorithm. We still use S and S0 to
denote the current sets in the specific algorithm. When the algo-
rithm terminates, we get a schedule r, for which all jobs j 2 SI

are on time ðCjðrÞ 6 djÞ and all jobs j 2 S0I meet their deadlines
ðCjðrÞ 6 �djÞ. So SI is an independent set and

P
Uj ¼ jS0Ij. To prove

that SI is a maximum independent set, we may compare it with
the maximum independent set S0 obtained by the Greedy Algo-
rithm. For any job k 2 S0I , we put it into S0 if and only if (3.3) or
(3.4) is executed (putting it into S will violate the feasibility). When
executing the Greedy Algorithm on this job k, we can see the same
result that S [fkg is not independent. So k 2 S00. Therefore S0I # S00,
and thus S0 # SI . Since S0 is maximum, so is SI . In this way, we show
the correctness of the algorithm. Let us next see the running time.
Step 0 and Step 1 take Oðn log nÞ time for sorting the jobs. We call
Step 2 and Step 3 a stage. During the process of algorithm, each
job is examined at most twice: one time for due date dk (entering
S) and one time for deadline �dk (entering S0). Therefore the number
of stages is at most 2n. In each stage, (3.1) and (3.2) can be exe-
cuted in constant time. In (3.3) and (3.4), adjusting the order of E
(inserting a number into a nondecreasing sequence) can be done
in Oðlog nÞ time. So the overall running time is Oðn log nÞ. This com-
pletes the proof. h
3. The case with convexity condition

This section deals with the case with condition that pi P pj im-
plies di � dj 6 pi � pj, i.e., pj þ di 6 pi þ dj. In many combinatorial
optimization problems, this type of conditions are called Monge
condition or discrete convexity (see Burkard [2]). So we call the con-
dition ‘‘pi P pj) di � dj 6 pi � pj” a convexity condition here and
denote this case by 1j�dj; convexj

P
Uj.

Note that all data di; pi;
�di are not necessarily agreeable now.

However, we still number all jobs of E ¼ f1;2; . . . ;ng in EDD order
ðd1 6 d2 6 � � � 6 dnÞ. Of course it holds that di 6

�di for i ¼ 1;2; . . . ;n.
As before, we call a subset S # E an independent set if there exists a
schedule such that all jobs are on time (feasible) with respect to
the modified due dates

d0j ¼
dj if j 2 S
�dj if j 2 E n S

ðj ¼ 1;2; . . . ; nÞ:
(

We may take the schedule of EDD order with respect to fd0jg as the
checking schedule, denoted by rðSÞ. It is clear that if S # I and I is
independent, then S is also independent and the checking schedule
of I is also feasible for S. So ðE;IÞ constitutes an independence sys-
tem, where I# 2E is the family of all independent sets. The main
goal of this section is to show that the Greedy Algorithm mentioned
above also works.
It should be emphasized that in the checking schedule rðSÞ, the
jobs of S are always sequenced in EDD order of fdig, regardless of
the order of fpig, and the jobs of E n S are in EDD order of f�dig.
Two types of jobs in S and in E n S may appear alternately, depend-
ing on the order of fd0ig. In particular, the first chosen job k1 is not
necessarily put at the first place of the corresponding feasible
schedule.

Lemma 3.1. In Greedy Algorithm, suppose that the current S is an
independent set included in some maximum independent set I. Let
k 2 E n ðS [S0Þ be a job with the smallest processing time pk. If S [fkg
is independent, then there exists a maximum independent set I�

including S [fkg.

Proof. Suppose that the maximum independent set I including S
does not contain k. Then D ¼ I [fkg is a dependent set and thus
strictly includes S [fkg. So I n S – ;. We focus our attention on
the following two schedules (job sequences): r ¼ rðIÞ is the check-
ing schedule of I, and r0 ¼ rðS [fkgÞ is the schedule for checking
the independence of S [fkg during the greedy algorithm.

Let us first show that there exists some i 2 I n S preceding k in r.
If this is not the case, i.e., all jobs in I n S are after k in r, let A be the
set of jobs scheduled not later than k in r. Then A \ ðI n SÞ ¼ ;.
Denote by rA the partial schedule of A in r, and denote by r0

A the
partial schedule of A in r0. The only difference of rA and r0

A may be
the position of k: since k is changed from a relaxed job in rA to a
normal job in r0

A; k may be moved earlier to meet its due date dk.
Now we construct a new schedule r0 from r by replacing rA by r0

A.
Then r0 is a feasible schedule of I [fkg, a contradiction.

Therefore I0 ¼ fi 2 I n S : i precedes k in rðIÞg – ;. Let i0 be the
job in I0 with the largest completion time Ci0

ðr0Þ. So
�di0
¼ maxf�di : i 2 I0g. It follows from the algorithm that pk 6 pi0

.
We proceed to show the following:

Claim I� ¼ ðI [fkgÞ n fi0g is independent.

This transformation from I to I� means that i0 is changed from a
normal job (with respect to di0) to a relaxed job (with respect to �di0),
k is changed from a relaxed job (with respect to �dk) to a normal job
(with respect to dk). There are two cases to consider:

Case 1: �di0 P CkðrÞ.
We construct a schedule r0 from r by exchanging i0 and k. By
the convexity condition, dk P di0 � ðpi0 � pkÞP
Ci0 ðrÞ � ðpi0 � pkÞ ¼ Ckðr0Þ. So job k becomes an on-time job in
r0. On the other hand, since Ci0 ðr0Þ ¼ CkðrÞ 6 �di0 ; i0 becomes a
relaxed job satisfying the deadline. Furthermore, as pk 6 pi0 ,
the jobs between i0 and k are completing no later in r0 than
in r. Hence r0 is a feasible schedule for I� ¼ ðI [fkgÞ n fi0g.
Case 2: �di0 < CkðrÞ, i.e., �di < CkðrÞ for all i 2 I0.
Denote T ¼ CkðrÞ. Then the jobs scheduled in ½0; T� for r are the
same as those in ½0; T� for r0. Furthermore, for any job j scheduled
in ½Ci0

ðr0Þ; T� for r0, due to the choice of i0, we see that either j 2 S
(with d0j ¼ dj) or j 2 E n I (with d0j ¼ �dj). So, from r0 to r, the order of
i0 and j is unchanged, as d0j is unchanged. Therefore, this job j must
be scheduled after i0 in r.

Now we construct a schedule r0 from r by the following
transformation:

(a) Take i0 and the jobs in ½Ci0 ðr0Þ; T� for r0 and schedule them
in the same time interval as that in r0.

(b) Shift k earlier to the place that Ckðr0Þ ¼ Ci0 ðrÞ � pi0 þ pk.
(c) Keep the order of other jobs in ½0; T� unchanged and keep the

jobs after T fixed.

By (a), i0 and the jobs between Ci0 ðr0Þ and T satisfy their
modified due dates (since they are scheduled as in r0). By (b) and
the convexity, Ckðr0Þ ¼ Ci0 ðrÞ � pi0

þ pk 6 di0 � pi0 þ pk 6 dk. So k is

C. He et al. / European Journal of Operational Research 201 (2010) 966–970 969
on time. By (c) and pk 6 pi0
, the jobs between k and i0 are

completing no later in r0 than in r. Furthermore, the jobs before
Skðr0Þ are scheduled as in r. So r0 is a feasible schedule for I�.

To summarize, the claim is proved, as required. h

Theorem 3.2. The above-mentioned Greedy Algorithm correctly
solves the problem 1j�dj; convexj

P
Uj in Oðn2Þ time.

Proof. By Lemma 3.1, throughout the algorithm process, the cur-
rent set S is always included in an optimal solution I�. So S is opti-
mal whenever the algorithm terminates. It is clear that the
algorithm has at most n iterations and each iteration takes OðnÞ
time to decide the independence. Hence the overall running time
is Oðn2Þ. h
4. The case of equal processing time

This section studies the case of equal processing time, denoted
by 1j�dj; pi ¼ pj

P
Uj, which has a simple combinatorial structure.

We first formulate this case as a bipartite matching problem. So
it is a special case of two-matroid intersection problem [4,6]. Let G
be a bipartite graph with bipartition ðU; VÞ, where
U ¼ fJ1; J2; . . . ; Jng is the set of jobs, V ¼ fT1; T2; . . . ; Tng is the set
of positions; and ðJi; TjÞ is an edge if and only if jp 6 �di. The weight
of each edge ðJi; TjÞ is defined by

wij ¼
0 if jp 6 di

1 if di < jp 6 �di:

�

It is easy to see that the scheduling problem 1j�dj; pi ¼ pj
P

Uj is
equivalent to finding a minimum weight perfect matching of G. So
it can be efficiently solved by bipartite matching algorithms (see
[4,6]). However, we show that a variant of Greedy Algorithm
works. Instead of considering in the order of fpjg, we pay attention
to the order of deadlines f�djg.

Algorithm 2

Step 0: Sequence all jobs in E ¼ f1;2; . . . ;ng in the order
�d1 6

�d2 6 � � � 6 �dn and di 6 dj if �di ¼ �djði < jÞ. Set S ¼ S0 ¼ ;.
Step 1: Check whether the initial schedule (with S ¼ ;) is feasible

or not. If not, stop (the problem is infeasible).
Step 2: If E ¼ ;, then stop (S is optimal).
Step 3: Choose the first job k in E. Set E :¼ E n fkg.
Step 4: If S [fkg is independent, then set S :¼ S [fkg; otherwise

set S0 :¼ S0 [fkg. Return to Step 2.

To see the correctness of the algorithm, we need a result similar
to Lemma 3.1.

Lemma 4.1. In Algorithm 2, suppose that the current S is an
independent set included in some maximum independent set I. Let
k 2 E n ðS [S0Þ be a job with the smallest deadline �dk. If S [fkg is
independent, then there exists a maximum independent set I�

including S [fkg.

Proof. The proof is also similar to that of Lemma 3.1. Suppose that
k R I. Then I [fkg strictly includes S [fkg and thus I n S – ;. Let
r ¼ rðIÞ and r0 ¼ rðS [fkgÞ. It is clear that
I0 ¼ fi 2 I n S : i precedes k in rg– ;. Let i0 be the job in I0 with
the smallest due date di0 . Then �dk 6

�di0 by the choice of k in the
algorithm. There are two cases to consider:

(1) If Ci0 ðrÞ 6 dk, then we construct a schedule r0 from r by
exchanging i0 and k. Clearly, Ckðr0Þ ¼ Ci0 ðrÞ 6 dk;Ci0 ðr0Þ ¼
CkðrÞ 6 �dk 6

�di0 . Hence r0 is feasible for I� ¼ ðI [fkgÞ n fi0g.
(2) If Ci0 ðrÞ > dk, then we construct r0 from r as follows: (a) shift
i0 to the place of k; (b) shift k earlier to the place that
Ckðr0Þ ¼ Ckðr0Þ; (c) fix the order of other jobs. It is easy to ver-
ify that r0 is feasible for I�. In fact, Ci0 ðr0Þ ¼ CkðrÞ 6 �dk 6

�di0 . On
the other hand, let t0 ¼ Si0 ðrÞ and let A be the set of jobs sched-
uled before t0 in r. Then those of A [fkg can be scheduled
before t0 þ p as in r0. So Ckðr0Þ ¼ Ckðr0Þ 6 dk. And the other
jobs are feasible.

The proof is completed. h

Theorem 4.2. Algorithm 2 correctly solves the problem
1j�dj; pi ¼ pj

P
Uj in Oðn2Þ time.

Proof. The correctness is based on Lemma 4.1. To see the running
time, observe that the sortings in Step 0 and Step 1 take Oðn log nÞ
time. And the number of iterations (from Step 2 to Step 4) is at most
n. In each iteration, the independence decision takes OðnÞ time.
Therefore the overall running time is Oðn2Þ, as desired. h

The above algorithm could be called a forwards greedy algo-
rithm. Symmetrically, we have a backwards greedy algorithm as
follows.

Algorithm 2*.

Step 0: The set of jobs in E ¼ f1;2; . . . ;ng is treated as an ordered
set with the order that d1 6 d2 6 � � � 6 dn (and �di 6

�dj if
di ¼ djði < jÞ). Meanwhile, we keep another ordered set
D ¼ fi1; i2; . . . ; ing with the order that �di1 6

�di2 6 � � � 6 �din

(and dik 6 dil if �dik ¼ �dil ðk < lÞ), where fi1; i2; . . . ; ing is a
permutation of f1;2; . . . ;ng. We use a doubly linked list
L to store each job with two corresponding labels of E
and D. Let S ¼ ; and t ¼ Rn

j¼1pj.
Step 1: If E ¼ ;, then stop (S is optimal).
Step 2: Take the last job k of E. If dk P t, then set S :¼ S [fkg and

E :¼ E n fkg;D :¼ D n fkg. Set t :¼ t � p and return to Step
1.

Step 3: If dk < t, then take the last job j of D. If �dj < t, then stop
(the problem is infeasible). Otherwise, choose j0 as the
job with the smallest due date dj0 from among those j
with �dj P t. Set E :¼ E n fj0g and D :¼ D n fj0g. Set
t :¼ t � p and return to Step 1.

Theorem 4.3. Algorithm 2* correctly solves the problem
1j�dj; pi ¼ pj

P
Uj in Oðn log nÞ time.

Proof. To show the correctness, it suffices to have a claim that
there exists an optimal schedule such that job k (in the case of Step
2) or job j0 (in the case of Step 3) is scheduled last. If this is not the
case, we may exchange it to the last place without changing the
cost. We next consider the running time. In Step 0, we sort the jobs
in E and D (and build the list L) in Oðn log nÞ time. There are at most
n stages (Steps 1–3) in the algorithm. In each stage, Step 2 can be
performed in constant time. Note that when a job k is taken from
E, we can get the same element in D by the doubly linked list L,
and then delete it from both E and D. In Step 3, the construction
of Jt ¼ fj 2 D : �dj P tg takes Oðlog nÞ time. In order to choose j0

from Jt with the smallest dj, we define a sequence (or queue) Q
of Jt in the nondecreasing order of due dates. This can be done by
sorting in OðjJt j log nÞ time. The first element of Q is the required
job j0, which is deleted immediately after Step 3 is executed. In
the next time that Step 3 is executed, for the new t, some more jobs
would be put into Jt . Then we can insert these new elements into
sequence Q in Oðh log nÞ time, where h is the number of new ele-
ments. And the first element of Q is the new j0. Let n1;n2; . . . ;nl

970 C. He et al. / European Journal of Operational Research 201 (2010) 966–970
be the number of new elements in Jt when Step 3 is executed suc-
cessively. Then the total running time of choosing j0 in all times of
Step 3. Oðn1 log nþ n2 log nþ � � � þ nl log nÞ ¼ Oðn log nÞ. Moreover,
when j0 is taken from D, we can locate it in E by the list L and delete
it immediately. Therefore, the overall running time is Oðn log nÞ, as
desired. h
Acknowledgements

The authors would like to thank the referees for their helpful
comments. This work was supported by NSFC (Grant No.
10671183) and NFSC-RGC (Grant No. 70731160633) and SRFDP
(Grant No. 20070459002).
References

[1] P. Brucker, Scheduling Algorithms, third ed., 2003.
[2] R.E. Burkard, Monge properties, discrete convexity and applications, European

Journal of Operational Research 176 (2007) 1–14.
[3] Y.M. Huo, J.Y.T. Leung, H.R. Zhao, Bi-criteria scheduling problems: Number of

tardy jobs and maximum weighted tardiness, European Journal of Operational
Research 177 (2007) 116–134.

[4] B. Korte, J. Vygen, Combinatorial Optimization: Theory and Algorithms, fourth
ed., Springer-Verlag, 2008.

[5] E.L. Lawler, Scheduling a single machine to minimize the number of late jobs,
Unpublished manuscript.

[6] E.L. Lawler, Combinatorial Optimization: Networks and Matroids, Holt Rinehart
and Winston, New York, 1976.

[7] Y.X. Lin, X.M. Wang, Necessary and sufficient conditions of optimality for some
classical scheduling problems, European Journal of Operational Research 176
(2007) 809–818.

	A note on the single machine scheduling to minimize the number of tardy jobs with deadlines
	Introduction
	The case of agreeable data
	The case with convexity condition
	The case of equal processing time
	Acknowledgements
	References

