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This paper studies the deformation modes and anisotropy of the IVB transition metal nitrides TiN, ZrN,
and HfN using the plane-wave density functional theory. The values of elastic modulus and hardness
of the TiN, ZrN, and HfN are calculated and analyzed in detail. This result suggests typical elastic anisot-
ropy, which increases in the order of TiN ? ZrN ? HfN. This phenomenon results in inevitable lattice dis-
tortion and microcracks. The minimum value of thermal conductivity of the polycrystalline system
decreases in the order of TiN ? ZrN ? HfN. The thermal conductivity of single crystals in each crystal ori-
entation presents a nearly anisotropic thermodynamic property.

� 2013 Elsevier B.V. All rights reserved.
1. Introduction

The IVB transition metal nitrides, namely, TiN, ZrN, and HfN, are
a group of ceramic materials with special properties. These com-
pounds not only possess excellent electric and thermal conductiv-
ity but also share the properties of covalent compounds, such as
high melting point, high hardness, and high corrosion resistance.
These compounds have long attracted considerable attention
among researchers [1–8]. In the field of industrial application,
IVB transition metal nitrides mostly serve as cutting materials,
ultra-wear-resistant materials, and thermal barrier coating. Thus,
these compounds have a significant function in basic research
and technical research. The mechanical properties [1–5] and ther-
mal properties [6–8] of these compounds have been extensively
studied.

Elastic modulus has always been the focus of mechanical re-
search. The nitrides of IVB transition metals have large Young’s
modulus and relatively high hardness. TiN, ZrN, and HfN are
mainly prepared through hot pressing and thin film deposition.
However both preparation methods can facilitate the production
of internal stress in materials, thereby affecting lattice structure
and configuration. These changes result in the anisotropic
distortion of the crystal lattice and significant differences in the
measured data for the physical properties of the material. Further-
more, thermal properties are jointly affected by electron and pho-
non. Therefore, the influence of the thin film and substrate on
electron property and lattice vibration should be considered when
studying thin films. The anisotropy of mechanical elasticity and
thermal properties of IVB transition metal nitrides are still not
completely clear. Therefore, calculating the structural parameters
and elastic constants of the single crystal structures of TiN, ZrN,
and HfN is very important for revealing the mechanical and ther-
mal properties of IVB transition metal nitrides.

Using the first-principles method, this research studies the
deformation modes and elastic constants of TiN, ZrN, and HfN. A
detailed investigation on the mechanical and thermal properties
of these materials as well as anisotropic conditions is also
performed.

2. Computational methods and theory

2.1. Calculation parameter

This research is conducted using the CASTEP [9] program and first-principles
density functional theory [10]. We use the periodic boundary condition and Ceper-
ley–Alder–Perdew–Zunger method under local density approximation (LDA) [11]
and Perdew–Burke–Ernzerhof method under generalized gradient approximation
(GGA) for electronic exchange–correlation energy [12]. Crystal wave function is ex-
panded by the plane wave basis set, and the interaction potential for ion core and
valence electron is determined based on the ultrasoft pseudopotential [13]. In wave
vector K space, plane wave cut-off energy is 450 eV. Then, we perform the Brillouin-
Zone integration using 10 � 10 � 10 special Monkors–Park K point. Using the
experimental value as the lattice constant for structural optimization calculation,
we use the Broyden–Fletcher–Goldfarb–Shanno algorithm [14–18] to optimize
the crystal model structure and position of the atom in the lattice to determine
the structure with the lowest energy. Based on this method, the elastic properties
and thermal conductivity are calculated.

2.2. Structural properties

After the geometry optimization for each degree of freedom of the crystal struc-
ture, we determine the lattice parameters that match the experimental value. Next,
we calculate the elastic constants and elastic modulus for each ground-state crystal
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through linear fitting of stress–strain curves. To calculate the bulk modulus and
shear modulus, we refer to the model of Voigt [19] and Reuss and Angew [20],
respectively.

BV ¼ BR ¼ ðC11 þ 2C12Þ=3 ð1Þ

GV ¼ ðC11 � C12 þ 3C44Þ=5 ð2Þ

GR ¼ 5ðC11 � C12ÞC44=½4C44 þ 3ðC11 � C12Þ� ð3Þ

Based on extreme value principle, Hill [21] has proved that Voigt’s and Reuss’s
models are the upper and lower limits of the elastic constant, respectively. The
arithmetic mean Voigt–Reuss–Hill (VRH) value is closer to the experimental result.

B ¼ ðBV þ BRÞ=2 ð4Þ

G ¼ ðGV þ GRÞ=2 ð5Þ

Using Hill’s value of bulk modulus and shear modulus, we obtain the Young’s
modulus and Poisson Ratio for each material under polycrystalline system.

E ¼ ð9BGÞ=ð3Bþ GÞ ð6Þ

m ¼ ð3B� 2GÞ=½2ð3Bþ GÞ� ð7Þ
3. Calculation results and discussion

TiN, ZrN, and HfN have the face-centered cubic lattice like NaCl.
Table 1 lists the lattice constant, elastic constants, and elastic mod-
ulus of TiN, ZrN, and HfN obtained using the LDA and GGA meth-
ods. The LDA calculation has underestimated the lattice constants
but overestimated the elastic constants. The GGA calculation has
overestimated the lattice constants but underestimated the elastic
constants. A cubic system has three independent elastic constants,
namely, C11, C12, and C44. The basis for determining the mechanical
stability is as follows [22]:

C11 > 0; C44 > 0;C11 > jC12j;C11 þ 2C12 > 0 ð8Þ

The elastic constants listed in Table 1 meet this criterion, indi-
cating that the structure of the three nitrides is mechanically sta-
ble. Bulk modulus B and shear modulus G are calculated using
the VRH method. Young’s modulus E and Poisson ratio m are calcu-
lated using Formulas (6) and (7), respectively. Poisson ratio m of
TiN, ZrN, and HfN shows an increasing trend, indicating material
incompressibility. According to the Pugh criterion [23], materials
with G=B > 0:5 generally shows brittleness, and materials with
G=B < 0:5 are generally tough. All of the three nitrides belong to
brittle materials. The compressibility and brittleness decreases
with the change in Poisson ratio m and G/B value.
Table 1
Lattice constants of TiN, ZrN, and HfN (Å);density (g cm�3); elastic constant Cij (GPa); bulk
ratio m.

Species TiN ZrN

Method LDA GGA Expt. LDA

a, b, c 4.175 4.249 4.238a 4.522
q 5.65 5.36 7.56
C11 670.58 559.83 625b 633.37
C12 143.55 131.10 165b 107.53
C44 180.00 167.19 163b 129.56
B 319.22 274.01 325b 282.81
G 209.77 184.70 192b 172.72
G/B 0.657 0.674 0.611
E 516.23 452.43 509c 430.52
m 0.230 0.225 0.246

a [24],
b [25],
c [26],
d [27],
e [28],
f [5],
g [29].
Hardness represents the ability of a material to resist elastic
deformation, plastic deformation, or failure. We calculate bond
population based on the first-principle and analyze the intensity
of the internal bond per unit volume. The hardness of the material
is easily predicted based on the following formula [30]:

HV ¼ APv�
5
3

b ð9Þ

where A is the proportionality factor relative to diamond hardness,
P is the bond population, and vb is bond volume. The relevant data
for determining hardness are listed in Table 2. The data show no sig-
nificant difference in the bond populations of Ti–N, Zr–N, and Hf–N.
However, the high hardness of TiN suggests higher bonding
strength per unit volume.

3.1. Electron structure

The energy band structure and the density of states for TiN, ZrN
and HfN are shown in Fig. 1, in which the red dashed line repre-
sents Fermi level. The properties of the material are determined
by the properties of the electrons at the Fermi surface. It can be
seen from Fig. 1 that all the three nitrides have energy band, in
which valence band passes through Fermi level to enter conduc-
tion band, suggesting the existence of free electrons near the Fermi
level. Considering the analysis results for density of states, we
know that this is the contribution of Ti, 3d, Zr, 4d, Hf and 5d state
electrons, respectively. Thus the electron transmission property
and charge carrier type of TiN, ZrN and HfN could be settled, and
the three compounds have metallic conductivity.

The total density of states (TDOSs) of TiN, ZrN and HfN and par-
tial density of states (PDOSs) reflect the specific composition of the
electronic state in the energy band structure, and the peak with the
minimum amount of energy at the valence band appears near
�15.44,�15.23 and�16.12 eV, respectively. They are mainly made
up of 2s orbital electron of N atom, with very small contribution of
d orbital electron of metal atom. Within the energy range of from
�9 eV to �3 eV, there is orbital hybridization between d orbital of
metal atom and 2p orbital of N atom. The contribution to density of
state from d orbital of metal atom is significantly lower than that of
2p orbital of N atom. The narrow widening of orbital hybridization
peaks and state density distribution indicate that the bond is ionic
and the pseudogap in state density occurs near �2.47 eV (TiN),
�2.83 eV (ZrN) and �3.10 eV (HfN). There is significant difference
in the structural properties of electrons near the Fermi level on
the left and right of the pseudogap. The density of states mainly
modulus B (GPa); shear modulus G (GPa); G/B; Young’s modulus E (GPa); and Poisson

HfN

GGA Expt. LDA GGA Expt.

4.591 4.585d 4.574 4.645 4.682g

7.22 13.36 12.75
542.42 611e 709.54 602.93 694e

102.40 117e 116.60 109.27 115e

120.80 129e 103.86 92.26 134e

249.08 215b 314.25 273.82 306e

153.93 157e 160.61 138.59 202e

0.618 0.511 0.506
382.91 380f 411.69 355.75 387f

0.244 0.282 0.283



Table 2
Bond lengths of TiN, ZrN, and HfN (Å); population; bond volume; (Å3); and hardness (GPa).

Bond Method Length Population Vb HV Hexp
V

TiN Ti–N LDA 2.08740 0.69 6.06333 25.33 24.5a

GGA 2.12446 0.70 6.39250 23.53

ZrN Zr–N LDA 2.26080 0.60 7.70333 14.78 13.4b

GGA 2.29534 0.62 8.06250 14.15

HfN Hf–N LDA 2.28698 0.71 7.97417 16.51 16.0c

GGA 2.32260 0.71 8.35250 15.28

a [31].
b [32].
c [2].
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Fig. 1. The graphs for the energy hand structure and density of states for TiN, ZrN and HfN, respectively, in which the red dashed line represents Fermi level and the blue one
the location of pseudogap. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Z.-Q. Chen et al. / Journal of Alloys and Compounds 575 (2013) 137–144 139
comes from the contribution of d orbital electrons of metal atom,
showing the metallicity of the material. The pseudogap is red
shifted in sequence, which indicates that the electronic state near
the Fermi level is predominantly under the control of d orbital
electrons of metal atom. The metallicity increases in the sequence
TiN ? ZrN ? HfN.

3.2. Mechanical deformation modes

To study the deformation mechanism of TiN, ZrN, and HfN, we
calculate the tensile (shear) stress–strain curve in the crystal orien-
tation [001], [110], and [111], respectively (Fig. 2). In other words,
we obtain the pattern of variation in stress from the elastic region
to the unstable region and ultimate breakdown under the strain.
Within the initial strain range, each curve shows linear variation.
The slope is consistent with the data for Young’s modulus in Table
1. When the elastic deformation reaches its limit, a turning point
appears in the tensile (shear) curve, which means that the atom
breaks away from the control of adjacent atoms and spontaneously
slides from the original lattice position to a new one to attain the
minimum total energy of the system [33]. Fig. 2a shows the com-
parison of the stress–strain status of different materials in the
stretching along the same crystal orientation. TiN presents the
maximal tensile strength along [100] and [110]. The tensile
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Fig. 2. Stress–strain curves for the stretching of TiN, ZrN, and HfN along the [001], [110], and [111] crystal orientations.
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strength of ZrN along [111] is higher. Fig. 2b shows the significant
anisotropy of the stress–strain variation of the lattice for different
crystal orientations. The [110] and [111] present the most obvious
difference in the shape of the curve. The curve in [110] has under-
gone longer plastic deformation with less obvious variation in
stress, indicating high toughness. In [111], no significant yielding
stage is observed between the elastic deformation stage and frac-
ture stage, indicating material brittleness. Furthermore, the ideal
tensile strength s in the three crystal orientations is shown in
the following variation pattern:

s½001� < s½110� < s½111�

The tensile (shear) stress–strain curve shows obvious anisot-
ropy because marked changes have appeared in the stress of the
crystal cell when the stretching occurs along different crystal ori-
entations. The details are presented as follows:

(1) In the stretching along [001], the bond involved in tensile
deformation is the X–N bond (X = Ti, Zr, Hf) in [100]. The
tensile stress s in the same direction as the bonding.

(2) During the stretching along [110], the X–N bond in [010]
and [100] are involved. The inclusion angle between the
tensile stress and initial orientation of the bonding is 45�,
which decreases as the stretching progresses.

(3) During the stretching along [111], the bond involved in ten-
sile deformation is the X–N bond along [100], [010], and
[001]. The inclusion angle between the tensile stress and
initial orientation of the bonding is approximately 35.3�,
which decreases with stretching.

During the stretching along [001], the bond length rapidly
changes and the stage of elastic deformation shortens. The stress
reaches the ideal strength when the bonding reaches its elasticity
limit, followed by yielding and fracture. The processes confirm
the brittleness of these materials corresponding to Push criterion
exactly. The stretching process along [110] and [111] results in
changes in bond length and bond angle (Fig. 3). The elastic defor-
mation stage of the tensile curve along the two crystal orientations
becomes significantly longer because bond length and bond angle
also contribute to the stretching of materials. The change in bond
angle weakens the effect of tensile stress on bond length. The ten-
sile stress along the [110] has the maximum inclusion angle with
the initial direction of bonding. However, the deformation rate of
the bond angle is faster than that in the [111] and reaches the elas-
ticity limit more quickly. Thus, the elastic deformation stage along
the [110] is shorter than that in the [111]. Considering that the
stretching process only causes changes in the bond length and an-
gle on the (100) plane, a high degree of freedom for deformation is
observed. Therefore, the plastic deformation stage along [110] is
the longest of the three orientations. On the contrary, the stretch-
ing in the [111] has the longest elastic deformation stage, which
indicates the maximum ideal strength during stretching. However,
the stretching process is directly related to the change in the bond
length and angle in the crystal cell. The deformation of [111] has
the lowest degree of freedom among the three orientations. Once
the stretching curve reaches the ideal strength, it instantly transits
to the fracture stage without passing through any obvious yielding
stage.

Electron density difference further explains the modes behind
the tensile deformation of the materials (Fig. 4). The stretching in
[001] strengthens the effect of the electron transfer of the X–N
bond in the transverse direction and weakens the effect of the elec-
tron transfer of the X–N bond of each crystal cell on the (100)
plane along the stretching direction. The relaxation process en-
ables the crystal cell to reach a new equilibrium state under the
influence of tensile stress with minimal total energy of the system.
The strengthening of the effect of some of the electron transfers
along [110] and [111] is also influenced by the relaxation process.
Given the inclusion angle between the direction of the tensile
stress and bond, the direction for the strengthened electron trans-
fer is slightly different from that for the stretching along [001]. The
difference is mainly observed in the direction of unpaired



0 10 20 30
70

75

80

85

90

0 10 20 30
70

75

80

85

90

0 10 20 30
70

75

80

85

90

Bo
nd

 a
ng

le
 (

°)

 [110]
 [111]

(TiN)

Strain (%)

(ZrN) (HfN)

(b) 

0 10 20 30

2.1

2.2

2.3

2.4

0 10 20 30

2.3

2.4

2.5

2.6

0 10 20 30

2.3

2.4

2.5

2.6

Bo
nd

 le
ng

th
 (Å

)
 [110]
 [111]

(TiN)

Strain (%)

(ZrN) (HfN)

(a) 

Fig. 3. Changes in the bond length (a) and bond angle (b) of TiN, ZrN, and HfN during stretching along the [110] and [111] crystal orientations, respectively.

Fig. 4. Electron density difference for the stretching of TiN (a), ZrN (b), and HfN (c) along the (100) [001], (001) [110], and (11 �2) [111] with a strain of 0%, 10%, and 25%,
respectively. The blue ball is Nitrogen atom, and the light color ball is Ti, Zr, and Hf atom in (a), (b), and (c), respectively. The value order from low to high is black
(zero) ? blue ? green ? yellow ? red. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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electrons. Under the same condition of tensile deformation, the ef-
fect of the electron transfer of the X-N bond in the longitudinal
direction weakens at a slower rate, corresponding to the stable ten-
sile property in this crystal orientation. Furthermore, when the TiN
crystal cell stretches by 25% along [111], the atom location signif-
icantly changes, and the electron transfer between the Ti and N
atoms disappear. This finding is in agreement with the stress–
strain results in Fig. 3.
3.3. Anisotropy

The influence of microcracks and lattice distortion are generally
considered when studying the mechanical properties of a material.
The anisotropy of elastic property is often the essential condition
for the emergence of microcracks and lattice distortion. Therefore,
research on elastic anisotropy is beneficial for improving the
mechanical durability of materials. The bond has high directionality
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in NaCl-like configurations. Therefore elastic properties along the
face diagonal and body diagonal may significantly differ. To conduct
quantitative research on the anisotropy of a single crystal, we calcu-
late the universal anisotropic index AU [34] and the Zener factor AZ

[35], which describes the anisotropy of single crystal elasticity for
cubic crystals.

AU ¼ 5GV=GR þ BV=BR � 6 P 0 ð10Þ

AZ ¼ 2C44=ðC11 � C12Þ ð11Þ

Since G100 = C44 and G110 = (C11 � C12)/2, AZ = G100/G110 refers to
the shear anisotropic factor. Similarly, we define the Young’s aniso-
tropic factor AE = E100/E110 for cubic crystals as follow:

AE ¼ ðC2
11 þ C11C12 � 2C2

12 þ 2C11C44Þ=½4ðC11C44 þ C12C44Þ� ð12Þ

In formula (9), AU = 0 refers to a locally isotropic single crystal;
as for AZ and AE, the large deviation from 1 indicates the elastic
anisotropy of a single crystal. However, the bulk anisotropic factor
AB = B100/B110 is always equal to 1 for cubic crystals, indicating the
isotropic bulk modulus. All of the anisotropic values of TiN, ZrN,
and HfN are listed in Table 3. The calculation results show that
the Young’s modulus and shear modulus of TiN, ZrN, and HfN for
single crystals are anisotropic. And the degree of anisotropy in-
creases in the order of TiN ? ZrN ? HfN.

To observe clearly how the elastic modulus of a single crystal
changes in all directions, we construct a three-dimensional dia-
gram (Fig. 5a) for the Young’s modulus. The calculation formula
is as follows [36]:

E�1 ¼ s11 � 2ðs11 � s12 � s44=2Þðl2
1l2

2 þ l2
2l2

3 þ l2
3l2

1Þ ð13Þ

Here sij is the elastic compliance coefficient, and l1, l2, and l3 are the
direction cosines. However a shear modulus is decided by two fac-
tors. One is the force-exerting plane, and the other is the force-
exerting direction. The later has infinite possibility on the plane.
Therefore a shear modulus cannot be plotted in 3D space. But the
torsion modulus can be plotted, which is the average shear modulus
over all possible directions. Fig. 5b and c show that the torsion
(shear) modulus [37] and bulk modulus [38] are calculated accord-
ing to the following formulas:

T�1 ¼ s44 þ 4½ðs11 � s12Þ � s44=2Þ�ðl2
1l22 þ l22l2

3 þ l2
3l2

1Þ ð14Þ

B�1 ¼ ðs11 þ 2s12Þðl21 þ l22Þ þ ð2s13 þ s33Þl2
3 ð15Þ

Many physical properties of a crystal are determined by lattice
vibration. Lattice vibration in turn can be reflected by the phonon
system. Acoustic wave, as a key physical quantity, has a significant
function in studying the thermal conductivity of a material. This
paper calculates the wave speed of the transverse and longitudinal
acoustic waves for TiN, ZrN, and HfN in the [100], [110], and [111]
crystal orientations, respectively. Table 3 shows the results, and
the calculation formula is as follows [39]:

v l½100� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
C11=q

p
; v t1½010� ¼ v t2½001� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p
ð16Þ

v l½110� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11 þ C12 þ 2C44Þ=2q

p
;v t1½1 1

�
0�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11 � C12Þ=2q

p
; v t2½001� ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
C44=q

p
ð17Þ
Table 3
The calculated AU, AE, AG, E[100], E[110], E[111], T[100], T[110], and T[111] of TiN, ZrN, and HfN.

Species AU AE AZ E[100]

TiN 0.176 1.273 0.683 619.96
ZrN 0.627 1.589 0.493 602.16
HfN 1.446 2.058 0.350 676.64
v l½111� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11 þ 2C12 þ 4C44Þ=3q

p
;v t1½11 2

�
� ¼ v t2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðC11 � C12 þ C44Þ=3q

p
ð18Þ

where Cij is the elastic constant, and q is the density. For face-
centered cubic crystals, the phonon spectrum shows two disper-
sion curves between C[000] and X[100], which correspond to
the longitudinal acoustic wave and degenerate transverse acoustic
wave, respectively [40]. Therefore, the two transverse acoustic
waves along [100] have the same wave speed. The acoustic wave
in [111] is similar to that in [100]. In [110], all of the phonon
dispersion curves are in a non-degenerate state, so the two trans-
verse acoustic waves propagate at different wave speeds. The dis-
tributions of the two transverse acoustic waves on the phonon
spectrum significantly differ. Table 4 shows the comparison of
the calculation results and experimental values of the CaO acous-
tic wave speed for face-centered structure. The results are in
good agreement, indicating that this calculation method is
reliable.

Acoustic wave speed is closely related to the thermal conductiv-
ity of a material. At high temperatures, thermal conductivity de-
creases with increasing temperature [42]. Thus, determining the
minimum value at high temperature is important for exploring
the application of materials under extreme conditions. In this pa-
per, the calculation for the thermal conductivity of polycrystalline
TiN, ZrN, and HfN is based on the Clark Model [42] and Cahill Mod-
el [43].

ð1Þ Clark Model : jmin ¼ 0:87kBM�2=3
a E1=2q1=6 ð19Þ

ð2ÞCahill Model : jmin ¼ kBp2=3ðv l þ 2v tÞ=2:48 ð20Þ

In the Formula, E is the Young’s modulus, q is the density, kB is
the Boltzman constant, Ma = [M/(n � NA)] is the average mass for the
atom in the lattice, M is the molar mass for molecules, n is the
number of the atoms, NA is the Avogadro’s constant, p is the num-
ber of atoms per unit volume, and vl and vt are the average wave
speed for transverse acoustic wave and longitudinal acoustic wave,
respectively. Based on the two models, we can calculate the lower
limit for lattice thermal conductivity. The calculation results are
shown in Table 5. We also calculate the thermal conductivity for
cubic ZrO2 and compare the value with the experimental value
to verify the accuracy of the calculation method. The results show
that the Cahill value for high-temperature thermal conductivity is
slightly higher than the Clark value. the Cahill value is also closer to
the experimental value. The high-temperature thermal conductiv-
ity for TiN, ZrN, and HfN sequentially decreases.

Compared with the Clark model, the calculation of the thermal
conductivity using the Cahill model is based on the wave speed of
lattice vibration. In the formula, vl and vt correspond to the acoustic
wave in the crystal orientation. Thus, we can calculate the thermal
conductivity for the lattice in different lattice orientations. The for-
mula is then changed into [43]

jmin ¼ kBp2=3ðv l þ v t1 þ v t2Þ=2:48 ð21Þ

This paper calculates the minimum thermal conductivity of the
three structures in [100], [110] and [111]. The detailed results are
presented in Table 5. The difference in the wave speed for the
acoustic wave in different crystal orientations results in the
E[110] E[111] T[100] T[110] T[111]

487.05 462.27 180.00 187.43 189.38
378.86 346.72 129.56 138.33 140.71
328.76 291.31 103.86 113.04 115.59



Fig. 5. Three-dimensional diagrams for the elastic moduli of TiN, ZrN, and HfN. (a) the Young’s moduli, (b) the torsion moduli, and (c) the bulk moduli.
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anisotropy in the thermal conductivity. For the lattice with
isotropy in thermal conductivity, jmin[100] = jmin[110] =
jmin[111] = jmin. Thus, we can determine the degree of anisotropy
for lattice thermal conductivity by comparing jmin(avg) =
(jmin[100] + jmin[110] + jmin[111])/3 and jmin [hkl]. As listed in
Table 6, the values of jmin[100], jmin[110], and jmin[111] are
quite different. Therefore IVB transition metal nitrides are the ther-
mal conducting anisotropy. The difference between jmin[100] and
jmin[110], jmin[110] and jmin[111], jmin[111] and jmin[100] are
2.1%, 0.8%, and 3.1% for TiN respectively; those for ZrN are 4.1%,
1.9%, and 6.2% respectively; and those for HfN are 6.2%, 3.3%, and
10.1%, respectively. Thus the degree of anisotropy shows a trend
of slight increase in the sequence of TiN ? ZrN ? HfN. From [45],
the thermal conductivity for ZrN is 6.27(Wm�1 K�1) at 1100 �C, lar-
ger than 1.964(Wm�1 K�1), the lowest limit at high temperature.
The result is reasonable.



Table 4
Anistropic acoustic wave speeds of TiN, ZrN, and HfN (km s�1).

Direction [100] [110] [111]

vt1,2 [100] vl [100] vt1 [1 �10] vt2 [001] vl [110] vt1,2 [11 �2] vl [111]

TiN 5.639 10.884 6.823 5.639 10.184 6.453 9.9395
ZrN 4.139 9.151 5.896 4.139 8.131 5.375 7.761
HfN 2.788 7.287 4.710 2.788 6.220 4.169 5.821
CaOcal 4.704 8.101 7.030 4.703 7.944 4.879 7.887
CaOexp

a 4.936 8.208 7.023 4.936 8.189 4.956 8.183

a [41].

Table 5
Average mass (g) of atoms, transverse acoustic wave and longitudinal wave speed
(km s�1), atomic number per unit volume, and minimum high-temperature thermal
conductivity (W m�1 K�1) for polycrystalline TiN, ZrN, and HfN.

Clark Cahill jexp
min

Ma 10�23 jmin vt vl p � 1028 jmin

TiN 5.142 2.635 6.088 10.286 11.009 2.872
ZrN 8.740 1.773 4.779 8.237 8.653 1.938
HfN 15.988 1.274 3.467 6.289 8.357 1.407
ZrO2 6.827 1.735 4.306 8.143 9.452 1.936 2.2a

a [44].

Table 6
Minimum thermal conductivity (W m�1 K�1) at high temperatures and Djmin = -
jmin(avg) � jmin for TiN, ZrN, and HfN.

jmin [100] jmin [110] jmin [111] jmin (avg)

TiN 2.834 2.896 2.921 2.884
ZrN 1.898 1.979 2.016 1.964
HfN 1.369 1.459 1.507 1.445
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4. Conclusion

Using the pseudopotential plane-wave method of first-principle
density function theory, this paper analyzes mechanical deforma-
tion modes, and the anisotropy of elasticity and the minimum
thermal conductivity at high temperature for the IVB transition
metal nitrides. All elastic modulus, except for the bulk modulus,
show anisotropy, and the thermal conductivity displays a slight
anisotropy. The degree of anisotropy increases in the following or-
der: TiN ? ZrN ? HfN. Among the IVB transition metal nitrides,
TiN has the highest hardness and the lowest anisotropy. Hence it
is usually used as cutting materials and ultra-abrasion-resistant
materials. On the other hand, HfN, occupying the minimum ther-
mal conductivity at high temperature, is the best candidate for a
thermal barrier coating.
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