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a b s t r a c t

The central path plays a very important role in interior-point methods. By an equivalent reformulation of
the central path, we obtain a new search direction which targets at a small neighborhood of the central
path. For a full-Newton step interior-point algorithmbased on this search direction, the complexity bound
of the algorithm is the best known for linear optimization.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Consider the linear optimization problem (LO)

(P) min{cT x : Ax = b, x ≥ 0},

where A ∈ Rm×n, rank(A) = m, b ∈ Rm, c ∈ Rn, and its dual
problem

(D) max{bTy : ATy + s = c, s ≥ 0}.

Without loss of generality, we assume that (P) and (D) satisfy
the interior-point condition (IPC) [6], i.e., there exist x0, y0, and s0
such that

Ax0 = b, x0 > 0, ATy0 + s0 = c, s0 > 0. (1)

It is well-known that finding an optimal solution of (P) and (D) is
equivalent to solving the following nonlinear system

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,
xs = 0,

(2)

where xs denotes the coordinatewise product of the vectors x and
s. The third equation in system (2) is called the complementarity
condition.

The basic idea underlying primal–dual interior-point methods
(IPMs) is to replace the complementarity condition by the
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nonlinear equation xs = µe, with parameter µ > 0 and with
e = (1, . . . , 1)T . The system (2) now becomes

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,
xs = µe.

(3)

Surprisingly enough, if the IPC is satisfied, then a solution exists,
for each µ > 0, and this solution is unique. It is denoted
as (x(µ), y(µ), s(µ)) and we call x(µ) the µ-center of (P) and
(y(µ), s(µ)) the µ-center of (D). The set of µ-centers (with µ
running through all positive real numbers) gives a homotopy path,
which is called the central path of (P) and (D) [3]. If µ → 0, then
the limit of the central path exists and since the limit points satisfy
the complementarity condition, the limit yields optimal solutions
for (P) and (D).

Many IPMs use the central path, Some algorithms explicitly use
the central path as they force the iterates to follow the central
path. Even for many algorithms that do not use the central path
directly in the algorithm statements, the central path is used for
convergence analysis [1,2,4–6].

Through an equivalent reformulation of equation xs = µe,
in Section 2, we derive a new search direction. In Section 3, we
present a full-Newton step IPM based on the new search direction.
The complexity analysis for the algorithm and the implication for
the new search direction are given in Section 4. Finally, we end the
paper by Section 5.

2. A modified Newton direction

We derive an equivalent reformulation for the equation
xs = µe.
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2.1. Equivalent reformulation

We define

v =


xs
µ
. (4)

The equation xs = µe can be rewritten as v2 = e. Remember that
v ≥ 0, one has

v2 = e ⇔ v = e ⇔ v2 = v.

Transforming the left-hand side of the equation v2 = v to the xs
space, we obtain

xs = µv. (5)

Note: The implication for this equivalent reformulation will be
given at the end of Section 4.

It will turn out that this equivalence of v can be used to design
a new search direction for (P) and (D). The full-Newton step
IPM based on this search direction still enjoys the best-known
complexity.

2.2. The new search direction

Substituting the third equation in system (3)with (5), we obtain
a new system for LO as follows

Ax = b, x ≥ 0,

ATy + s = c, s ≥ 0,
xs = µv.

(6)

In feasible IPM, we are given a positive feasible pair (x, s), and
some µ > 0. Our aim is to define search directions (△x,△s)
that move in the direction of the small neighborhood of the µ-
center (x(µ), s(µ)). In fact, we want the new iterates x + △x, s +

△s to satisfy system (6) and be positive with respect to µ. After
substitution this yields the following conditions on (△x,△s)

A (x + △x) = b, x + △x > 0,
AT (y + △y)+ (s + △s) = c, s + △s > 0,
(x + △x) (s + △s) = µv.

If we neglect for the moment the inequality constraints and the
quadratic term △x△s, then, since Ax = b and ATy + s = c , this
system can be rewritten as follows

A△x = 0,

AT
△y + △s = 0,

x△s + s△x = µv − xs.
(7)

Since A has full row rank, the above system uniquely defines a
search direction (△x,△y,△s) for any x > 0 and s > 0 [6]. This
newNewton direction will be used in our implementations of IPM.

By taking a full-Newton step along the search direction, one
constructs a new triple (x+, y+, s+), with positive x+ and s+, i.e.,

x+
= x + △x, y+

= y + △y, s+ = s + △s.

For notational convenience, we define

dx :=
v△x
x

and ds :=
v△s
s
. (8)

Using this notation, the system (7) can be rewritten as follows

Ādx = 0,
1
µ
ĀT

△y + ds = 0,

dx + ds = e − v.

(9)
where Ā := AV−1X and V := diag(v), X := diag(x). Once the
search directions dx and ds are obtained by solving (9), so △x and
△s can be computed via (8).

It should be noted that the new search direction in system (9)
can also be considered as a special case (when σ goes to one) of the
following finite-barrier kernel-function

ψ(t) =
t2 − 1

2
+

1
σ


eσ(1−t)

− 1

, σ ≥ 1.

One may refer to the ref. [1] for further details.
In what follows, the 2-norm and the infinity-norm are denoted

by ‖ · ‖ and ‖ · ‖∞, respectively. Note that since dx belongs to the
null space of the matrix Ā and ds to its row space, it follows that dx
and ds are orthogonal vectors, i.e.,

dTx ds = 0.

Using the third equation in (9) we obtain

‖dx‖2
+ ‖ds‖2

= ‖dx + ds‖2
= ‖e − v‖2.

Note that dx = ds = 0 if and only if v = e and hence x and s
satisfy xs = µe, which implies that (x, s) coincides with the µ-
center (x(µ), s(µ)). Thus, we can use ‖e − v‖ as a quantity to
measure closeness to the pair of µ-centers. We therefore define
the proximity measure as follows,

σ(x, s;µ) = σ(v) = ‖e − v‖. (10)

The generic primal–dual IPM will be described in the following
section.

3. Generic feasible primal–dual IPM for LO

It is assumed that we are given a positive primal–dual pair
x0, s0


> 0 and µ0 > 0 such that


x0, s0


is close to the µ0-

center in the sense of the proximity measure σ

x0, s0;µ0


. In

the algorithm △x and △s denote the full-Newton step, as defined
before.

Generic feasible IPM for LO

Input:Accuracy parameter ϵ > 0;
barrier update parameter θ, 0 < θ < 1;
threshold parameter τ , 0 < τ < 1;
feasible pair


x0, y0, s0


with µ0 > 0 such that

σ

x0, s0;µ0


≤ τ .

begin:
x := x0; y := y0; s := s0; µ := µ0.

while xT s ≥ ϵ
solve (9) and obtain (△x,△y,△s), let
x+

= x + △x;
y+

= y + △y;
s+ = s + △s;
µ-update: µ := (1 − θ)µ;

endwhile
end:

4. Complexity analysis

This section describes the effects of a full-Newton step and
of a µ-update, and concludes with a complexity result for our
algorithm.

4.1. Some basic results

The next lemma gives some upper bounds for the 2-norm and
the infinity norm of the componentwise product of dx and ds.
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Lemma 4.1 ([6, Lemma C.5]). If u and v are orthogonal, then

‖uv‖∞ ≤
1
4
‖u + v‖2, ‖uv‖ ≤

√
2
4

‖u + v‖2.

Since dx and ds are orthogonal vectors, it follows from Lemma 4.1,
that one has

‖dxds‖∞ ≤
1
4
‖dx + ds‖2

=
1
4
σ(v)2 (11)

and

‖dxds‖ ≤

√
2
4

‖dx + ds‖2
=

√
2
4
σ(v)2. (12)

We give some basic properties about the proximity measure
σ(v).

Lemma 4.2. One has

1 − σ(v) ≤ vi ≤ 1 + σ(v), 1 ≤ i ≤ n.

Proof. Since

|1 − vi| ≤ ‖e − v‖ = σ(v),

the result easily follows. �

4.2. Properties of the full-Newton step

By (8) and the third equation of system (9), one has
x+s+ = (x + △x)(s + △s)

= xs + (s△x + x△s)+ △x△s
= xs + (µv − xs)+ △x△s
= µ(v + dxds). (13)

We want the new iterates be strictly positive, so we only have
to concentrate on the sign of the coordinates of the vectors x+

and s+. We call the Newton step strictly feasible if x+ and s+ are
positive. The main aim of this subsection is to find conditions for
strict feasibility of the full-Newton step.

Lemma 4.3. The Newton step is strictly feasible if and only if v +

dxds > 0.
Proof. The ‘‘only if’’ part of both statements in the lemma follows
immediately from (13). For the proof of the converse implication
we introduce a step length α ∈ [0, 1], and define

xα = x + α△x and sα = s + α△s.

We then have x0 = x, x1 = x+ and similarly s0 = s, s1 = s+.
Hence, we have x0s0 = xs > 0. The proof uses a continuity
argument, namely that x1 and s1 are nonnegative if xαsα is positive
for all α in the open interval (0, 1). We write

xαsα = (x + α△x)(s + α△s) = xs + α(x△s + s△x)+ α2
△x△s.

Using the third equation of system (9), we obtain

xαsα = xs + α (µv − xs)+ α2
△x△s

= µ

(1 − α)v2 + αv + α2dxds


.

Suppose v + dxds > 0, i.e., dxds > −v. Substitution gives

xαsα > µ

(1 − α)v2 + αv − α2v


= µ(1 − α)


v2 + αv


.

Since v2 and v are positive and α ∈ (0, 1), it follows that xαsα > 0
for 0 ≤ α < 1. Hence, none of the entries of xα and sα vanish
for 0 ≤ α < 1. Since x0 and s0 are positive, and xα and sα
depend linearly on α, this implies that xα > 0 and sα > 0 for
0 ≤ α < 1. Hence, x1 and s1 must be positive, proving the if part
of the statement in the lemma. �
Corollary 4.4. The new iterates (x+, s+) are certainly strictly
feasible if

‖dxds‖∞ < min(v).

Proof. By Lemma 4.3, x+ and s+ are strictly feasible if and only if
v + dxds > 0. Since the inequality holds if ‖dxds‖∞ < min(v), the
corollary follows. �

Lemma 4.5. Let σ(v) defined as (10), and (x, s) be any positive pair
and suppose µ > 0. If σ(v) < 2

√
2 − 2, then the full-Newton step

for LO is strictly feasible, i.e., x+ and s+ are positive.

Proof. It follows from (11) and Lemma 4.2, that one has

‖dxds‖∞ ≤
1
4
σ(v)2 and 1 − σ(v) ≤ min(v).

It is easily verified that

‖dxds‖∞ < min(v)

certainly holds for

1
4
σ(v)2 < 1 − σ(v),

which is equivalent to σ(v) < 2
√
2 − 2. By Corollary 4.4, the

new iterates after a full-Newton step are certainly strictly feasible,
which completes the proof. �

The next lemma gives the effect of full-Newton step on duality
gap.

Lemma 4.6. If σ(v) < 2
√
2 − 2, then

x+
T s+ < 

2
√
2 − 1


nµ.

Proof. Using (13), Lemma 4.2 and remembering that the vectors
dx and ds are orthogonal, one has
x+

T s+ = eT (x+s+) = µeT (v + dxds)

= µ(eTv + (dx)Tds) ≤ nµmax(v)
≤ nµ(1 + σ(v)).

Since σ(v) < 2
√
2 − 2, one has

x+
T s+ < 

2
√
2 − 1


nµ,

which completes the proof. �

Denote v+
=


x+s+
µ

. It follows from (13) that
v+

2
= v + dxds. (14)

By (11) and Lemma 4.2, one has

min

(v+)2


≥ min(v)− ‖dxds‖∞ ≥ 1 − σ(v)−

σ(v)2

4
.

Assuming that the iterates x+ and s+ are strictly feasible, one can
obtain a lower bound for the vector v+.

min

v+


≥


1 − σ(v)−

σ(v)2

4
. (15)

The following theorem gives the effect of the proximity
measure after the full-Newton step and a µ-update.
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Theorem 4.7. Let (x, s) be a positive pair and µ > 0. Moreover, let
σ(v) < 2

√
2 − 2 and µ+

= (1 − θ)µ. Then

σ(x+, s+;µ+) ≤
σ(v)+ θ

√
n +

√
2
4 σ(v)

2

1 − θ +
√
1 − θ


1 − σ(v)−

σ(v)2

4

.

Proof. Since

σ(x+, s+;µ+) =

e −


x+s+

µ+


=

1
√
1 − θ

√
1 − θe − v+

 , (16)

and√
1 − θe − v+

2
=

n−
i=1

√
1 − θ − v+

i

2

=

n−
i=1


1 − θ − (v+

i )
2
2√

1 − θ + v+

i

2
≤

n∑
i=1


1 − θ − (v+

i )
2
2

√
1 − θ + min(v+)

2
=

‖e − θe − v − dxds‖2√
1 − θ + min(v+)

2
≤


σ(v)+ θ

√
n +

√
2
4 σ(v)

2
2

√
1 − θ + min(v+)

2
≤


σ(v)+ θ

√
n +

√
2
4 σ(v)

2
2


√
1 − θ +


1 − σ(v)−

σ(v)2

4

2 ,

where the third equation, the second inequality and the last
inequality follow from (14), the triangle inequality and (15),
respectively. Taking square roots at both sides of the above
inequality, and substituting into (16) the result easily follows. �

4.3. Fixing the parameter

We want to find a threshold τ and an update parameter θ ,
which at the start of the iterate satisfies σ(x, s;µ) ≤ τ . After the
full-Newton step and aµ-update, the property σ(x+, s+;µ+) ≤ τ

should be maintained. In this case, by Theorem 4.7, it suffices if

σ(v)+ θ
√
n +

√
2
4 σ(v)

2

1 − θ +
√
1 − θ


1 − σ(v)−

σ(v)2

4

≤ τ .

The left-hand side of the above inequality is monotonically
increasing with respect to σ(v), which implies that

σ(v)+ θ
√
n +

√
2
4 σ(v)

2

1 − θ +
√
1 − θ


1 − σ(v)−

σ(v)2

4

≤
τ + θ

√
n +

√
2
4 τ

2

1 − θ +
√
1 − θ


1 − τ −

τ2

4

.

Thus the σ(x+, s+;µ+) ≤ τ suffices if

τ + θ
√
n +

√
2
4 τ

2

1 − θ +
√
1 − θ


1 − τ −

τ2

4

≤ τ . (17)

At this stage, after some simple calculation, if we set τ =
1
2 and

θ =
1

7
√
n , the inequality (17) certainly holds. Which means that

(x, s) > 0 and σ(x, s;µ) ≤
1
2 aremaintained during the algorithm.

Thus the algorithm is well-defined.
It is easily verified that, if θ =

1
7
√
n and τ =

1
2 , after one

full-Newton step and a µ-update, the property σ(x, s;µ) ≤
1
2 is

maintained. By Lemma 4.2, one concludes that the scaled central
path xs = µv satisfies

µ(1 − σ(v))e ≤ xs ≤ µ(1 + σ(v))e,

which gives
1
2
µe ≤ xs ≤

3
2
µe.

This means that our new search keeps the iterates in a small
neighborhood of the central path.

4.4. Complexity bound

Lemma 4.8. If the barrier parameter µ has the initial value µ0 and
is repeatedly multiplied by 1− θ , with 0 < θ < 1, then after at most1
θ
log


2
√
2 − 1


nµ0

ε


iterations we have xT s ≤ ε.

Proof. At the initial point, one has (x0)T s0 = nµ0. After one
iteration, by Lemma 4.6, the duality-gap equals

(x1)T s1 ≤


2
√
2 − 1


(1 − θ)nµ0,

thus, after k iterates, the duality-gap satisfies

(xk)T sk ≤


2
√
2 − 1


(1 − θ)knµ0.

So, it suffices if
2
√
2 − 1


(1 − θ)knµ0

≤ ε,

which, by taking the logarithm gives

k log(1 − θ)+ log


2
√
2 − 1


nµ0


≤ log ε. (18)

Since

log(1 − θ) ≤ −θ,

it certainly suffices if

−kθ + log


2
√
2 − 1


nµ0


≤ log ε,

this gives

k ≥
1
θ
log


2
√
2 − 1


nµ0

ε

which completes the proof. �

For θ =
1

7
√
n , the following theorem holds trivially.

Theorem 4.9. Setting τ = 1/2 and θ = 1/7
√
n, the initial duality-

gap is (x0)T s0 = nµ0, the full-Newton step primal–dual IPMs for LO



322 L. Zhang, Y. Xu / Operations Research Letters 39 (2011) 318–322
has the complexity bound

O

7
√
n log


2
√
2 − 1


nµ0

ε

 .

5. Conclusions

We have presented a full-Newton step IPM based on the mod-
ified Newton direction and obtained the best-known complexity
bound for LO. Our further research may focus on designing the in-
feasible IPM based on the new search direction and doing numeri-
cal tests of the algorithm.
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