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The static topology properties of ¯nancial networks have been widely investigated since the
work done by Mantegna, yet their dynamic evolution with time is little considered. In this

paper, we comprehensively study the dynamic evolution of ¯nancial network by a sliding

window technique. The vertices and edges of ¯nancial network are represented by the stocks

from S&P500 components and correlations between pairs of daily returns of price °uctuation,
respectively. Furthermore, the duration of stock price °uctuation, spanning from January 4,

1985 to September 14, 2009, makes us to carefully observe the relation between the dynamic

topological properties and big ¯nancial crashes. The empirical results suggest that the ¯nancial

network has the robust small-world property when the time evolves, and the topological
structure drastically changes when the big ¯nancial crashes occur. This correspondence between

the dynamic evolution of ¯nancial network and big ¯nancial crashes may provide a novel view to

understand the origin of economic crisis.

Keywords: Financial network; correlation matrix; evolutional dynamics; ¯nancial crashes.

1. Introduction

The¯nancialmarket has been considered as a typical complex system constructedwith

an amount of interacting individuals. The stock price °uctuation is usually regarded as

one of the chief representatives of economic activity in ¯nancial market, which directly

re°ect the operation state of a company.From the correlations of di®erent time series of

stock price, we can hence ¯gure out the relations between these companies. Exploring

the evolution dynamics and intrinsic mechanism of ¯nancial market have been

attracted much attentions of scientists in various ¯elds. Thanks to the development of

complex network science starting from Watts�Str€ogatz small-world model1 and

Barab�asi�Albert scale-free model,2 its theory is applied to empirically analyze and
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model a series of complex systems.3�9 Mantegna ¯rst studied the connectivity pattern

of stocks by minimal spanning tree (MST) obtained from their matrix of correlations

coe±cients, which showed the hierarchical structure of topological space and provides

a meaningful economic taxonomy.10 After that, a lot of works have investigated

and modeled the topology of correlation-based MST, which both suggested that the

empirical tree has features of a complex network, such as scale-free structure of vertex

distribution, community, assortative mixing patterns, etc.11�15

Most of previous works so far mainly focus on the topological structure of the

¯nancial networks, which contains global information of the ¯nancial market during

a speci¯c period. Since the economics is improved along with the social development,

it is signi¯cant to study the the time evolution of the ¯nancial market with dynamic

network, from which one can deduce economic events, such as economic crises.

However, few work has been involved except that the dynamic asset MST was built

by Onnela et al. to ¯nd that the basic structure of tree topology seems robust, yet the

scaling exponents of scale-free degree distribution were di®erent for usual business

and ¯nancial crash periods.16 The most recent work done by Person and his coop-

erators suggested that the robustness of evolving ¯nancial networks quanti¯ed based

on entropy-related measurement became weakened when the economic activity in

¯nancial market was unstable.17

In our work, we comprehensively study the US stock markets by constructing

fully dynamic ¯nancial networks in a ¯ltering procedure with static and dynamic

threshold, respectively. From the topological structures of the dynamic ¯nancial

networks, it can be found that a high correspondence between the °uctuations of

characteristic parameters (including average degree, shortest path length, and

clustering coe±cient) and big ¯nancial crashes, and the ¯nancial network shows a

robust small-world property.

The paper is organized as follows: in Sec. 2, the database of US stock markets,

constructedmethod andmeasurement of complex network are described in detail. The

empirical results of dynamic evolution of ¯nancial networks and its relation to eco-

nomic crisis will be comprehensively discussed in Sec. 3. At last, we conclude our work.

2. Materials and Methods

2.1. Stock market database

We selected N ¼ 160 continuously trading stocks of S&P500 components during the

14-year period from January 4, 1985 to September 14, 2009, and the ¯nancial net-

works are constructed by the use of the daily close prices of stocks that are obtained

from Yahoo!.18 The whole length of stock price time series is 6230.

2.2. Constructed method of network

The network construction of ¯nancial market is similar to the approach based on

correlation matrix.10�13,15�17 Thus, the degree of similarity between synchronous
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time series of each pair of stock prices should be ¯rst quanti¯ed. We do not imme-

diately compute the correlations between pairs of time series of stock price because of

the trend implying in them, and an alternative method is to use the time series of

daily logarithmic return, which is usually de¯ned as RiðtÞ ¼ lnPiðtÞ � lnPiðt� 1Þ.
PiðtÞ describes the close price of stock i at day t. The 160� 160 correlation matrix is

then obtained by computing the correlation coe±cient �i;jðT Þ for each pair of returns

of stock i and j,

�i;jðT Þ ¼
1

�T

XðT�1Þ��Tþ�T

t¼ðT�1Þ��Tþ1

ðRiðtÞ � hRiiÞðRjðtÞ � hRjiÞ
�iðtÞ�jðtÞ

; ð1Þ

where �i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hR2

i ðtÞi � hRiðtÞi2
p

and �j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hR2

jðtÞi � hRjðtÞi2
q

are the standard

deviation of RiðtÞ and RjðtÞ, respectively. By the de¯nition, the correlation coe±-

cients vary from �1 (complete anti-correlation) to 1 (complete correlation). When

�i;j ¼ 0, the two stocks are uncorrelated. It is noted that the matrix of correlation

coe±cients is obviously symmetric, and we use the Kronecker delta function to

exclude the autocorrelations of returns (i.e. the diagonal elements of matrix are

de¯ned as 0).

On the other hand, the correlation coe±cient matrix cannot be straightly used to

detect the topology structure of ¯nancial network because it does not ful¯ll the three

axioms that de¯ne a metric.10 To accurately analyze the dynamics of topology

structure, we restrict the correlation coe±cients to be distances with the criterion

di;jðT Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� �i;jðT ÞÞ

q
; ð2Þ

di;jðT Þ is equivalent to the Euclidean distance between two vectors, and its interval

is [0, 2].

There are several ways to establish the ¯nancial network. MST is most widely

used because it has a simple structure which greatly simpli¯es the calculation, and it

is easy for an MST to ¯nd the hierarchical structure and successfully cluster com-

panies in ¯nancial markets. Another way to add edges between vertices is ¯ltering

procedure proposed by Boginski.19 They ¯lter the correlations with static and

dynamic threshold values, so that only the correlations stronger than the threshold

value is taken into account. By applying a slide window with length �T ¼ 600 days

and considering the ¯ltering procedure, a series of dynamic ¯nancial networks are

achieved by thresholding the time-dependent distance matrices to adjacency ma-

trices. For example, we choose a fraction as the threshold value w, and the network

can then be constructed as the following process: We traverse the distance matrix

and compare di;j with w, if the formula di;j < w is true, the two nodes i and j are

connected, whereas, they are disconnected. In each sliding step, the starting dis-

placement of window moves �T ¼ 5 days away from the prior one, which means, if

the prior network associates with the matrix of distance di;jðT Þ, the subsequent

network will be constructed through the distance matrix whose components are

Dynamic Evolution of Financial Network
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di;jðT þ �T Þ during the period from T þ �T to T þ�T þ �T . For whole time scales,

we are therefore able to obtain 1222 adjacency matrices, which suggest the dynamic

evolution of ¯nancial network.

2.3. Measurement of complex network

The constructed ¯nancial networks are characterized by the measurement of com-

plex network. The three global parameters characterizing topological structure,

average degree centrality (AD), average shortest path length (PL), and average

cluster coe±cient (CC), evolve with time, which are used to suggest the dynamic

evolution of ¯nancial network. To keep our description as self-contained as possible,

we simply introduce the de¯nition of these parameters as follows:

(i) The degree centrality of vertex v is de¯ned by

kv ¼
XN
i¼1

Av;i; ð3Þ

which suggests the number of neighbors and hence re°ects the local adjacency

information in a topological structure. The average degree centrality,

PN

i¼1
Av;i

N ,

describes the connectivity of whole network.

(ii) The shortest path length between a pair of vertices is given by

L ¼ 1

NðN � 1Þ
XN
i;j¼1

di;j; ð4Þ

where di;j is the minimal number of hops (edges) that takes to move from vertex

i to j. Thus, the shortest path length of network is the average value of L

between all pairs of vertices.

(iii) The cluster coe±cient of vertex i denoted as Ci is a measure of the probability

that the neighbors of vertex i are mutually connected, i.e. they tend to form

local clusters of whole network. It can be suggested by the ratio of all existing

edges ei and maximum possible number of edges among neighbor vertices1

Ci ¼
ei

kiðki � 1Þ : ð5Þ

Thus, the CC of whole system is an average value of Ci over all vertices in the

network. The PL and CC are important because they determine whether the

connectivity of network vertices are in a random way or a small-world way.

3. Empirical Results

Because the ¯ltering procedure is applied to transfer the distance matrices into

adjacency ones, we should pay much attention on choosing a proper threshold value

to robustly and accurately quantify the topological structures of ¯nancial networks.
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The network would be separated into a number of isolated small clusters under a

lower threshold value. On the other hand, the overlarge one would make the network

include the redundancy edges of stocks introduced by noise trades in ¯nancial

market. We quantify the size of giant component (the largest connected sub-net-

work) under a certain threshold value w, and the percolation phase transition of size

occurs when w changes from small value to large one. The critical w corresponding

to point of phase transition makes the size of giant component exactly equals to

the number of vertices of ¯nancial network. In Refs. 15 and 20, it suggests that the

proper threshold value should be selected around the critical w.

In the experiments, we use both dynamic and static threshold values to construct

the ¯nancial networks. Figure 1 shows the critical w evolving with time, which are

used to be dynamic threshold values. As shown in Fig. 1, the range of dynamical

threshold values ¯nely °uctuates from 1:24 to 1:38, which suggests that the positive

correlations between stocks generally exist in the constructed ¯nancial networks, and

the local maximums (denoted by red lines) associate with the big ¯nancial crashes.

For instance, the US economic crisis (1985�1987) starting from the strong dollar

policy caused by the Plaza Accord was collapsed on October 19, 1987 (i.e. famous

\Black Monday"). In this period, the capitals of stocks were quickly and synchro-

nously growing, and they were highly correlated with each other that leads to a

number of lower and smooth dynamic threshold values. The similar case can also be

found at the end of time evolution of dynamic threshold values because the much

bigger ¯nancial crash of the US subprime Lending crisis in 2008.

The time evolution of interactions among 160 US stocks of S&P500 components

is ¯rst studied through a series of ¯nancial networks constructed based on dynamic

threshold values and the sliding window displaced along with time. First, the three

Fig. 1. (Color online) The critical threshold values evolve with time, at which the whole 160 stocks are
completely connected in a giant component. The red dashed lines label the large °uctuations (or local

maximums), which associate with the big ¯nancial crashes. The inner panel shows the the time evolution of

S&P500 index, which is used to compare with that of critical threshold values.

Dynamic Evolution of Financial Network
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important global topological parameters AD, PL and CC are shown in Fig. 2. The

local optimal regions of three parameters during their dynamic evolution are roughly

denoted by red rectangles that associate with a number of ¯nancial crashes (see in

Fig. 2). Moreover, in the stock market, most of the stock price °uctuations are

strongly associated with the index °uctuation (such as S&P500 index) because the

index is the straight composition of the stock prices. Therefore, these results suggest

that the ¯nancial crashes clearly re°ected by the drastic index °uctuation (see in the

inner panel of Fig. 1) are able to result in the similar trends (i.e. synchronicity) of

these stock price °uctuations, which improves the correlations among them. Con-

cretely speaking, for the AD, it drastically °uctuates with time, and keeps very large

values during the ¯nancial crashes immediately associating with US economics

events (e.g. the subprime Lending crisis in 2008). The lowest value is found at the end

of Asian ¯nancial crisis and the collapse of hedge fund long-term capital market in

1998 because these ¯nancial crashes strongly attack the rapid development of US

economics from 1995 to 2000 and shortly disturbs the synchronicity of stock price

°uctuations. These results also imply in the dynamic evolutions of PL and CC.

Furthermore, the large AD makes the ¯nancial networks have a lower PL and larger

CC, which suggests that the robust small-world property exists in ¯nancial networks.

To quantify more accurately and clearly the irregularity of dynamic evolution of

topological structures of ¯nancial networks, we estimate the discrete curvatures of

AD, PL and CC, which both show obviously clustering behaviors (see in Fig. 3). For

the AD, the largest magnitude of discrete curvature almost approaches to 2� 104,

Fig. 2. (Color online) The dynamic evolution of three important global topological parameters of ¯-
nancial networks, average degree centrality (upper panel), average shortest path length (middle panel),

average cluster coe±cient (lower panel), which immediately suggest the time evolution of 160 US stocks of

S&P500 components from January 4, 1985 to September 14, 2009. The red rectangles (denoted by A to I)

correspond to ¯nancial crashes in°uencing the ¯nancial markets: (A) The starting of US economic crisis
caused by the Plaza Accord; (B) Black Monday on October 19, 1987; (C) the US savings and loan crisis

and the drastic change in Eastern Europe in 1989; (D) the collapse of Japanese asset price bubble in 1990;

(E) the European Exchange Rate Mechanism Crisis 1992; (F) the Mexico's ¯nancial crisis in 1994; (G)
Asian ¯nancial crisis and the collapse of hedge fund Long-Term Capital Market in 1998; (H) 9/11 attacks

and the Argentine ¯nancial crisis in 2001; (I) the US subprime Lending crisis in 2007�2008.
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which covers the small cluster behaviors. However, from the discrete curvatures of

PL and CC, we can clearly ¯nd that they have the similar trend and their magni-

tudes of clusters well corresponding to the ¯nancial crashes are much larger than

these of usual business day. These results also suggest that the ¯nancial crashes may

bring the irregularity of dynamics evolution of ¯nancial markets, which means that

the economic crises highly associate with the collective dynamics of stocks in ¯nancial

market.

As shown above, the dynamic evolution of ¯nancial network based on dynamic

threshold value shows a rich phenomenon, and well associates with the economic

crises. However, the ¯nancial network can also be constructed by a static threshold

value, and it is interesting to evaluate how much the dynamic evolution of ¯nancial

networks is in°uenced by di®erent static threshold values. According to the critical

threshold values in Fig. 1, we mainly choose various static threshold values w ¼ 1:25,

1.28, 1.30 and 1.32 to construct the ¯nancial networks with di®erent sliding windows

displaced along with time, respectively. In Fig. 4, we ¯rst compare the ADs, PLs and

CCs as a function of time with di®erent static threshold values, which correspond to

those analysis of dynamic threshold values. Their dynamic evolutions both show a

similar trend, and the locations of anomalous °uctuations in dynamic evolution

indicate the collapses of economic crises, regardless of the threshold values. We also

take the dynamic evolution of AD as a example. On one hand, the values of AD,

especially the bottom part of curves, increase with w, and it interests us that the

slight ¯nancial crashes re°ected by anomalous °uctuations turn to be much more

prominent, like the Asian ¯nancial crisis in 1998. The reason may be that the weak

correlations among stocks with small capitals are introduced with larger static

threshold value, so that the values of AD are obviously improved in local regions. On

Fig. 3. The discrete curvatures of AD (upper panel), PL (middle panel) and CC (lower panel) evolve

with time, which show obviously clustering behavior. The clusters corresponding to the ¯nancial crashes

have larger magnitudes.

Dynamic Evolution of Financial Network
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(a)

(b)

Fig. 4. The dynamic evolutions of ADs, PLs and CCs when the ¯nancial networks are constructed with

the static threshold values w ¼ 1:25, 1.28, 1.30 and 1.32, respectively. They show the similar trends as a

function of time. Take the ADs as example, the large ¯nancial crises, such as the Black Monday, are

signi¯cant for the lower static threshold value, while the general ones, such as the Asian ¯nancial crisis,
become obvious when the ¯nancial networks are constructed with larger static threshold value.
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the other hand, the large ¯nancial crash becomes much more signi¯cant when the

static threshold values decrease because they highly a®ect the collective dynamic of

stocks with large capitals, and we can ¯nd the characteristic peak, such as the Black

Monday, even the ¯nancial network is locally connected [see in Fig. 4(a)]. In addi-

tion, it should be noted that the constructed ¯nancial network based on the static

threshold values also have robust small-world property.

4. Conclusion

In conclusion, we have constructed the correlation-based ¯nancial networks by the

sliding window technology with both dynamic and static threshold values. The dy-

namic evolution of ¯nancial networks as a function of time are comprehensively

studied to observe the dynamic topological properties and their relations to economic

crises. By analyzing the three global parameters, AD, PL and CC evolving in a 14-

year period, we ¯nd that the ¯nancial networks show the robust small-world prop-

erty regardless of the choice of threshold value. Most importantly, the irregularities

of curves indicating the dynamic evolution of ¯nancial network highly associate with

the ¯nancial crashes, of which the discrete curvatures form a number of clusters and

their locations corresponding to larger magnitude are consistent with the famous

(c)

Fig. 4. (Continued )

Dynamic Evolution of Financial Network
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economic crises. Therefore, these interesting results may provide a novel view of

complex network science to deeply understand the origin of economic crisis.
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