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Abstract Let A be a factor von Neumann algebra and Φ be a nonlinear surjective

map from A onto itself. We prove that, if Φ satisfies that Φ(A)Φ(B) − Φ(B)Φ(A)∗ =

AB − BA∗ for all A, B ∈ A, then there exist a linear bijective map Ψ : A → A satisfying

Ψ(A)Ψ(B) − Ψ(B)Ψ(A)∗ = AB − BA∗ for A, B ∈ A and a real functional h on A with

h(0) = 0 such that Φ(A) = Ψ(A) + h(A)I for every A ∈ A. In particular, if A is a type I

factor, then, Φ(A) = cA + h(A)I for every A ∈ A, where c = ±1.
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1 Introduction

For a Hilbert space H , B(H) stands for the Banach algebra of all bounded linear operators

on H . The first result concerning the relation between the subspaces of B(H) which are ideals

with respect to different types of (possibly nonassociate) ring operations can be found in [4].

It was proved there that, if H is a complex infinite dimensional separable Hilbert space, then

considering respectively the Lie and Jordan products on B(H)

[T, S] = TS − ST, T ◦ S =
1

2
(TS + ST ),

every Lie ideal can be “approximated” by an associative ideal and every Jordan ideal is an

associative ideal [4, Theorem 2 and 3]. An associative ideal means a two-sided ideal under the

usual multiplication of operators.
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The Lie products [T, S] are in a close connection with the derivations on B(H) (see, for

example, [10]). Another derivationlike map also attains more and more importance. Let A be a

∗-ring. The additive map δ : A → A is called a Jordan ∗-derivation if δ(A2) = Aδ(A)+ δ(A)A∗

for all A ∈ A. These maps are extensively studied (see, for example, [2, 5–7, 9]) because, by

the fundamental theorem of Šemrl in [8], their structure is intimately related to the problem of

representability of quadratic functionals via sesquilinear forms (see [7]). Concerning operator

algebras, it was also Šemrl [7] who proved that, for a real or complex Hilbert space H , every

Jordan ∗-derivation δ : B(H) → B(H) is of the form δ(T ) = TA − AT ∗ (∀T ∈ B(H)) with

A ∈ B(H) (see [9]). Motivated by the work of Šemrl and [4], Molnár [6] studied the relation

between subspaces of B(H) which are ideals with respect to this product TA − AT ∗. Where

he showed that, if H is a real or complex Hilbert space of dimension greater than 1, then, a

subspace N of B(H) is an ideal if and only if AB − BA∗ ∈ N for A ∈ B(H) and B ∈ N ; and

also, if the dimension of H is an odd natural number, then N = B(H). In addition, it was also

proved in [6] that, if N ⊆ B(H) is an ideal, then, span{AB − BA∗ | A ∈ N , B ∈ B(H)} =

span{AB−BA∗ | A ∈ B(H), B ∈ N} = N . In particular, every element of B(H) is a finite sum

of TS − ST ∗ type operators. In [1], Brešar and Fonšner generalized Molnár’s results to rings

with involution in different ways, and studied the relationship between (ordinary) ideals of a

∗-ring R and left and right ideals of R with respect to the product AB −BA∗. Their approach

is entirely algebraic and is completely different from that used by Molnár, and it is based on

discovering certain identities that connect the product AB − BA∗ with the initial associative

product.

For A, B in a ∗-ring A, denote by [A, B]∗ = AB −BA∗ the skew Lie product of A and B.

A map φ : A → A is called a strong skew Lie product preserver if [φ(A), φ(B)]∗ = [A, B]∗ for

all A, B ∈ A. In this article, we will characterize strong skew Lie product preserving nonlinear

maps on general factor von Neumann algebras. Our main result is as follows.

Theorem 1 Let A be a factor von Neumann algebra and Φ : A → A be a nonlinear

surjective map. Assume that Φ preserves strong skew Lie product. Then, there exist a functional

h : A → R with h(0) = 0 and a strong skew Lie product preserving bijective linear map

Ψ : A → A, such that Φ(A) = Ψ(A) + h(A)I for every A ∈ A.

Recently, in [3], we characterized the bijective linear maps preserving zero skew Lie product

on B(H), where H is a complex Hilbert space, that is, the map φ satisfies that φ(A)φ(B) =

φ(B)φ(A)∗ whenever AB = BA∗ for A, B ∈ B(H). Thus, as an application of Theorem 1, we

can obtain the following result.

Corollary 2 Let H be a complex Hilbert space and Φ : B(H) → B(H) be a nonlinear

surjective map. Assume that Φ preserves strong skew Lie product. Then, there exists a func-

tional h : B(H) → R with h(0) = 0, such that Φ(A) = cA + h(A)I for every A ∈ B(H), where

c = ±1.

2 The Proofs of the Results

Recall that an algebra R is called prime if ARB = {0} for A, B ∈ R implies that A = 0 or

B = 0. Clearly, every factor von Neumann algebra is prime. In this section, we assume always

that A is a factor von Neumann algebra. As usual, R and C denote, respectively, the real field
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and complex field. To prove our results, we need to prove several lemmas.

Lemma 1 Let A ∈ A, and let P ∈ A be a nontrivial projection. Then, for every T ∈ A,

[P, [P, [A, T ]∗]∗]∗ = [A, T ]∗ if and only if there exist constants γ, β ∈ R such that A = γP + βI.

Proof Clearly, we need only to prove the necessity. Assume that [P, [P, [A, T ]∗]∗]∗ =

[A, T ]∗ for every T ∈ A. Then, a direct computation implies that

P [A, T ]∗P = 0 and (I − P )[A, T ]∗(I − P ) = 0. (1)

Replacing T by PT (I − P ) in the above expression, it follows that, for every T ∈ A, PT (I −

P )A∗P = 0 and (I − P )APT (I − P ) = 0. That is,

PA(I − P )A∗P = {0} and (I − P )APA(I − P ) = {0}.

Note that A is prime. We have

PA = PAP = AP and (I − P )A = (I − P )A(I − P ) = A(I − P ). (2)

It follows from (1) and (2) that, for every T ∈ A,

PAPTP = PTPA∗P and (I − P )A(I − P )T (I − P ) = (I − P )T (I − P )A∗(I − P ).

Taking respectively T = P and I − P in the above expression, then both PAP and (I −

P )A(I − P ) are self-adjoint, and consequently, the above expression implies again that PAP

and (I − P )A(I − P ) belong, respectively, to the center of PAP and (I − P )A(I − P ), thus,

there exist α, β ∈ R, such that

PAP = αP and (I − P )A(I − P ) = β(I − P ).

This, together with (2), ensures that

A = PAP + (I − P )A(I − P ) + PA(I − P ) + (I − P )AP

= αP + β(I − P ) = (α − β)P + βI

= γP + βI

with γ = α − β ∈ R.

In the sequel, we assume always that Φ satisfies the assumptions in Theorem 1.

Lemma 2 Φ(RI) = RI and Φ(0) = 0.

Proof For any A ∈ A and any α ∈ R, we have Φ(αI)Φ(A) = Φ(A)Φ(αI)∗. As Φ is

surjective,

Φ(αI)X = XΦ(αI)∗ for every X ∈ A. (3)

Take X = I in (3), then Φ(αI) is self-adjoint, and consequently, (3) implies again Φ(αI) ∈

RI. Conversely, assume that Φ(A) ∈ RI, then, for every B ∈ A, we have AB − BA∗ =

[Φ(A), Φ(B)]∗ = 0, hence, A ∈ RI.

Next, we prove that Φ(0) = 0. Otherwise, assume that Φ(0) = bI for some nonzero real

number b. Then, for every T ∈ A, we have Φ(T )Φ(0) = Φ(0)Φ(T )∗, so Φ(T ) is self-adjoint. This

implies that every element in the range of Φ is self-adjoint, which contradicts to the surjectivity

of Φ.
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Lemma 3 Let P ∈ A be a nontrivial projection. Then, there exist α, β ∈ R with α 6= 0,

such that Φ(P ) = αP + βI.

Proof For every T ∈ A, we have [P, [P, [P, T ]∗]∗]∗ = [P, T ]∗. So,

[P, [P, [Φ(P ), Φ(T )]∗]∗]∗ = [Φ(P ), Φ(T )]∗.

As Φ is surjective, it follows from Lemma 1 that there exist α, β ∈ R such that Φ(P ) = αP +βI.

Now, Lemma 2, together with P being nontrivial, ensures that α 6= 0.

Lemma 4 Let P ∈ A be a nontrivial projection. Then, there exists a nonzero a ∈ R

such that, for any T ∈ A,

PΦ(T )(I − P ) = aPT (I − P ) and (I − P )Φ(T )P = a(I − P )TP.

Proof By Lemma 3, there exist α, β ∈ R with α 6= 0 such that Φ(P ) = αP + βI. Thus,

for every T ∈ A, we have

PT − TP = Φ(P )Φ(T ) − Φ(T )Φ(P ) = α(PΦ(T ) − Φ(T )P ).

In the above expression, multiplying both the left side and right side by I − P , we get

PΦ(T )(I − P ) = aPT (I − P ) and (I − P )Φ(T )P = a(I − P )TP

with a = 1

α
. This completes the proof of Lemma 4.

Now, we are in a position to prove our main result.

Proof of Theorem 1 Fix an arbitrary nontrivial projection P ∈ A. Let

A11 = PAP, A12 = PA(I − P ),

A21 = (I − P )AP, A22 = (I − P )A(I − P ).

Then, A =
2
∑

i,j=1

Aij .

Claim 1 There exists a nonzero a ∈ R such that, for every A ∈ Aij (i 6= j), Φ(A) = aA.

For any T , S ∈ A, as TS − ST ∗ = Φ(T )Φ(S) − Φ(S)Φ(T )∗, it follows that

(I − P )(TS − ST ∗)P = (I − P )(Φ(T )Φ(S) − Φ(S)Φ(T )∗)P

= (I − P )Φ(T )PΦ(S)P + (I − P )Φ(T )(I − P )Φ(S)P

−(I − P )Φ(S)PΦ(T )∗P − (I − P )Φ(S)(I − P )Φ(T )∗P.

By applying Lemma 4, there exists a nonzero a ∈ R, such that

(I − P )(TS − ST ∗)P = a((I − P )TPΦ(S)P + (I − P )Φ(T )(I − P )SP

−(I − P )SPΦ(T )∗P − (I − P )Φ(S)(I − P )T ∗P ).

Let A ∈ A12 and replace S by A in the above expression. Then, for every T ∈ A,

(I − P )TPΦ(A)P = (I − P )Φ(A)(I − P )T ∗P. (4)

Let V ∈ A be arbitrary. Take T = (I−P )V P in (4), then (4) ensures that (I−P )V PΦ(A)P = 0,

and consequently,

PΦ(A)P = 0 (5)
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as A is prime. Thus, (4) implies that (I −P )Φ(A)(I −P )T ∗P = 0 for every T ∈ A. And hence,

that A is prime implies again that

(I − P )Φ(A)(I − P ) = 0. (6)

For every A ∈ A12, as

PΦ(A)(I − P ) = aA and (I − P )Φ(A)P = 0, (7)

it follows from (5)–(7) that, for every A ∈ A12,

Φ(A) = PΦ(A)P + (I − P )Φ(A)(I − P ) + PΦ(A)(I − P ) + (I − P )Φ(A)P

= aA.

A similar discussion implies that Φ(A) = aA for every A ∈ A21.

Claim 2 For every A ∈ Aii (i = 1, 2), Φ(A) ∈ Aii.

Let T , S ∈ A be arbitrary. Then,

TS − ST ∗ = Φ(T )Φ(S) − Φ(S)Φ(T )∗.

Multiplying both sides of the above expression by I −P , and applying Lemma 4, one gets that

there exists a nonzero a ∈ R such that

(I − P )(TS − ST ∗)(I − P )

= a2(I − P )TPS(I − P ) + (I − P )Φ(T )(I − P )Φ(S)(I − P )

−a2(I − P )SPT ∗(I − P ) − (I − P )Φ(S)(I − P )Φ(T )∗(I − P ).

Let A ∈ A11 and replace S by A in the above expression, then, for any T ∈ A,

(I − P )Φ(T )(I − P )Φ(A)(I − P ) = (I − P )Φ(A)(I − P )Φ(T )∗(I − P ). (8)

As Φ is surjective, there exists W ∈ A, such that Φ(W ) = iI (here i is the imaginary unit).

Replacing T by W in (8), we have

(I − P )Φ(A)(I − P ) = 0. (9)

Let A ∈ A11 be arbitrary. Applying Lemma 3, there exists a nonzero α ∈ R, such that

α(PΦ(A) − Φ(A)P ) = Φ(P )Φ(A) − Φ(A)Φ(P ) = PA − AP = 0,

so,

PΦ(A)(I − P ) = (I − P )Φ(A)P = 0. (10)

Hence, (9) and (10) imply that

Φ(A) = PΦ(A)P + PΦ(A)(I − P ) + (I − P )Φ(A)P + (I − P )Φ(A)(I − P )

= PΦ(A)P ∈ A11.

Similarly, for every A ∈ A22, Φ(A) = (I − P )Φ(A)(I − P ) ∈ A22.
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Claim 3 For all A, B ∈ A, Φ(A + B) − Φ(A) − Φ(B) ∈ RI.

Let A, B ∈ A be arbitrary. For any T ∈ A, we have

[Φ(A + B) − Φ(A) − Φ(B), Φ(T )]∗

= [Φ(A + B), Φ(T )]∗ − [Φ(A), Φ(T )]∗ − [Φ(B), Φ(T )]∗

= [A + B, T ]∗ − [A, T ]∗ − [B, T ]∗ = 0.

The above expression, together with the surjectivity of Φ, implies that

(Φ(A + B) − Φ(A) − Φ(B))X = X(Φ(A + B) − Φ(A) − Φ(B))∗, ∀X ∈ A.

So, Φ(A + B) − Φ(A) − Φ(B) is self-adjoint, and therefore, the above expression implies again

that Φ(A + B) − Φ(A) − Φ(B) ∈ RI. The proof of Claim 3 is completed.

Thus, for every A ∈ A, we have

Φ(A) − Φ(PAP ) − Φ(PA(I − P )) − Φ((I − P )AP ) − Φ((I − P )A(I − P )) ∈ RI.

Define a functional h : A → R by

h(A)I = Φ(A) − Φ(PAP ) − Φ(PA(I − P )) − Φ((I − P )AP ) − Φ((I − P )A(I − P )).

It follows from Φ(0) = 0 that h(0) = 0. Let Ψ(A) = Φ(A) − h(A)I for every A ∈ A. Then,

Ψ : A → A is a map satisfying, for every A ∈ A,

Ψ(A) = Φ(PAP ) + Φ(PA(I − P )) + Φ((I − P )AP ) + Φ((I − P )A(I − P )). (11)

Claim 4 Ψ is a bijective linear map satisfying [Ψ(A), Ψ(B)]∗ = [A, B]∗ for all A, B ∈ A.

We prove first that Ψ is linear. Write P1 = P and P2 = I − P . For every Aij ∈ Aij

(i, j = 1, 2), (11) and Φ(0) = 0 imply that

Ψ(Aij) = Φ(Aij). (12)

A direct computation implies that Φ|Aij
is linear. In fact, let Aij , Bij ∈ Aij (i 6= j) and θ ∈ C

be arbitrary. By Lemma 3, there exist αi, βi ∈ R with αi 6= 0, such that Φ(Pi) = αiPi + βiI,

so,

αi[Pi, Φ(θAij + Bij)]∗ = [Φ(Pi), Φ(θAij + Bij)]∗ = [Pi, θAij + Bij ]∗

= θ[Pi, Aij ]∗ + [Pi, Bij ]∗

= θ[Φ(Pi), Φ(Aij)]∗ + [Φ(Pi), Φ(Bij)]∗

= θαi[Pi, Φ(Aij)]∗ + αi[Pi, Φ(Bij)]∗

= αi[Pi, θΦ(Aij) + Φ(Bij)]∗.

Note that Φ(Aij) ⊆ Aij . Hence,

Φ(θAij + Bij) = θΦ(Aij) + Φ(Bij). (13)

Let Aii, Bii ∈ Aii and θ ∈ C be arbitrary. By Claim 1, there exists a nonzero a ∈ R such

that, for every Xji ∈ Aji (j 6= i), Φ(Xji) = aXji. A similar discussion just as (13) implies that

[Xji, Φ(θAii + Bii) − θΦ(Aii) − Φ(Bii)]∗ = 0.
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This, together with Φ(Aii) ⊆ Aii, infers that

PjA[Φ(θAii + Bii) − θΦ(Aii) − Φ(Bii)] = {0},

so,

Φ(θAii + Bii) = θΦ(Aii) + Φ(Bii). (14)

Now, it follows from (11)–(14) that Ψ(θA + B) = θΨ(A) + Ψ(B) for all A, B ∈ A and any

θ ∈ C, that is, Ψ is linear.

Next, we prove that Ψ is bijective. The surjectivity of Ψ follows from the surjectivity of

Φ. To prove that Ψ is injective, assume that Ψ(A) = Ψ(B) for A, B ∈ A. For every T ∈ A,

write A =
2

∑

i=1

Aij , B =
2
∑

i=1

Bij , and T =
2
∑

i=1

Tij . Then, by (11) and (12),

[T, A]∗ =

2
∑

i,j,k,l=1

[Tij , Akl]∗ =

2
∑

i,j,k,l=1

[Φ(Tij), Φ(Akl)]∗

= [Ψ(T ), Ψ(A)]∗ = [Ψ(T ), Ψ(B)]∗

=

2
∑

i,j,k,l=1

[Φ(Tij), Φ(Bkl)]∗

=
2

∑

i,j,k,l=1

[Tij , Bkl]∗ = [T, B]∗,

that is, for every T ∈ A,

T (A − B) = (A − B)T ∗.

Take T = iI in the above expression, then, A = B. So, Ψ is injective.

Lastly, we prove that Ψ satisfies [Ψ(A), Ψ(B)]∗ = [A, B]∗ for A, B ∈ A. For any A, B ∈ A,

we write A =
2
∑

i=1

Aij and B =
2
∑

i=1

Bij , then, it follows from (11) and Ψ(A〉|) ⊆ A〉| that

[Ψ(A), Ψ(B)]∗ =

[ 2
∑

i=1

Φ(Aij),

2
∑

i=1

Φ(Bij)

]

∗

=

2
∑

i,j,k,l=1

[Φ(Aij), Φ(Bkl)]∗

=

2
∑

i,j,k,l=1

[Aij , Bkl]∗ = [A, B]∗.

So, Claim 4 holds, and the proof is completed.

To prove Corollary 2, we need the following result, which was proved in [3].

Lemma 5 Let H and K be complex Hilbert spaces. Suppose that Φ : B(H) → B(K)

is a linear bijective map. Then, Φ preserves zero skew Lie product if and only if there exist a

nonzero scalar c ∈ R and a unitary operator U ∈ B(H, K) such that Φ(A) = cUAU∗ for all

A ∈ B(H).

Proof of Corollary 2 As B(H) is a factor of type I, Theorem 1 implies that there exist

a linear bijective map Ψ : B(H) → B(H) satisfying

[Ψ(A), Ψ(B)]∗ = [A, B]∗, ∀A, B ∈ B(H), (15)
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and a function h : B(H) → R with h(0) = 0, such that Φ(A) = Ψ(A) + h(A)I for every A ∈

B(H). (15) implies that Ψ(A)Ψ(B) = Ψ(B)Ψ(A)∗ if and only if AB = BA∗ for A, B ∈ B(H).

By Lemma 5, there exist a nonzero real number c and a unitary operator U ∈ B(H), such that

Ψ(A) = cUAU∗ for every A ∈ B(H). Take A = iI in (15), then,

c2UBU∗ = B for every B ∈ B(H).

Picking B = I in the above expression, one has c = ±1. Therefore, the above expression implies

again UB = BU for every B ∈ B(H), and hence, U = λI with |λ| = 1. So, Φ(A) = cA + h(A)I

for every A ∈ B(H). The proof is completed.
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[1] Brešar M, Fsoňer M. On ring with involution equipped with some new product. Publ Math Debrecen,

2000, 57: 121–134
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