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Multivariate quality control solved by one-class
partial least squares regression:
identification of adulterated peanut oils by
mid-infrared spectroscopy
Lu Xua*, Chen-Bo Caib and De-Hua Denga**

The Partial least squares class model (PLSCM) was recently proposed for multivariate quality control based on a par-
tial least squares (PLS) regression procedure. This paper presents a case study of quality control of peanut oils based
on mid-infrared (MIR) spectroscopy and class models, focusing mainly on the following aspects: (i) to explain the
meanings of PLSCM components and make comparisons between PLSCM and soft independent modeling of class
analogy (SIMCA); (ii) to correct the estimation of the original PLSCM confidence interval by considering a nonzero
intercept term for center estimation; (iii) to investigate the potential of MIR spectroscopy combined with class mod-
els for identifying peanut oils with low doping concentrations of other edible oils.

It is demonstrated that PLSCM is actually different from the ordinary PLS procedure, but it estimates the class cen-
ter and class dispersion in the framework of a latent variable projection model. While SIMCA projects the original
variables onto a few dimensions explaining most of the data variances, PLSCM components consider simultaneously
the explained variances and the compactness of samples belonging to the same class. The analysis results indicate
PLSCM is an intuitive and easy-to-use tool to tackle one-class problems and has comparable performance with
SIMCA. The advantages of PLSCM might be attributed to the great success and well-established foundations of
PLS. For PLSCM, the optimization of model complexity and estimation of decision region can be performed as in
multivariate calibration routines. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The Peanut (Arachis hypogaea L.) ranks fourth among oilseed
crops in the world and is grown widely in tropical, subtropical,
and temperate climates [1]. Peanut seeds contain 45–55% oil,
and more than half of the global crop is used as an oilseed. China
is one of the most important producers of peanuts, where the
production of peanuts exceeds 14000000 tons per year, just sec-
ond to the annual production of soybeans [2]. Pure peanut oil is
pale yellow and nondrying with high contents of arachidonic,
oleic, linoleic, palmitic, and stearic acids, as well as low concen-
trations of behenic and lignoceric acids [3]. In China, pure and
authentic peanut oil is traditionally thought as a high-quality
vegetable oil and serves as a major source of edible and cooking
oil. Unfortunately, in the domestic market, pure peanut oil is
sometimes adulterated with certain cheaper vegetable oils, such
as rapeseed oil, soybean oil, corn oil, palm oil, salad oil, and so
on. Therefore, it is necessary to develop reliable and quick
analytical methods for discriminating pure peanut oils from var-
ious adulterated products.

For food control, the combination of spectroscopy (such as near
infrared (NIR) [4–6] and mid-infrared (MIR) [7–9] spectroscopy)
and chemometric methods provides a promising alternative ap-
proach to the traditional methods based on chemical analysis
and sensory analysis [10–12]. In such investigations, chemical
compositions of the samples are characterized by the measured
multivariate spectra, and then multivariate calibration and/or

pattern recognition methods are used to extract information
concerning food quality. Some advantages of spectroscopy analy-
sis are as follows: (i) it requires little or no sample preparations; (ii)
the analysis time is significantly shortened compared with chemi-
cal analysis, so it is very suitable to analyze batch samples; (iii) it is a
nondestructive analysis method and can be used for online analy-
sis. Among various spectroscopic methods, NIR spectroscopy
might be the most frequently used technique for noninvasive
and quick analysis of food products, but recently, MIR spectroscopy
has been increasingly used for the same purposes [7,8]. MIR covers
the region between 4000 and 400cm�1 and can be broadly
segmented into four regions [9]: 4000–2500cm�1 (X-H stretching
region), 2500–2000cm�1 (triple bond region), 2000–1500cm�1
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(double bond region), and 1500–400cm�1 (fingerprint region).
Characteristic absorption bands are associated with major
components of food, which is the basis of MIR analysis.
To tackle the task of identifying doped peanut oils, class

modeling techniques (CMTs) [13–16] are required to answer a
general question of whether a new object should be accepted
or rejected by a class of interest (e.g., pure and authentic oils).
This question is typical of many practical problems, such as the
traceability of protected denomination of origin foods and
multivariate quality control in an industrial process [11,12]. For
such problems, only class A is studied, and the samples rejected
by class A are generally not well defined, or in other words, one
cannot expect the rejected samples come from a predetermined
class (for instance, class B or C). As pointed out in Ref. [15],
classification methods that classify samples into two or more
categories known beforehand are often improperly used in food
quality control. Therefore, this paper will focus on CMTs. Some of
the most commonly used CMTs include [15] the following: (i) soft
independent modeling of class analogy (SIMCA) [17] based on
principal component analysis (PCA); (ii) unequal dispersed clas-
ses [18] based on the hypothesis of multivariate normal distribu-
tion and the Hotelling T2 statistics; (iii) those methods based on
potential functions estimating the multivariate probability distri-
bution of training samples [19–21].
In a recent paper [22], a partial least squares (PLS) regression

[23,24] was proposed to build a partial least squares class model
(PLSCM), where the CMT problems are shown to be easily solved
by multivariate calibration routines. In this paper, PLSCM is ap-
plied to the identification of doped peanut oils by MIR spectrom-
etry. The focuses are fixed on the following aspect (i) to explain
the meanings of PLSCM components and make comparisons be-
tween PLSCM and SIMCA; (ii) to correct the estimation of the
original PLSCM confidence interval by considering a nonzero in-
tercept term for center estimation; (iii) to improve the original
PLSCM in determining model complexity by performing an F-test
[25,26] of the prediction error sum of squares (PRESS) obtained
by Monte Carlo cross-validation (MCCV) [27,28], in which this
procedure can reduce the risk of selecting too many compo-
nents and including uncorrelated data variances when charac-
terizing a class; and (iv) to investigate the potential of MIR
spectroscopy combined with class models for identifying peanut
oils with low doping concentrations of other edible oils. More
details of the methods and results will be presented in the fol-
lowing parts of the paper.

2. METHODS

2.1. Soft independent modeling of class analogy

Soft independent modeling of class analogy [17] is by far the
most well-known method for describing the class structure of a
data set in chemometrics. In SIMCA, PCA is performed for differ-
ent classes, and the significant principal components (PCs) are
used to describe each class. A new sample is target tested by
the class models and is then accepted or rejected according to
the estimated confidence intervals. SIMCA has also been used
for identification of an objective class (one-class problems),
where it works as an outlier test [29].
For one-class problems, SIMCA starts by determining the num-

ber of PCs to describe the structure of the training samples. The
number of PCs is often selected by cross-validation [30,31]. For
samples from class A, the column-centered training data matrix

XA(n�p) containing n samples characterized by p features can
be explained by the r primary PCs:

�
XA ¼ �

U
�
S
�
VT (1)

where
�
XA is the reconstructed training data and

�
U,

�
S, and

�
V are

the same as in common PCA, only with the secondary PCs trun-
cated. The superscript “T” means transpose of a matrix. The
unexplained residuals of the training data XA are assumed to
have a normal distribution, and its standard deviation (sA) can
be calculated as follows:

sA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
k¼1

Xp
j¼1

e2kj= l � rð Þ n� r � 1ð Þ½ �
vuut (2)

where ekj is the difference between the elements in the kth row

and jth column of XA and
�
XA, respectively; l is the minimum of

n�1 and p; and sA can also be calculated using PCs:

sA ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn
k¼1

Xl

j¼rþ1

t2kj= l � rð Þ n� r � 1ð Þ½ �
vuut (3)

where tkj is the jth PC score of kth training sample. Geometrically,

sA can be seen as a measure of the Euclidean distances from the
training samples in class A to the space spanned by r significant
PCs.

Based on the estimated sA, the confidence limit for class A
can be derived by introducing a critical value of the Euclidean
distance to the mentioned PC space, which can be expressed
as follows:

scrit ¼
ffiffiffiffiffiffiffiffiffiffiffi
Fcrits2A

q
(4)

where Fcrit is the one-sided value of F-test with the degrees of
freedom l�r and (l�r)(n�r�1).

For a new sample, the distance (sun) of the unknown sample
from the objective class A can be calculated as follows:

sun ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xl

j¼rþ1

t2un; j= l � rð Þ
vuut (5)

where tun; j is the jth PC score for the unknown sample. If sun is
less than scrit, the unknown sample is accepted by class A; other-
wise, it is rejected.

It is known that SIMCA can lead to a large number of objects
that are wrongly rejected (a large a-error) [29]. Some authors
[32–35] propose different strategies to overcome the given pro-
blems, but the different degrees of freedom and correction pro-
cedures suggest the problem is still to be solved. Moreover, the
estimation of model complexity to describe a class is not
straightforward, and the decision results are largely influenced
by it.

2.2. Partial least squares class model

Partial least square has been widely used in various fields of
chemometrics. As a key method in chemometrics, its statistical
properties have been extensively studied and its foundations
are well established. In a recent paper [22], a PLS procedure
is proposed to develop a class model. With training data
X (n�p) containing n representative objects with p features

One-class PLS

J. Chemometrics 2011; 25: 568–574 Copyright © 2011 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/cem

569



characterizing a class, PLSCM performs the following latent vari-
able regression procedure:

1 ¼ Xbþ e (6)

where 1 is an n�1 response vector with all the elements being
ones, b is the vector of regression coefficients, and e the vector
of model errors. It should be highlighted that in PLSCM, X should
not be column centered; otherwise, all the columns will be or-
thogonal to the response vector.

As suggested in the original paper, b is deduced as in a usual
latent variable model:

T ¼ XW
1 ¼ Tqþ e
b ¼ Wq (7)

where T is a matrix with columns containing A orthogonal latent
variables, W is a matrix with columns containing loadings, and q
is a vector of regression coefficients relating T and the response
vector 1.

The first latent variable t1=XX
T1, the ith (i=2~A) latent vari-

able ti can be computed as XiXi
T1, where Xi ¼ I� Ti�1Ti�1

þð ÞX
is the projection of X onto the complementary space spanned
by the first i-1 latent variables.

For a class model, the variance or standard deviation of predic-
tion errors e in equation (6) will be a measure of the sample dis-
creteness in a class and can be used to reject or accept a new
object. The original paper assumes e has a normal distribution
with a mean of zero and an estimated standard deviation s^. For
a given significance level a, the interval of predicted response
value for accepting a new sample is as follows:

1� z1�a=2�s^< y
^

un < 1þ z1�a=2�s^ (8)

where z1�a/2 is the critical value of standard normal distribution
and y

^

un the predicted response of a new sample. Although the
original paper assumes the prediction error has a mean of zero,
in this paper, we propose to estimate the mean of e by MCCV
and correct the original estimation of class confidence internal
as follows:

1� m^e � z1�a=2�s^< y
^

un < 1� m^e þ z1�a=2�s^ (9)

where m^e can be estimated form MCCV:

m^e ¼ mean eMCCVð Þ (10)

where eMCCV is a vector containing the prediction errors of all the
left-out samples during MCCV.

A problem is how to estimate s^. Seen from equation (6), the
value of root mean square error of calibration (RMSEC) can be
used to estimateŝ. However, because the training samples have
been already used in training the class model, RMSEC value
tends to underestimate the prediction errors and wrongly reject
more samples [29]. Therefore, the prediction errors obtained by
MCCV are used to estimate s^ :

s^¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

1� y
^

i � m^eÞ2=N � 1
�

vuut (11)

where N is the total number of left-out samples in multiple
resampling process of MCCV and y

^

i is predicted response of a
left-out sample.

Another crucial problem is the selection of PLS components in
PLSCM. Selecting too few latent variables will fail to characterize
the class sufficiently, whereas models with too many latent vari-
ables will include the class-uncorrelated data variances and have
a bad prediction performance. Therefore, the predicted residual
sum of squares (PRESS) obtained by MCCV are subject to a
well-established F-test to select the proper number of compo-
nents [25,26]. This procedure selects the fewest PLS components
that have a PRESS value not significantly larger than the mini-
mum PRESS value.
The vector 1 used as a response vector means all the objects

in the same class should be distributed as close to each other
as possible. Intuitively, PLSCM projects the high-dimensional
data onto a subspace where all the training samples belonging
to the same class are compact. By the mentioned PLS regression,
the regression coefficients are shrunk to stabilize the model var-
iance. Some authors have also compared the shrinkage by kernel
PLS regression with regularization by support vector machines
with kernel functions, and the two approaches are found to be
equally effective [36,37]. So, because both PLSCM and support
vector data description (SVDD) [38] optimize the closeness of a
class, in a sense, PLSCM is also similar to SVDD devoted to one-
class problems. However, this paper will focus on comparing
the performances of SIMCA and PLSCM, so the comparison of
PLSCM and SVDD is beyond the scope of this paper and can
be discussed elsewhere. While SIMCA projects the data onto a
few PCs explaining most of the data variances, PLSCM considers
both the explained variances and compactness of a class. As
mentioned previously, without normalization, the loading
weights for a PLSCM latent variable are as follows:

wi ¼ XT
i 1 (12)

Actually, the weights for the PLSCM latent variables are the
same as the mean sample spectrum except for a scaling factor.
The scores in ti ¼ Xiwi can be generally seen as the projection
lengths of the training samples onto the mean sample as shown
in Figure 1. Because the within-class samples are similar to the
mean sample, the angle between a mean spectrum and a train-
ing spectrum is limited, which means large projection lengths or
a considerable amount of explained variances of X will be
achieved by PLSCM projection. Meanwhile, the training samples
in the same class are similar to each other, so their projections
onto the mean sample should be distributed compactly. Essen-
tially, PLSCM seems to make a reasonable compromise between
explained data variances and within-class closeness.

3. EXPERIMENTAL

3.1. Preparation of authentic and doped peanut oil samples

A set of 22 pure and authentic peanut oils of different batches
manufactured by Shandong Luhua Group Co., Ltd, Yantai, China
is purchased from domestic markets. The peanut oils are manu-
factured in some major producing areas of peanut, including
Shandong (8), Henan (6), and Jiangsu (8). To represent and sim-
ulate the samples from other producing areas, we prepared an-
other 68 pure peanut oil samples by sufficient blending of the
mentioned 22 raw samples with different ratios. Therefore, a to-
tal of 90 samples of pure pressing peanut oil are prepared for
MIR analysis. All the pure peanut oils are extracted by pressing
and stored in a cool, dark area before spectrometry analysis.

L. Xu, C.-B. Cai and D.-H. Deng
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Eighteen samples of rapeseed oil (4), soybean oil (3), corn oil
(2), palm oil (3), and salad oil (6) are collected from domestic
markets. Then 110 doped peanut oil samples are prepared by
mixing the pure peanut oils with different contents of the given
oils ranging from 3% to 90%. A list of the adulterated peanut oil
samples are shown in Table I. The doped samples are stored
under the same conditions as the pure peanut oil samples.

3.2. Mid-infrared spectrometric analysis

The MIR transmission spectra are measured in the range of 4000
and 400cm�1 on a Nicolet 380 infrared spectrophotometer with
a DTGS KBr detector by Thermo Fisher Scientific Inc., Waltham,
USA. No preprocessing of oil samples is performed, and the MIR
spectra of all the oil samples are measured in a KBr demountable
absorption cell without any solvents. The resolution is 4cm�1,
and the scanning interval is 1.929cm�1. The scanning time is
set to be 64, because a larger scanning time cannot significantly
improve the quality of spectral data. Some of the raw MIR spec-
tra are demonstrated in Figure 2.

4. RESULTS AND DISCUSSIONS

Seen from Figure 2, the absorption band in 3000–2800cm�1 can
be attributed to the stretching vibration of -CH, and the band in
1740–1680cm�1 is likely to be caused by stretching vibration of
C=O in carboxyl group and C=C in unsaturated fatty acids. The
absorption bands in fingerprint region are more difficult to
explain, the band around 1460cm�1 might be the asymmetric
bending of �CH2, the band around 1200cm�1 can be attributed
to the vibration of carbon skeleton, and the band around
720cm�1 can be caused by the rocking or wagging of �CH2�
in a long carbon chain �(CH2)n�. Although the MIR spectra of
pure peanut oils are obviously different from those of other
vegetable oils, the difference between the spectra of pure and

adulterated peanut oils becomes very subtle with low doping
concentrations. Therefore, chemometric class models are
necessary to extract the useful information from spectral data
for characterizing pure peanut oils. The significance level for
class models is set to be 0.05.

With the 90 pure peanut oil samples, robust PCA [39] is
performed and no outliers are detected. The algorithm by
Kennard and Stone [40] is then used to form a representative
training set of 70 samples and test set (test set 1) of 20 samples.
The aim of this algorithm is to select a training set in such way
that the objects are scattered uniformly around the training sam-
ples. For both robust PCA and Kennard–Stone algorithms, the
codes included in the widely distributed toolbox TOMCAT [41]
are used. The 110 doped peanut oil samples are used as a test
set (test set 2).

For the 70 training samples, the first two PCs account for
85.3% of the total data variances. For a SIMCA model, the deci-
sion region proposed in Ref. [29] is used to reduce the risk of
having large number of objects wrongly rejected. By using
scores predicted by leave-one-out cross-validation rather than
the original scores obtained after PCA on the class objects, this
procedure inflates the within-class component variances and is

Table I. Adulterated peanut oils with different levels of doping concentrations

Doping levels 3% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%
Number of samples 10 10 10 10 10 10 10 10 10 10 10

Figure 2. Some of the raw mid-infrared spectra of (a) pure and (b)
adulterated peanut oils with doping concentrations ranging from 3%
to 90%.

Figure 1. The geometric meaning of a partial least squares class model
latent variable.

One-class PLS
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shown to lead to a reduction of the number of false outliers. To
determine the number of significant PCs, we used different
methods based on factor indicator function (IND), residual stan-
dard deviation (RSD), and cumulative percentage variance [42],
and these give somewhat different results. Because the first six
PCs explain 96.8% of the data variances, for a fair comparison,
the results of SIMCA models with four to six PCs are reported
and listed in Table II. SIMCA model with six PCs seems to provide
the best training and predicting results as shown in Figure 3. The
wrongly predicted samples for test set 1 (containing 20 pure
peanut oils) and test set 2 (containing 110 doped peanut oils)
are 1 and 4, respectively. In Figure 3(c), the samples in test set
2 are arranged according to an ascending doping concentration.
Seen from Figure 3(c), the higher the doping concentrations, the
higher the predicted s values above the critical value. Moreover,
the doping levels of four wrongly accepted doped oils are 3%,
which seems to be the lowest doping concentration that can
be detected by SIMCA.

For PLSCM, MCCV with 20% left-out samples is used to deter-
mine the number of PLS components and the sampling time is
100. The PRESS values by MCCV are subject to the F-test pro-
posed by Refs [25] and [26]. As suggested, a significance of
0.25 is used. The lowest PRESS value is obtained by nine PLS
components, and PLSCM with six latent variables obtains a
PRESS value not significantly larger than the minimum value
according to the F-test. The results of PLSCM are also listed in
Table II. Figure 4 demonstrates the results obtained by PLSCM
with six latent variables. The results are similar to those of SIMCA,
as the predicted response values become farther from 1 with the
increasing of doping concentrations. The concentrations of three
wrongly accepted samples are also 3%. The six PLS latent vari-
ables account for 84.9% of the data variances. For this data set,
the estimated mean of e is 0.023, so the center of PLSCM confi-
dence interval is just slightly deviated from 1. Although the cor-
rection of confidence interval in equation (9) makes little
difference in rejecting or accepting a sample compared with
equation (8) for the current problem, we believe this correction
is necessary especially when e has a larger mean value.

The results indicate that the performance of PLSCM is compa-
rable with that of SIMCA. Because PLSCM can be performed as in
the routines of multivariate calibration, it seems to be easier to
use in terms of determining model complexity and decision
region.

5. CONCLUSIONS

The identification of doped peanut oils by MIR spectrometry
is tackled by PLSCM and SIMCA. The results demonstrate
PLSCM has comparable performance with SIMCA. For outlier
detection, when the doping concentration is as low as 3%, both
methods wrongly accept some new samples. Because PLSCM
can be performed in the framework of multivariate calibration,
determining model complexity and decision region for PLSCM
seems more straightforward than for SIMCA. Moreover, for a
more accurate estimation of PLSCM confidence interval, a correc-
tion to the original PLSCM is made to estimate the mean of

Table II. The numbers of wrongly predicted samples by soft
independent modeling of class analogy and partial least
squares class model

Models Training
set (70a)

Test set
1 (20)

Test set
2 (110)

SIMCA(4b) 6 2 8
SIMCA(5) 5 1 5
SIMCA(6) 2 1 4
PLSCM(6) 2 0 3

SIMCA, soft independent modeling of class analogy; PLSCM,
partial least squares class model.
aTotal number of samples in a data set.
bThe number of components or latent variables in the model.

Figure 3. The results by soft independent modeling of class analogy
with six principal components for (a) training, (b) predictions of test
set 1, and (c) predictions of test set 2.
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model errors by MCCV resampling. If PLSCM has some advan-
tages, they should be attributed to the well-established founda-
tions of PLS.
PLSCM estimates the class center and class dispersion in the

framework of a latent variable projection model, where the esti-
mation of regression is shrunk to stabilize model variance. The
intuitive geometric meanings of PLSCM are briefly discussed.
By projecting the sample spectra onto the mean spectrum,
PLSCM latent variables consider both the explained variances
and within-class closeness. This feature seems to be of interest
when the objective is to characterize a single class.
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