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a b s t r a c t

Although there are many reports on the empirical evidence of the existence of
multifractality in various financial or commodity markets in current literature, few can
be found to compare the multifractal properties of emerging and developed economies,
especially for agricultural futures markets in those countries (regions). We therefore
chose China as the representative of the transition and emerging economies, and
USA as the representative of developed ones. We attempt to find the answers to the
following questions: (1) Are all those different markets multifractal? (2) What are the
dynamical causes for multifractality in those markets (if any)? (3) Are the multifractality
strengths in those markets of the transition and emerging economies weaker (or stronger)
than those of the developed ones? To answer these questions, Multifractal Detrended
Fluctuation Analysis (MF-DFA) are applied to study some of the representative agricultural
futures markets in China and USA, namely, wheat, soy meal, soybean and corn. Our
results suggest that all the markets of China and USA exhibit multifractal properties
except US soybean market, which is much closer to mono-fractal comparing with
China’s soybean market. To investigate the sources of multifractality, shuffling and phase
randomization procedures are applied to destroy the temporal correlations and non-
Gaussian distributions respectively.We found thatmultifractality can bemainly attributed
to the non-Gaussian probability distribution and secondarily to the nonlinear temporal
correlationmechanism for all the markets, except US soybean and soymeal, which derives
from some other unknown factors. Furthermore, the average of τ(q) are applied to obtain
the multifractal spectra of the two markets as a whole. The results show that the width
of the multifractal spectrum of US agricultural futures markets is significantly narrower
than that of China’s. Based on our findings, we proposed a hypothesis that the strength
of multifractality in developed economies may be weaker than that in emerging and
transition ones.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

As an important representative of transition and emerging economies, China’s economy is rapidly growing and getting
more globally influential in recent decades. At the same time, although USA is still enduring the ongoing financial tsunami,
it is still the most important developed economy in the world. As for the two economic giants, the following questions
are waiting to be answered: (1) Are all those completely different economies multifractal? (2) What are the causes for the
multifractality in the economies (if any)? (3) Are the multifractality strengths in the transition and emerging economies
stronger (or weaker) than those in the developed ones? Focusing on agricultural futures markets, we try to answer those
questions from a comparative perspective.
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The study of financial or commodity prices is largely based on current main stream literature, whose fundamental
assumption is that stock price (or returns) follows a normal distribution and price behavior obeys ‘random-walk’ hypothesis
(RWH), which was first introduced by Bachelier in 1900 [1], since then it has been adopted as the essence of many asset
pricing models. However, some important results in econophysics suggest that price (or returns) in financial or commodity
markets have fundamentally different properties that contradict or reject RWH. These ubiquitous properties identified are:
fat tails [2], long-term correlation [3], volatility clustering [4], fractals and multifractals [5–8], chaos [9], etc. Nowadays,
RWH has been widely criticized in the finance and econophysics literatures as this hypothesis fails to explain the market
phenomena.
After investigating the prices of cotton, wheat and so on, Mandelbrot provided earliest empirical evidence that

agricultural commodity spot prices do not obey RWH by means of fractal geometry [10,11]. Since then, fractal geometry
has been widely applied in finance and market research domains. Peters introduced fractal theory into the capital market
research, and provided empirical evidence of the mono-fractal properties in many financial markets by means of R/S
analysis [12,13]. In order to study the mono-fractal properties of nonstationary series, Detrended Fluctuation Analysis
(DFA) [14] and Detrended Moving Average Analysis (DMA) proposed by Carbone et al. [15–20] were introduced for the
analysis of average and time-dependent long-range correlation. As Mono-fractals cannot describe the multiscale and
subtle substructures of fractals in complex systems, many measures are applied to investigate the multifractality, such
as height–height correlation function [21], Multifractal Detrended Fluctuation Analysis (MF-DFA) [22–31], the partition
function method [32–34], etc. Empirical evidence shows that many financial markets are multifractal. Norouzzadeh et al.
found the multifractal properties and scaling behaviors of the exchange rate variations of the Iranian rial against the US
dollar, and found that the contributions of two major sources of multifractality are fat-tailed probability distributions and
nonlinear temporal correlations [26]; Kumar and Deo studied the multifractal properties of the logarithmic returns of the
Indian financial indices, and found that the multifractality is due to the contributions of nonlinear temporal correlations
as well as the broad probability density function [31]; Oświęcimka et al. investigated the different multifractal properties
between the time series of logarithmic price increments and the inter-trade intervals of time by high-frequency tick-by-
tick data, and found that the multifractals come from the nonlinear temporal correlations as well as the non-Gaussian
distributions of the fluctuations [24]. Similar results are found in commodity markets. Alvarez-Ramirez et al. investigated
the multifractal properties of international crude oil prices and their dynamical properties [6]; Matia et al. analyzed daily
price of 29 commodities (and 2449 stocks as well), and found that the price returns for commodities have a significantly
broader multifractal spectrum than for stocks, and both of the multifractal properties can be attributed mainly to the broad
probability distribution of price fluctuations and secondly to their temporal organization [23]; Lim et al. investigated the
multifractal properties of price increments in the cases of derivative and spot markets, and found that multifractality due
to a fat-tailed distribution is significant [27].
In agricultural futures markets domain, Chatrath et al. studied four futures as the representatives of US agricultural

futures and found low-dimensional chaotic structures in the markets [35]; Corazza et al. studied six main US agricultural
futures and found the existence ofmono-fractals [36]. As for China’smarkets, although there are some results onmultifractal
properties in Shenzhen and Shanghai stock markets [29,32,33], few empirical evidence in current literature can offer the
answer to the problem whether China’s agricultural futures markets are multifractal or not.
Many scholars have comparedmany differentmarkets and investigated theirmultifractal properties. K.Matia et al. inves-

tigated daily prices of 29 commodities and 2449 stocks, and found that the price returns for commodities have a significantly
broader multifractal spectrum than for stocks [23]; L. Zunino et al. investigated the multifractality degree of developed and
emerging stock market indices, and found that higher multifractality is associated with a less developed market [30]; Zhi-
Qiang Jiang, Wei-Xing Zhou also investigated the emerging and developed stock markets, and found that there are not
multifractality in the original series of the two markets [34], but their results on China’s stock indices shows that there are
multifractality properties in thosemarkets [33].Matos et al. use a newmethod of studying theHurst exponentwith time and
scale dependency to recover themajor events affectingworldwidemarketswhich canmeasure and compare the behaviors in
emergent/established markets [37]. Current studies focused on the commodity market, stock market and some other fields,
but there is no report on comparative multifractal study between the emerging and developed agricultural futures markets.
Therefore, we chose wheat, soymeal, soybean and corn futures contracts fromUS and China’s agricultural markets as the

representatives of the emerging anddevelopedmarkets, and appliedMF-DFA to study themultifractal properties. Our results
suggest that there are multifractal features in the two markets except US soybean market, which is much closer to mono-
fractal comparing with its counterpart in China; furthermore, the dynamical resources of multifractality are investigated by
means of shuffling and phase randomization procedures; finally, the average of τ(q) are applied to obtain the multifractal
spectrum of whole markets, and the multifractal strengths of emerging and developed agricultural futures markets are
compared.

2. Model

To keep our description as self-contained as possible, let us review briefly the model [38–40].
Let us suppose P(i), i = 1, 2, . . . , L, to be a price series, where L stands for the length of the analyzed series. Let us define
the logarithmic returns as:

r(i) = |ln (P (i+1t) /P(i))| (i ≤ L−1t) (2.1)
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where1t = 1, and the length of r(i) is written as N(N = L−1t). Then determine the ‘‘profile’’:

Y (i) =
N∑
i=1

(r(i)− r̄) . (2.2)

Divide the profile Y (i) into Ns = int(N/s) non-overlapping segments of equal length s. Since the length N of the series is
often not a multiple of the considered time scale s, a short part at the end of the profile may remain unused. In order not to
disregard this part of the series, the same procedure is repeated starting from the opposite end. Thereby, 2Ns segments are
obtained altogether. And then calculate the local trends for each of the 2Ns segments bymth order polynomial fit. Then the
variance is given by

F 2(s, v) =
1
s

s∑
i=1

[
Yv(i)− Ỹv(i)

]2
. (2.3)

Here, Ỹv(i) is the fitting polynomial in segment v. Let us then average over all segments to obtain the qth order fluctuation
function:

Fq(s) =

{
1
2Ns

2Ns∑
v=1

[
F 2(s, v)

] q
2

} 1
q

. (2.4)

When q = 0, we calculated its limit:

F0(s) = exp

{
1
4Ns

2Ns∑
v=1

ln
[
F 2(s, v)

]}
. (2.5)

If the series is power-law correlated, with the increasing of s, it should obey the power-law:

Fq(s) ∝ sh(q). (2.6)

Through the least-square fit, the generalized Hurst exponent h(q) can be estimated by the slope of ln Fq(s) and ln s. If h(q)
is a constant, the series is mono-fractal; otherwise it is multifractal. When q = 2, MF-DFA becomes DFA, and h(2) is the
well-known Hurst exponent.
There is an analytical relationship between the generalized Hurst exponent h(q) and the scaling exponent τ(q) defined

by the standard partition function multifractal formalism [22]:

τ(q) = qh(q)− 1. (2.7)

Another way to characterize a multifractal series is the singularity spectrum f (α), that is related to τ(q) via a Legendre
transform:

α =
dτ(q)
dq

and f (α) = qα − τ(q). (2.8)

Through Eqs. (2.7) and (2.8), it is straightforward to relate α and f (α) to h(q):

α = h(q)+ qh′(q) and f (α) = q (α − h(q))+ 1. (2.9)

If there exist multifractal properties, the generalized Hurst exponent h(q) can be fitted by the following function [41]:

h(q) =
1
q
−
ln (aq + bq)
q ln 2

(a > b) (2.10)

where a and b stand for fitting parameters. τ(q) can be fitted by the function τ(q) = − ln(a
q
+bq)
ln 2 . Then we obtain τ ′(q); thus

singularity exponent α and singularity spectrum f (α) can be estimated by means of Eq. (2.8).

3. Data analysis and discussions

3.1. Data

The data used in this paper are the daily closing prices of hard winter wheat futures market from Dec. 28th, 1993 to Sep.
18th, 2009 (L = 3183) market from China’s Zhengzhou Commodity Exchange, and soy meal futures from Jul. 17th, 2000 to
Sep. 18th, 2009 (L = 2200), No. 1 soybean futures from Mar. 15th, 2002 to Sep. 18th, 2009 (L = 1815), corn futures from
Sep. 22nd, 2004 to Sep. 18th, 2009 (L = 1216)market from China’s Dalian Commodity Exchange. To compare the difference,



L.-Y. He, S.-P. Chen / Physica A 389 (2010) 3828–3836 3831

Table 1
The summary statistics of wheat, soy meal, soybean and corn.

Mean Std. dev. Skewness Kurtosis Jarque–Bera

China

Wheat 1477.0 228.25 0.0693 2.1697 93.970*

Soy meal 2424.2 602.70 0.7134 2.9972 186.60*

Soybean 3146.9 753.56 1.0707 3.5444 369.18*

Corn 1506.8 207.71 −0.2054 1.7834 83.544*

USA

Wheat 409.39 169.74 1.8992 6.1287 3211.7*

Soy meal 222.02 70.084 1.0952 3.0946 440.60*

Soybean 787.16 256.44 1.1632 3.5556 432.62*

Corn 365.08 129.72 0.8749 3.3191 160.30*

* Means reject the null hypothesis that the sample comes from a normal distribution at the significance of 0.01.

a b

c d

Fig. 1. The relationships between ln s and ln Fq(s) in China’s agricultural futures markets ((a) wheat, (b) soy meal, (c) soybean and (d) corn, respectively)
whenm = 3.

we chose the same lengths of daily closing prices of wheat futures (L = 3183), soymeal futures (L = 2200), soybean futures
(L = 1815) and corn futures (L = 1216) from CBOT, covering almost the same time periods as their counterparts in China.
All our data are taken from Reuter©database. In the following discussions, the size s ranges from 10 to [N/6] with the
computation step 10; the degree of polynomial m = 1, 2, 3; because the theoretical moments seems divergent for the
larger q values and one faces the so called ‘‘freezing’’ phenomenon which results in linearization of τ(q) [42], the range of q
is restricted from−5 to 5 with the step 0.1.
To get a better understanding of our data sets, summary statistics of the four futures are provided (see Table 1), from

which one can see clear departure from a normal distribution.

3.2. Multifractal spectrum analysis

By means of the above-mentioned model, first of all we obtained ln Fq(s) vs. ln s relationships of China’s and US
agricultural futures markets (see Figs. 1 and 2). From the figures one can find that they seem have crossovers, for example,
in the US wheat case. These may be explained by the reason that the crossovers result from the competition between
the scaling of the noise and the ‘‘apparent’’ scaling of the trend [43], because the MF-DFA method only can remove the
polynomial trends. Then the relationships between q and τ(q) are obtained in Fig. 3, which show that the relationships
between τ(q) and q are nonlinear except US soybean market, whose relevant curve is seemingly linear. It is also obvious
that h(q) is nonlinearly dependent on q, and decreases while q increases except US soybeanmarket, which seemsmore close
to a constant (see Fig. 4). Fig. 5 presents the nontrivial multifractal spectra. All these pieces of empirical evidence imply that
multifractality properties can be found both in China’s andUS agricultural futuresmarkets except US soybeanmarket, which
is much closer to mono-fractal comparing with its counterpart in China. Especially, when q = 2, all the Hurst exponents
of agricultural futures markets are greater than 0.5 (see Table 2), for example, h(2) = 0.7619 ± 0.0300 for China’s wheat,
h(2) = 0.6515 ± 0.0741 for US wheat, which imply that all the markets do not obey random walk and show persistent
properties. The results also indicate that the Hurst exponents of China’s agricultural futures markets are greater than US,
which suggests that agricultural futures markets in China are more persistent than those in US and that the agricultural
futures markets in US are more efficient than those in China [13].
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a b

dc

Fig. 2. The relationships between ln s and ln Fq(s) in US agricultural futures markets ((a) wheat, (b) soy meal, (c) soybean and (d) corn, respectively) when
m = 3.

Fig. 3. The q ∼ τ(q) curves when m = 3 and−5 ≤ q ≤ 5 with the step 0.1, from which we can find nonlinear relationships between τ(q) and q in both
China’s and US agricultural futures markets.

Fig. 4. The q ∼ h(q) relationships wherem = 3 and−5 ≤ q ≤ 5 with the step 0.1.

4. Sources of multifractality

In current literature, two major sources of multifractality are widely acknowledged which can be found in various
time series. One is long-range temporal correlation for small and large fluctuations, the other is non-Gaussian probability
distribution of increments [23,44]. Usually, two procedures can be applied to identify the contributions of two sources
and to indicate the multifractality strength, that is, shuffling and phase randomization [23]. In order to investigate the
dynamical causes of multifractality in the markets, both of the twomethods are used in this article. The Shuffling procedure
will destroys any temporal correlations, aka, long-range or short-range memories in the markets, but the distributions
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Fig. 5. The relationships between α and f (α), where−5 ≤ q ≤ 5 with the step 0.1.

Table 2
Generalized Hurst exponents and the width of multifractal spectrum.

Original Shuffled Surrogate
Wheat Soy meal Soybean Corn Wheat Soy meal Soybean Corn Wheat Soy meal Soybean Corn

m = 1

China

h(2) 0.7919 0.7978 0.8049 0.7641 0.4859 0.5197 0.4671 0.4439 0.7550 0.7392 0.7198 0.7177
h(−5) 1.1777 0.8881 1.0293 0.9614 0.7121 0.6242 0.6857 0.6526 0.7640 0.7106 0.7531 0.7734
h(5) 0.6396 0.7430 0.6598 0.6383 0.2783 0.5064 0.3422 0.3646 0.7552 0.7430 0.7389 0.7117
1α 0.8121 0.2425 0.5989 0.5526 0.6721 0.2195 0.5660 0.4994 0.0156 0.0702 0.0277 0.1183

USA

h(2) 0.7256 0.7388 0.7813 0.7602 0.4802 0.5136 0.5095 0.5117 0.6796 0.7042 0.7200 0.7044
h(−5) 0.7939 0.7625 0.7287 1.0715 0.6013 0.6582 0.6261 0.6540 0.7017 0.6413 0.7042 0.7218
h(5) 0.6685 0.6889 0.6890 0.7151 0.3849 0.4323 0.4188 0.4811 0.6794 0.7158 0.7228 0.6949
1α 0.2029 0.1113 0.0293 0.5797 0.3723 0.3785 0.3596 0.3135 0.0439 0.1594 0.0412 0.0514

m = 2

China

h(2) 0.7632 0.7011 0.6721 0.7148 0.5065 0.5150 0.4853 0.5025 0.6999 0.6621 0.6590 0.6899
H(−5) 1.1424 0.8592 0.9258 0.9450 0.7273 0.6160 0.6947 0.7139 0.7260 0.6890 0.6903 0.7566
h(5) 0.6287 0.6658 0.4943 0.5948 0.2786 0.4944 0.3591 0.4224 0.6860 0.6544 0.6635 0.6799
1α 0.7855 0.3320 0.6824 0.5884 0.6897 0.2288 0.5507 0.5064 0.0787 0.0677 0.0487 0.1525

USA

h(2) 0.6323 0.7051 0.6985 0.6445 0.4856 0.4989 0.5230 0.5344 0.6061 0.6688 0.6317 0.6303
h(−5) 0.7714 0.7423 0.6450 0.9363 0.6069 0.6365 0.6484 0.6521 0.6170 0.6573 0.6452 0.6719
h(5) 0.5237 0.6451 0.6121 0.6021 0.3834 0.4056 0.4434 0.5058 0.6103 0.6739 0.6395 0.6402
1α 0.4243 0.1592 0.0180 0.5483 0.3754 0.3889 0.3529 0.2705 0.0101 0.0374 0.0089 0.0613

m = 3

China

h(2) 0.7306 0.6733 0.6390 0.6948 0.5303 0.5024 0.5004 0.5404 0.6862 0.6451 0.6250 0.6675
h(−5) 1.1137 0.8672 0.9199 0.9358 0.7486 0.6118 0.7163 0.7861 0.7059 0.6945 0.6819 0.7455
h(5) 0.5777 0.6299 0.4603 0.6018 0.3111 0.4807 0.3596 0.4627 0.6821 0.6378 0.6198 0.6539
1α 0.8138 0.4050 0.7121 0.5650 0.6736 0.2458 0.5775 0.5408 0.0459 0.1129 0.1219 0.1829

USA

h(2) 0.5966 0.6581 0.6361 0.5967 0.5064 0.4936 0.5057 0.5270 0.6006 0.6321 0.6028 0.5953
h(−5) 0.7514 0.7316 0.5946 0.9105 0.6262 0.6739 0.6611 0.6990 0.6406 0.6799 0.6309 0.6674
h(5) 0.4913 0.5791 0.5549 0.5188 0.3936 0.3862 0.4312 0.4880 0.5954 0.6212 0.6037 0.5683
1α 0.4418 0.2647 0.0293 0.6291 0.3883 0.4710 0.3889 0.3680 0.0889 0.1155 0.0520 0.1988

still remain exactly the same; while the surrogate data created by phase randomization will weaken the non-Gaussian
distribution but still preserves the linear properties of the returns. If the multifractality derives from non-Gaussian
distribution, the generalized Hurst exponent h(q) obtained by the surrogate data should be a constant 0.5; if the temporal
correlation is the only reason for themultifractal features, after the series is phase-randomized, h(q) should be independent
of q; nevertheless, if both of the two source are the reasons, the multifractality should remain but its strength should be
weaker.
The shuffling procedure consists of the following steps [23]:

Step 1: generating pairs (m, n) of random integer numbers, which satisfiesm, n ≤ N , where N is the length of the time series
to be shuffled;

Step 2: interchanging entriesm and n of the time series;

Step 3: repeating the first and second steps for 20N times. It is critical to ensure that ordering of entries in the time series is
fully shuffled, thus the long-range or short-rangememories, if any, will be destroyed. The shuffling is repeatedwith different
random seeds to avoid the systematic errors caused by random number generators.
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Fig. 6. The αav ∼ fav(α) curves with different orders of polynomialm, where−5 ≤ q ≤ 5 with the step 0.1.

And the algorithm of phase randomization [28,45]:
Step 1: taking the discrete Fourier transform of the time series.
Step 2: shuffling the phases of the complex conjugate pairs; please also note that the phases of the complex numbers must
be shuffled pairwise to preserve the realness of the inverse Fourier transformation.
Step 3: taking the inverse Fourier transformation.
From the results for the shuffled and surrogate cases in Table 2, we can find that all the spectra widths become

significantly narrower after phase randomization procedure but only decrease slightly after the shuffling procedure except
that those of US soymeal and soybeanmarkets, that is,1α from0.1784±0.0863 (original) to 0.4128±0.0343 (shuffled) and
0.1041±0.0667 (surrogate) for US soymeal market, and from 0.0255±0.0038 (original) to 0.3671±0.0142 (shuffled) and
0.0340±0.0251 (surrogate) for US soybeanmarket. Thereby, non-Gaussian distribution constitutes themajor contributions
in the multifractality formation in all markets except US soy meal and soybean markets, which may be influenced by some
unidentified dynamical causes.
Especially, as for the shuffled returns, when q = 2, all the Hurst exponents of China’s and US agricultural futures

markets are around 0.5 (see Table 2), i.e., h(2) = 0.5076 ± 0.0217 (China’s wheat) and 0.4907 ± 0.0105 (US wheat),
h(2) = 0.5124± 0.0100 (China’s soy meal) and 0.5020± 0.0084 (US soy meal), h(2) = 0.4843± 0.0172 (China’s soybean)
and 0.5127 ± 0.0070 (US soybean), h(2) = 0.4956 ± 0.0517 (China’s corn) and 0.5244 ± 0.0127 (US corn). These results
clearly indicate that the shuffled series obey random walk [12,13].
Compared with the results for original cases, we can find that except for US soy meal and soybeanmarkets, after the sur-

rogate procedure successfully weakens the non-Gaussian distribution, themultifractality also becomes significantly weaker
while at the same time preserves the correlation between the data; thereby, the non-Gaussian probability distribution is by
no means the plausible main explanation for market multifractality formation, in China’s agricultural futures markets. As
for US soy meal markets, the multifractality is mainly due to non-Gaussian distribution, and for US soy meal and soybean
markets, there might be other unknown factors which determine the multifractality formation in these markets.

5. Comparative analysis

Although we shed light on the plausible causes for multifractality formation in those markets, the following question
is still waiting to be answered: Are the multifractal strengths in those markets of the transition and emerging economies
weaker (or stronger) than those of the developed ones?
In order to compare China’s and US agricultural futures markets as a whole, we applied the average of τ(q) proposed in

Ref. [23]:

τav(q) =
1
N

4∑
i=1

τi(q). (5.1)

Therefore, we can obtain

αav =
dτav(q)
dq

=
1
N

d
4∑
i=1
τi(q)

dq
=
1
N

4∑
i=1

αi(q). (5.2)

Thenwe can obtain fav(α) bymeans of Eq. (2.8), therebywe can get themultifractal spectra of China’s and USmarkets as two
whole markets (see Fig. 6). We estimate widths of spectra by1αav ≈ αav(−60)− αav(60). The numerical results in Table 3
tell us that in general the spectrum widths of US markets as a whole are significantly narrower than those of China’s with
different orders of polynomial m. A plausible explanation for this effect is that the developed markets (e.g. US agricultural
markets) are much more efficient than developing (transition) ones (e.g. China’s agricultural markets).
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Table 3
The estimated width of multifractal spectrum1αav .

The order of polynomialm China America

m = 1 0.5655 0.2475
m = 2 0.6065 0.3033
m = 3 0.6319 0.3585

The nontrivial findings also inspire us with a further hypothesis: the multifractal strengths in the developed economies
may be weaker than those in the transition or emerging ones. At least, the answer is positive for the special and
representative cases of China’s andUS agricultural futuresmarkets. Of course,many other efforts and empirical or theoretical
results from other peers may be called for in this field to accept or reject this hypothesis. No matter the final answer is
positive or negative; the findings on this issue will definitely offer us better understandings on the dynamics of financial
and commodity markets.

6. Conclusions

In this article, we investigated the multifractal properties in China’s and US agricultural futures markets from the
comparative perspective. Our nontrivial empirical findings can be summarized as follows:
First of all, multifractality is found in all those markets except the US soybean market, which is much closer to mono-

fractal.
Secondly, non-Gaussian distribution constitutes the major contribution in multifractality formation and nonlinear

temporal correlation also has impact on the markets, expect US soybean and soy meal market, which may be influenced
by some other unknown factors.
Thirdly, the width of multifractal spectrum of US agricultural futures markets as a whole is significantly narrower than

that of China’s.
Of course, there are still some questions waiting to be answered in our future works: are there any more causes of

multifractality in the analyzedmarkets alongwith nonlinear temporal correlation and non-Gaussian distribution, especially
for the case of US soy meal market? Is our hypothesis valid for other cases? Many other pieces of further empirical evidence
and theoretical proofs are needed from other commodity or financial markets in more emerging or transition economies.
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