一氧化碳合成金刚石薄膜的形貌和结构分析*

刘燕燕¹²) E. Bauer-Grosse²) 张庆瑜¹⁺

1) 大连理工大学三束材料改性国家重点实验室,大连 116024)

2) Laboratoire de Science et Génie des Surfaces, Ecole des Mines, Nancy 54042, France) (2006年11月6日收到,2007年3月26日收到修改稿)

利用微波等离子体化学气相沉积(MPCVD)技术,采用偏压增加成核(BEN),两步生长的方法在一氧化碳(CO) 和氢气(H₂)的环境下制备了金刚石薄膜.利用扫描电子显微镜(SEM),Raman 光谱仪和透射电子显微镜(TEM)对金 刚石薄膜的形貌和结构进行了分析.研究发现金刚石晶粒在第一步成核及生长的过程中产生了层错和孪晶,而在 第二步的生长过程中产生的层错和孪晶很少 最终形成的金刚石晶粒外表面比较光滑,包含有近五次对称或者平 行的片状的孪晶,并可以观察到少量的位错.而在样品的边缘由于等离子体的不均匀产生了比样品中心成核密度 低的区域.在这个区域中,发现了一个新的非金刚石的碳结构.

关键词:金刚石薄膜, Raman 光谱, 透射电子显微镜, 结构 PACC:6855

1.引 言

金刚石具有优异的物理性能 在红外探测、表面 声波器件,高温半导体器件以及超硬涂层等众多领 域有着广泛的应用前景. 有关金刚石异质外延成核 的研究也取得了一些重要进展[1-5].化学气相沉积 (CVD) 金刚石薄膜的制备一般采用甲烷(CH_)和氢 气(H,)的混合气体^[6-8]作为反应气体.人们发现天 然金刚石中一般含有氮(N),所以在反应气体中掺 入少量氮气也在金刚石薄膜的合成中经常使 用^[9-12].另外,研究发现在合成过程中添加含氧(0) 气体也可以制备高质量的金刚石薄膜,并能够提高 其生长速率^[13-16]. Bachmann 等人^[17]从大量的实验 中归结出掺 0 金刚石薄膜的质量跟 C:H:O 的原子 比例有关,在 C-H-O 的三元比例图中,仅在一定的 区域内才能有效地合成金刚石薄膜、后来使用含氧 气体的作者无论是采用 C₂H₂ + O₂ + Af^[18], CO₂ + CH4^[19 20]还是 CO + CH4 + H2^[21]均参考 Bachmann 等 人的结果, 许多作者^[13,19,22]指出:等离子体中的 CO 基对于金刚石薄膜的沉积起很大作用,可能是金刚 石薄膜合成中除了 C, ,CH ,CH, ,CH, 等粒子以外的

另一种金刚石沉积的前驱体,但是单纯使用一氧化碳 CO 和氢气的混合气体沉积金刚石薄膜的研究并不多见.另外有许多作者对金刚石中的缺陷进行了研究^[23]本文也考察了使用 CO 和 H₂ 混合气体制备的金刚石薄膜中的层错、位错等缺陷.

本文采用两步法制备了金刚石薄膜,第一步用 CH₄和H₂的混合气体在偏压增加成核(BEN)条件 下成核并生长 30 min,然后在 CO 与 H₂的混合气体 下生长 10 h 制备金刚石薄膜. 对金刚石薄膜的中心 区域和边缘区域的形貌和结构进行了分析,并在金 刚石薄膜的边缘处发现了一种非金刚石的碳结构.

2. 实验方法

金刚石薄膜在改进的微波等离子体化学气相沉 积(MPCVD)设备^[24]中沉积,微波频率为2.45 GHz. 使用镜面抛光的 n型 Sf(001)片(规格为10 mm×10 mm×0.375 mm)作为基体.为了去除基体表面的杂 质和氧化物,先后用丙酮和氢氟酸对基体进行清洗, 然后放入反应器中.在背底真空为5×10⁻² Pa下使 用交变电压对样品进行预加热2.5 min,使基体提高 到一定的温度,以便于进一步成核生长.首先,对基

^{*}中法先进研究计划(批准号:MX01-02)和法国国际科学合作项目资助的课题.

[†] E-mail:qyzhang@dlut.edu.cn

片施加 – 150 V 的偏压 1.5 min ,然后 ,为了避免金刚 石晶粒的粗化 ,在低甲烷比率($CH_4:H_2$ 为 0.5:99.5) 下沉积 30 min(第一步) ;最后在 CO 和 H_2 的混合气 体($CO:H_2$ 为 10:90)中生长 600 min. 具体沉积参数 列于表 1.

衣 1 並 附 口 溥 朕 儿 枳 参 奴			
	第一步		第二步
	BEN	生长 1	生长 2
气压/kPa	2.67	2.67	2.67
微波功率/W	400	400	250
气体体积比率	$4:96(CH_4:H_2)$	0.5:99.5(CH ₄ :H ₂)	10:90(CO:H ₂)
基体温度/K	1200	1123	1123
气体总气体流 率/cm ³ ・min ⁻¹	400	150	150
时间/min	1.5	30	600

采用 Philips 公司生产的 XL30S FEG 型扫描电 子显微镜 SEM 和 CM200 型 Tecnai F20 型透射电子 显微镜(TEM)对薄膜的表面形貌和结构进行了表 征.并采用英国 Renishaw 公司的 invia 型光谱仪组 装的拉曼显微镜对薄膜进行了检测,激光波长为 632.8 nm,功率约为 35 mW.

3. 结果和讨论

3.1.SEM 分析

使用 SEM 对金刚石薄膜的表面形貌进行了分

析 发现金刚石薄膜比较均匀 只在四周很窄的边缘 处有一个晶粒密度逐渐变小的区域,如图1所示. 图 1(a) (b) 显示中心区域的金刚石薄膜非常致密, 金刚石晶粒密度较高 ,约为 2.8 × 10⁹/cm² ,这要比在 CH₄和 H, 的混合气体中掺入少量 N,^[12]生长的薄膜 的晶粒密度 4.8×10^8 / cm² 大得多. 金刚石晶粒的尺 寸大都在 1 um 以下,外露面为 {111) 面、 {100) 或者 {110)面. 金刚石薄膜中晶粒的取向随机 晶粒外形 多样,与以前的工作^[12]中掺N金刚石薄膜的结构特 征明显不同,由于二者的成核和初始生长条件是完 全相同的 因此 晶粒密度和表面形貌的差异说明 0 对金刚石各个面的生长速度的影响不大,不存在择 优生长,从图1(b)中还可以看到金刚石晶粒的外露 面都比较光滑,面与面相交的棱线很清晰,可以观 察到许多呈现近五次对称以及具有平行棱线的晶 粒. 近五次对称的晶粒被许多学者研究过[25-27],确 认是由顺次孪生的 Σ 3 次孪晶形成的.

沿着样品边缘有宽度大约为 0.1 mm 的区域比 样品中心区域的晶粒密度小很多,并且从中心向边 缘密度逐渐降低.图1(c)为边缘处中间地带的 SEM 图像,可以看到这个区域的金刚石没有形成连续的 薄膜,大多数晶粒的尺寸大约为1—2 µm,要比中心 区域的晶粒尺寸大,但是在大晶粒之间也存在一些 尺寸比较小的晶粒.边缘处金刚石晶粒的表面也比 较光滑,具有近五次对称的孪晶更容易被观察到,而

图 1 薄膜中心区域和边缘区域的 SEM 形貌 (a)(b)中心区域(c)(d)边缘区域

具有平行棱线的晶粒很少.另外从图 ((d)中可以观察到在金刚石晶粒的周围有比较暗的区域(箭头所示).许多文献^[18—30]指出 CVD 制备的金刚石薄膜中 经常会存在石墨相或者其他成分,这些暗区可能是 非金刚石相存在的区域.

3.2. Raman 光谱分析

使用 Raman 光谱对金刚石薄膜的不同区域进 行了分析. 发现从不同区域得到的 Raman 光谱有很 大的差别. 如图 2 所示,其中光谱 a 来自靠近样品 中心的区域, b 来自边缘区域较大晶粒聚集处, c 来 自更加靠近边缘的晶粒稀疏区域. 由于 Raman 光谱 与扫描电镜是分立的检测设备,所以 Raman 光谱所 采集的区域与图 1 中的扫描电镜显示的区域只是大 体对应. 从 Raman 光谱中可以看到,光谱中存在这 几个主要的峰:1162,1466,1532,1875 cm⁻¹,此外在 1333 cm⁻¹附近有标示金刚石结构的碳的特征峰,但 强度较弱。图中插图是放大的结果。在主要的峰中, 1162 cm⁻¹ 的峰为纳米金刚石^[31-33]或者杂质 Polyacetylene^[28,29]的散射峰. 文献[28]和[29]也把 1466 cm⁻¹作为与 1162 cm⁻¹的关联峰,同归为杂质 Polyacetylene 的峰. 而在另外的文献中, 一般把 1466 与 1532 cm⁻¹的峰归结为一个漫散峰,认为是非晶 碳^[34]或者石墨^[35]的峰. 在我们的 Raman 光谱中还 出现了一个比较强的峰位于 1875 cm⁻¹ 这个峰在掺 N的薄膜^{12]}中也出现过,但峰强较弱而且峰形比较 漫散, 文献中很少出现这个峰, 或者采谱的范围没

图 2 金刚石薄膜的 Raman 光谱 采集位置由 a 到 c 为从中心到 边缘的不同区域

有达到这个波数.对比从不同位置采集的 Raman 光 谱,可以看到靠近中心区域的光谱峰值较少,而在边 缘区域的光谱在中心区域光谱的基础上产生了众多 的小峰,而这些众多的峰不可能全部由金刚石、石墨 或者非晶碳来标识,说明极有可能具有 C—C 双键 或者与 C—C 单键混合的碳结构存在于边缘区 域^[36,37]

3.3.TEM 分析

3.3.1. 样品中心区域

对样品中心区域的金刚石薄膜和硅基体的界面 进行了 TEM 分析. 图 3 为金刚石薄膜与 Si 基体界 面的 TEM 图像和界面处衍射, 从图 3(b)的界面衍 射图(SAD)中,可以发现金刚石晶粒的衍射形成环 状.在 Si 的 {111 } 衍射点和金刚石(用 D 表示)的 {111 /衍射点之间有弱的 SiC 的衍射出现 如箭头所 示. 在 SiC 衍射出现的方向上, 金刚石的衍射强度 比较集中 而在没有 SiC 衍射出现的地方 ,金刚石的 衍射相对较弱.图3(c)是界面处的高分辨像.图像 是经过快速傅里叶变换(FFT)后再变换得到的,在 这个过程中部分消除了杂散光的影响.经过处理后 的图像可以清楚地看到 SiC 位于图像的左下方,处 于 Si 基体和金刚石之间. 而且可以看到 SiC 的条纹 不很规则 这就是为什么在图 3(b)的衍射图中 SiC 的衍射比较漫散的原因.而 3 c)的右边的金刚石晶 粒和 Si 基体之间并没有发现 SiC,说明 SiC 只在界面 的部分区域存在,从图 3 c)中还可以看到金刚石在 成核阶段含有很多层错.

对中心区域平面样品的不同位置进行了减薄, 得到各生长阶段金刚石晶粒的 TEM 形貌像. 首先, 对平面样品进行双面 Ar⁺ 离子减薄,得到金刚石靠 近硅基体的成核时期的形貌. 可以看到,成核期的 金刚石晶粒形状各异,结构比较复杂,如图4所示. 图4(a)中的金刚石晶粒是一个多晶晶粒,包含不同 取向的微晶晶粒,而图4(b)中则明显是一个呈现近 五次对称的晶粒.

使用同样方法,对 Si 基体一面减薄的时间长一些,便可得到处于生长中期的金刚石晶粒的形貌. 图 <u>f</u>(a)为形貌像,可以看出金刚石晶粒是多晶晶粒,每个单晶粒的内部衬度比较均匀,说明单晶粒中的缺陷比较少.从 <u>f</u>(b)中的衍射花样可以看出,多晶晶粒中存在着孪生(D与 D'),但更多是取向漫散的单晶粒,其(111)的衍射形成一个圆圈,还可以看

图 3 中心区域界面的 TEM 图像(a)和 SAI(b),衍射图中观察到弱的 SiC 衍射(箭头所示)存在于 Si 与 D 的衍射点之间 (c)经过 FFT 的反变换处理的界面处的高分辨像

图 4 靠近硅基体的金刚石成核时期的形貌,显示金刚石核多为多晶结构 (a)为较复杂的多晶晶粒 (b)为近五次对称的孪晶晶粒

图 5 生长中期的金刚石晶粒的形貌(a)和其 SAD(b)

到由于层错导致的拉线.

另外,只对 Si 基体的一面进行减薄,可以获得 薄膜生长后期金刚石晶粒的形貌.图6给出了一个 具有平行棱线的金刚石晶粒的 TEM 形貌,可以与 SEM 图像中具有平行棱线的晶粒对应.对 TEM 衍 射花样和暗场像(DF)进行分析,得知这是一个含有 片状孪生区域的晶粒,每个孪生区域互相平行.图6 (a)中的 SAD 为[011] 种的衍射花样,白圈所示的衍 射点为互为孪生关系的晶粒的衍射,分别取这两衍 射点作中心暗场像得到图(b)和(c).此晶粒的孪生

图 6 薄膜生长后期的金刚石晶粒中包含的片状孪晶 (a)明场像和 SAD (b)暗场像 DF1 (c)暗场像 DF2

区域大致可分为 5 个平行部分,每相隔的部分为取 向相同的孪生区域.这说明我们在图 ((b)中观察到 的具有平行棱线的晶粒应该为具有平行的片状孪生 区域的晶粒.在生长后期的晶粒中还是可以观察到 少量的层错(图 ((a)箭头所示)和位错(图 ((c)中白 框所示)等缺陷.衍射中的拉线也说明了层错的存 在.同样可以看到,晶粒中除了等厚条纹造成的衬 度以外,每个单晶粒的衬度都比较均匀,与掺 N 的 样品相比^[12],晶粒中的缺陷要少得多.

3.3.2. 样品边缘区域

使用 TEM 观察边缘区域的平面样品,可以发现 边缘处的金刚石晶粒大多为团簇状的多晶晶粒如图 (a),也有少量的单晶晶粒存在如图 (b),一般来 说单晶晶粒的尺寸比较小.而且边缘处的晶粒内部 经常会发现小的晶粒,如图 (b)中的单晶晶粒中心 处就存在着一个衬度较暗的小晶粒,这种小晶粒像 是个"核",我们推测它是在沉积过程的第一步在 CH4 和 H2 的混合气体中形成的. 多晶晶粒中的单个晶粒之间经常存在着 ∑3 次 孪晶的取向关系.除此之外,我们注意到了另外一 种晶粒间的取向关系:D[111]//D'[220].如图 8 所 示,在团簇状晶粒中心区域有一个单晶粒,四周环围 着几个单晶粒.电子衍射谱显示位于中心的晶粒处 幵 112]轴向,它的衍射点形成了一套完整的衍射 谱,如图 8(b)中字母 D 所示的衍射点.取 D(111)的衍 射点作暗场像得到图 8(c),这个单晶粒的内部含有 很多缺陷,使其各部分的取向不十分一致,所以导致 了衍射谱中点的分裂.取 D'(220)作暗场像得到图 8 (d).从衍射谱中可以看到 D 晶粒的(111)面的衍射 点与 D'晶粒的(220)面的衍射点与中心的连线处于 同一条直线上.这说明中心单晶粒的[111]方向与 边缘单晶粒的[220]方向互相平行,也即存在上述取 向关系:D[111]/D[220]或者 D(111)/D(220).

另外,使用 TEM 在边缘区域发现了一种非金刚 石相的碳结构.如图 9 所示,这种结构具有比较规则的外形,电子衍射谱显示其具有很大的晶格常数.

图 8 边缘区域多晶晶粒的平面 TEM 形貌(a),电子衍射谱(b) 暗场像(c)(d),从电子衍 射谱和暗场像可以看出,在暗场像中的两个晶粒具有一定的取向关系.D₁₁₁₁//D²₂₂₀)

所测到的最大面间距约为 0.46 nm 这要比金刚石的 最大面间距 0.206 nm 大得多,这个数值约为碳碳单 键 (0.154 nm)的 3 倍. 电子衍射谱 9(c)是通过对 9 (b)沿着 R2 旋转大约 17°得到的,可以看到,除了衍 射点的强度变化外 所有的衍射点均存在 而且衍射 点的位置并没有明显的变化,在强电子束的照射 下 这种晶体很快转化为非晶 图 9(e)为转化为非 晶后的衍射,可以看到其衍射呈现非晶状态,而其中 连续的衍射环则是在离子减薄过程中产生的微晶污 染物的衍射(污染物的衍射在晶体存在时的相对强 度很弱,而在非晶中其相对强度增加因而被观察 到). 这种结构在以前的 CVD 沉积金刚石薄膜中没 有报道过,但是在与碳相关的领域报道过相似的结 构. Blank 等人^[38]在研究 C_0 和 C_7 的高温高压处理 后产生了一种金刚石和石墨的中间相(intermediate phase)这种中间相与我们所观察到的碳晶体具有 极大的相似性 相似的衍射花样和面间距 相似的电 子束辐照下的不稳定性.

Raman 光谱和 TEM 分析均显示样品边缘处具 有杂质相,当然 TEM 所显示的相可能只是杂质相中 的一种. 在样品边缘区域存在的杂质相说明等离子 体的不均匀性会影响金刚石薄膜的纯度,而且等离 子体中粒子种类的复杂性也可能会增加沉积薄膜中 成分的复杂性.

4. 结 论

1. 在使用 CH₄ 和 H₂ 混合气体的金刚石沉积的 成核和生长的初期 ,金刚石晶粒中大多含有层错或 者孪晶. 金刚石薄膜与 Si 基体的部分界面存在着 SiC.

2. 在 CO 和 H₂ 的混合气体的后期生长中,金刚 石晶粒的外表面比较光滑,在这个时期产生的缺陷 很少. 初期产生的层错和孪晶在这个时期继续存 在. 孪晶在晶粒临近表面处形成了近五次对称和平 行棱线的形貌.

3. 在样品边缘区域大约 0.1 mm 的宽度范围内 形成了与样品中心区域成核密度不同的区域,并在 这个区域发现了非金刚石的碳结构. 说明在边缘处 等离子体密度不均匀而导致金刚石成核密度不均 匀,并且等离子体成分的复杂性可能导致了金刚石 薄膜中产生复杂的杂质相成分.

图 9 在边缘区域发现的非金刚石相的碳晶体(a)以及其衍射花样(b)和(c),经过长时间聚光电子辐照后非晶化(d)及其衍射(e), (e)中的连续衍射环是离子减薄过程中产生的多晶污染物的衍射

- [1] Wang B B, Wang W L, Liao K J, Xiao J L, Fang L 2001 Acta Phys. Sin. 50 251 (in Chinese) [王必本、王万录、廖克俊、肖 金龙、方 亮 2001 物理学报 50 251]
- [2] Yang S E, Yao N, Wang X P, Li H J, Ma B X, Qin G Y, Zhang B L 2002 Acta Phys. Sin. 51 347 (in Chinese)[杨仕娥、姚 宁、王小平、李会军、马丙现、秦广雍、张兵临 2002 物理学 报 51 347]
- [3] Qiu D J, Shi C R, Wu H Z 2002 Acta Phys. Sin. 51 1870 (in Chinese) [邱东江、石成儒、吴惠桢 2002 物理学报 51 1870]
- [4] Ma B X, Yao N, Yang S E, Lu Z L, Fan Z Q, Zhang B L 2004
 Acta Phys. Sin. 53 2287 (in Chinese) [马丙现、姚 宁、杨仕 娥、鲁占灵、樊志勤、张兵临 2004 物理学报 53 2287]
- [5] Li C H, Liao Y, Chang C, Wang G Z, Fang R C 2000 Acta Phys. Sin. 49 1756 (in Chinese)[李灿华、廖 源、常 超、王冠中、方容川 2000 物理学报 49 1756]
- [6] Sawabe A, Inuzuka T 1985 Appl. Phys. Lett. 46 146
- [7] Zhu W, Randall C A, Badzian A R, Messier R 1989 J. Vac. Sci. Technol. A 7 2315
- [8] Shen H J, Wang L J, Fang Z J, Zhang M L, Yang Y, Wang L, Xia Y B 2004 Acta Phys. Sin. 53 2009(in Chinese)[沈沪江、王林 军、方志军、张明龙、杨 莹、汪 琳、夏义本 2004 物理学 报 53 2009]

- [9] Asmussen J, Mossbrucker J, Khatami S, Huang W S, Wright B, Ayres V 1999 Diamond Relat. Mater. 8 220
- [10] Wolden C A , Draper C E , Sitar Z , Prater J T 1998 Diamond Relat . Mater. 7 1178
- [11] Baranauskas V, Li B B, Peterlevitz A, Tosin M C, Durrant S F 1990 Appl. Phys. Lett. 85 7455
- [12] Liu Y Y, Bauer-Grosse E, Zhang Q Y Acta Phys. Sin., accepted [刘燕蒸、Bauer-Grosse E、张庆瑜 物理学报(已接收)]
- [13] Saito Y, Sato K, Gomi K, Miyadera H 1988 Proc. Jpn. Symp. Plasma. Chem. 1 303
- [14] Gu C Z , Jiang X , Kappius L , Mantl S 2000 J. Appl. Phys. 87 1743
- [15] Mucha J A , Flamm D L , Ibbotson D E 1989 J. Appl. Phys. 65 3448
- [16] Wu J, Xie F Q, Zhang Q Z, Liu J W, Chen Y C, Lin Z D 1999 J. Chinese Physics 8 932
- [17] Bachmann P K, Leers D, Lydtin H 1991 Diamond Relat. Mater. 1 12
- [18] Löwe A G , Hartlieb A T , Brand J , Atakan B , Kohse-Höinghaus K 1999 Combustion and Flame 118 37
- [19] Chen C F, Hong T M, Chen S H 1993 J. Appl. Phys. 74 4483

- [20] Petherbridge J, May PW, Pearce S R J, Rosser K N, Ashfold M N R 2001 Diamond Relat. Mater. 10 393
- [21] Teii K, Hori M, Goto T 2004 J. Appl. Phys. 95 4463
- [22] Muranaka Y , Yamashita H , Sato K , Miyadera H 1990 J. Appl. Phys. 67 6247
- [23] Hu X J, Li R B, Shen H S, He X C, Deng W, Luo L X 2004 Acta Phys. Sin. 53 2014 (in Chinese)[胡晓君、李荣斌、沈荷生、 何贤昶、邓 文、罗里熊 2004 物理学报 53 2014]
- [24] Choi I -H, Barrat S, Bauer-Grosse E 2003 Diamond Relat. Mater. 12 361
- [25] Narayan J, Srivatsa A R, Ravi KV 1989 Appl. Phys. Lett. 54 1659
- [26] Delclos S , Dorignac D , Phillipp F , Silva F , Gicquel A 2000 Diamond Relat . Mater . 9 346
- [27] Sawada H , Ichinose H 2005 Diamond Relat . Mater . 14 109
- [28] López-Ríos T, Sandré É, Leclercq S, Sauvain É 1996 Phys. Rev. Lett. 76 4935

- [29] Ferrari A C, Robertson J 2001 Phys. Rev. B 63 121405
- [30] Pfeiffer R , Kuzmany H , Knoll P , Bokova S , Salk N , Günther B 2003 Diamond Relat . Mater . 12 268
- [31] Nemanich R J, Glass J T, Lucovsky G, Shroder R E 1988 J. Vac. Sci. Technol. A 6 1783
- [32] Shroder R E, Nemanich R J, Glass J T 1990 Phys. Rev. B 41 3738
- [33] Yarbrough W A , Messier R 1990 Science 247 688
- [34] Kapil R , Mehta B R , Vankar VD 1998 Thin Solid Films 312 106
- [35] Knight D S, White W B 1989 J. Mater. Res. 4 385
- [36] Harada I , Furukawa Y , Tasumi M , Shirakawa H , Ikeda S 1980 J. Chem. Phys. 73 4746
- [37] Ehrenfreund E, Vardeny Z, Brafman O 1987 Phys. Rev. B 36 1535
- [38] Blank V D , Kulnitskiy B A , Tatyanin Ye V , Zhigalina O M 1999 Carbon 37 549

Morphology and structure of the diamond film synthesized from carbon monoxide gas *

Liu Yan-Yan¹⁽²⁾ E. Bauer-Grosse²⁾ Zhang Qing-Yu¹[†]

1) State Key Laboratory of Materials Modification by Laser , Ion and Electron Beams , Dalian University of Technology , Dalian 116024 , China)

2 X Laboratoire de Science et Génie des Surfaces, Ecole des Mines, Nancy 54042, France)

(Received 6 November 2006; revised manuscript received 26 March 2007)

Abstract

Diamond film was deposited in CO and H_2 gas mixture by microwave plasma assisted chemical vapor deposition (MPCVD). Bias enhanced nucleation and two-step growth method were employed. Scanning electron microscopy (SEM), Raman spectroscopy and transmission electron microscopy (TEM) were used to characterize the film. It was found that twins and stacking faults were mainly produced at the stages of nucleation and growth. In the second growth stage, the production of defects in the film was reduced considerably, resulting in the final smooth-faceted diamond grains with five-fold symmetry or parallel twins with a small amount of stacking faults. At the edge of the sample, there was a region with low nucleation density, which might be the result of non-uniform plasma existing there. Meanwhile, a non-diamond structure of carbon was found in the edge region.

Keywords : diamond film , Raman spectroscopy , transmission electron microscopy , structure PACC : 6855

^{*} Project supported by the Sino-France Program for Advanced Research (PRA Grant No. MX01-02) and International Programs for Scientific Cooperation (PICS, France).

[†] E-mail:qyzhang@dlut.edu.cn