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Atom-bond Connectivity Index
of Benzenoid Systems
and Fluoranthene Congeners

Xiaoling Ke
Department of Mathematics, Minjiang University, Fuzhou, Fujian, P.R. China

The recently introduced atom-bond connectivity (ABC) index has been applied to study
the stability of alkanes and the strain energy of cycloalkanes. In this article, the ABC
index of both benzenoid systems and fluoranthene congeners is shown to depend solely
on the number of vertices, hexagons and inlets. In addition, the author characterizes
the extremal catacondensed benzenoid systems with the maximal and minimal ABC
index.

Key Words: fluoranthene congener, atom-bond connectivity (ABC) index, benzenoid sys-
tem, inlet.

INTRODUCTION

Molecular descriptors have found a wide application in the theory of the quan-
titative structure-property relations (QSPR) and the quantitative structure-
activity relations (QSAR). Among them, topological indices have a prominent
place (15). One of the best known and widely used is the connectivity index (i.e.,
Randić index) introduced in 1975 by M. Randić (12), who has shown this in-
dex to reflect molecular branching. Some results about branching can be found
in Gutman et al. (8), Vukičević (16), Vukičević and Gutman (18), and Vukičević
and Žerovnik (20), and in the references cited therein. However, many physico-
chemical properties are dependent on factors rather different than branching.
In order to take this into account but at the same time to keep the spirit of the
Randić index, E. Estrada et al. (5) proposed a new index of graph G, known as
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28 X. Ke

the atom-bond connectivity (ABC) index, which is abbreviated as ABC(G) and
defined as follows:

ABC(G) =
∑

vivj ∈E(G)

√
di + dj − 2

didj

where the summation goes over all edges of G, di and dj are the degrees of the
terminal vertices vi and vj of edge vivj , and E(G) is the edge set of G. The ABC
index has been proven to be a valuable predictive index in the study of the heat
of formation in alkanes and has been applied up to now to study the stability
of alkanes and the strain energy of cycloalkanes (5). Recently, there are some
known contributions on the ABC index (2, 4, 6).

A benzenoid system (7), also called honeycomb system, is a finite con-
nected subgraph of the infinite hexagonal lattice without cut vertices or non-
hexagonal interior faces. Benzenoid systems are widely used because they
are the representations of the skeletons of molecules of benzenoid hydrocar-
bons. More details on this important class of molecular graphs can be found in
Gutman and Cyvin (7) and in the references cited therein. Recall that A cat-
acondensed benzenoid system is a benzenoid system whose vertices are all on
the perimeter. A hexagon of a catacondensed benzenoid system is said to be a
turning hexagon if it has two or three non-parallel edges which are common
edges with other hexagons. A catacondensed benzenoid system without turn-
ing hexagon is said to be a linear chain benzenoid system, denoted by Lh if it
possesses h hexagons. The special graphs mentioned above are depicted as in
Figure 1.

Fluoranthene congeners considered in paper (17) consist of two benzenoid
fragments, joined so as to form an additional five-membered ring. In other
words, the general form of a fluoranthene congener H is obtained by joining two
benzenoid systems (X and Y) so as to form a five-membered ring (cf. Figure 2).
Thus, the systems are, from a structural point of view, closely similar to

Figure 1: A benzenoid system G, a catacondensed benzenoid system CG and a linear
chain benzenoid system L h.
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Atom-bond Connectivity Index 29

Figure 2: A general form of a fluoranthene congener H .

benzenoid systems. Many results about fluoranthene congeners can be found
in Gutman and Žerovnik (9), Gutman et al. (10, 11), and Vukičević et al. (17).

In this article, we are interested in the ABC index of benzenoid systems
and fluoranthene congeners. Two formulas (in Theorem 3.2 and 4.2) are ob-
tained for computing the ABC index of both a benzenoid system and fluoran-
thene congener. As a consequence, we characterize the extremal catacondensed
benzenoid systems with the maximal and minimal ABC index over the set of
catacondensed benzenoid systems with a fixed number of hexagons.

DEFINITIONS AND NOTATIONS

Throughout the present paper we use the notations and terminology pro-
posed in Cyvin and Gutman (3) and Gutman and Cyvin (7). For a benzenoid
system G, we call a vertex of degree j a j -vertex. A (j , k)-edge stands for an
edge connecting a j -vertex with a k-vertex. The number of j -vertices and (j , k)-
edges in the graph will be denoted by nj and mjk, respectively. If one goes along
the perimeter of G, then a fissure is a structural feature formed by a 2-vertex,
followed by a 3-vertex, followed by a 2-vertex. A simple bay is formed by a 2-
vertex, followed by two 3-vertices, followed by a 2-vertex. A cove and a fjord
are the features formed, respectively, by three and four consecutive 3-vertices,
lying between 2-vertices. An illustrative example is depicted as in Figure 3.

For a benzenoid system G, the number of fissures, simple bays, coves and
fjords are respectively denoted by f , B, C and F. The fissures, bays, coves
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30 X. Ke

Figure 3: Types of inlets occurring on the perimeter of a benzenoid system G and a
fluoranthene congener H .

and fjords are called various types of inlets. The total number of inlets on the
perimeter of a benzenoid system will be denoted by r1, i.e.,

r1 = f + B + C + F. (2.1)

For a fluoranthene congener H, a fissure, bay, coves and fjord are defined as
in full analogy to the benzenoid systems. Furthermore, we define an additional
type of inlet called the lagoon, denoted by L. This is a feature of the perimeter,
formed by a 2-vertex, followed by five 3-vertices, followed by a 2-vertex (cf.
Figure 3). With the inlets defined as above, and the total number of inlets on
the perimeter of a fluoranthene congener will be denoted by r2, we have

r2 = f + B + C + F + L. (2.2)

THE ABC INDEX OF BENZENOID SYSTEMS

In this section, we obtain the formulas about the ABC index of benzenoid sys-
tems and catacondensed benzenoid systems. In the case of a benzenoid system
G with n vertices and h hexagons, which possesses only (2, 2)-, (2, 3)-, and (3, 3)-
edges, the ABC index of a benzenoid system G reduces to

ABC(G) =
√

2
2

m22 +
√

2
2

m23 + 2
3

m33. (3.1)

Meanwhile, there is the following relations to the parameters such as n, h, r1,
m22, m23, and m33 in a benzenoid system.
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Atom-bond Connectivity Index 31

Lemma 3.1. (13) Let G be a benzenoid system with n vertices, h hexagons and
r1 inlets. Then:

m22 = n − 2h − r1 + 2
m23 = 2r1

m33 = 3h − r1 − 3.

By Lemma 3.1 and Eq. (3.1), one can obtain the ABC index of benzenoid
systems.

Theorem 3.1. Let G be a benzenoid system with n vertices, h hexagons and r1

inlets. Then:

ABC(G) =
√

2
2

n + (2 −
√

2)h + 3
√

2 − 4
6

r1 + (
√

2 − 2).

Proof. Let G be a benzenoid system with n vertices, h hexagons and r1 inlets.
By Lemma 3.1 and Eq. (3.1), we have

ABC(G) =
√

2
2

m22 +
√

2
2

m23 + 2
3

m33

=
√

2
2

(n − 2h − r1 + 2) +
√

2
2

(2r1) + 2
3

(3h − r1 − 3)

=
√

2
2

n + (2 −
√

2)h + 3
√

2 − 4
6

r1 + (
√

2 − 2).

�
As a consequence, we consider the maximal and minimal ABC index over

the set of catacondensed benzenoid systems with a fixed number of hexagons.
Let Ch denote the set of all catacondensed benzenoid systems with h hexagons.
In order to characterize the extremal catacondensed benzenoid systems, we
construct catacondensed benzenoid systems with minimal number of inlets ac-
cording to the methods in Randić (12). For positive integers k and t, let H(k, t)
denote the catacondensed ladder benzenoid systems (cf. Figure 4). If h is even
(h ≥ 6), let Eh be the catacondensed benzenoid system obtained by adding
two hexagons (shaded hexagons in Figure 4), one to the angular hexagon of
the bottom and the other, to the angular hexagon of the top of the catacon-
densed ladder benzenoid system H(2, h−2

2 ). Clearly, Eh ∈ Ch and r1(Eh) = h
2 + 1

since

f (Eh) = 0, B(Eh) = 2, C(Eh) = 2, F(Eh) = h
2

− 3.

If h is odd (h ≥ 5), let Oh be the catacondensed benzenoid system obtained by
adding only one hexagon (shaded hexagon in Figure 4) to the angular hexagon
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32 X. Ke

Figure 4: The catacondensed ladder benzenoid system H (k, t) and the extremal
catacondensed benzenoid systems E h and Oh.

located in the bottom of the catacondensed ladder benzenoid system H(2, h−1
2 ).

In this case Oh ∈ Ch and r1(Oh) = h+1
2 + 1 since

f (Oh) = 1, B(Oh) = 2, C(Oh) = 1, F(Oh) = h + 1
2

− 3.

In Rada (14), there is the following conclusion to the bound on the param-
eter r1.

Lemma 3.2. (14) Let CG be a catacondensed benzenoid system in Ch. Then:

2(h − 1) = r1(Lh) ≥ r1(CG) ≥

⎧⎪⎪⎨
⎪⎪⎩

r1(Eh) = h
2

+ 1 if hiseven

r1(Oh) = h + 1
2

+ 1 if hisodd,

where Lh ∈ Ch.

Furthermore, for a catacondensed benzenoid system CG, there is a fact (14)
that

n = 4h + 2. (3.2)

From Theorem 3.1, thus we obtain the ABC index of catacondensed benzenoid
system and characterize the extremal catacondensed benzenoid systems with
the maximal and minimal ABC index.
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Atom-bond Connectivity Index 33

Theorem 3.2. Let CG be a catacondensed benzenoid system with fixed h
hexagons and r1 inlets. Then:

(i) ABC(CG) = (2 + √
2)h + 3

√
2−4
6 r1 + (2

√
2 − 2);

(ii) ABC(CG) is a monotone increasing function about the inlets r1 of CG;

(iii)

ABC(Lh) ≥ ABC(CG) ≥
{

ABC(Eh), if hiseven

ABC(Oh), if hisodd,

where

ABC(Lh) = 6
√

2 + 2
3

h + 3
√

2 − 2
3

ABC(Eh) = 15
√

2 + 20
12

h + 15
√

2 − 16
6

ABC(Oh) = 15
√

2 + 20
12

h + 11
√

2 − 12
4

.

Proof. It is obviously true for the conclusions of (i) and (ii) by Theorem 3.1
and Eq. (3.2).

In the following, we consider the conclusion of (iii). From the conclusion of
(ii), we must analyze the behavior of r1 over Ch in order to have information
about the variation of ABC(CG) over Ch. More precisely, it is our interest to find
the maximal and minimal value of r1 in Ch. Since r1(Lh) = 2(h − 1), r1(Eh) =
h
2 + 1 if h is even and r1(Oh) = h+1

2 + 1 if h is odd by Lemma 3.2, we have

6
√

2 + 2
3

h + 3
√

2 − 2
3

= ABC(Lh) ≥ ABC(CG),

ABC(CG) ≥ ABC(Eh) = 15
√

2 + 20
12

h + 15
√

2 − 16
6

and

ABC(CG) ≥ ABC(Oh) = 15
√

2 + 20
12

h + 11
√

2 − 12
4

.

Thus, the theorem is completely proved. �

THE ABC INDEX OF FLUORANTHENE CONGENERS

In the section we consider the ABC index of fluoranthene congeners. With the
inlets defined as above, Eq. (2.2) remains applicable in the case of fluoranthene
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34 X. Ke

congeners. Since a fluoranthene congener possesses only (2, 2)-, (2, 3)-, and
(3, 3)-edges, there is a result similar to Lemma 3.1.

Lemma 4.1. Let H be a fluoranthene congener with n vertices, h hexagons and
r2 inlets. Then:

m22 = n − 2h − r2

m23 = 2r2

m33 = 3h − r2.

Proof. Let H be a fluoranthene congener with n vertices, h hexagons and r2

inlets. By the definition of an inlet (i.e., an inlet corresponds to a sequence of
vertices on the perimeter, of which the first and the last are 2-vertices and all
other are 3-vertices.), it is obvious that

m23 = 2r2.

From the fact (7) of benzenoid systems and by the construction of fluoran-
thene congeners, it is easy to see that the number of 3-vertices in H is equal to
2h, i.e., n3 = 2h. Since m23 + 2m33 = 3n3 = 6h and m23, we conclude that

m33 = 3h − r2.

By Euler’s formula (1) which says that for a connected plane graph, the
number of vertices plus the number of faces is equal to the number of edges
plus two, we have n + (h + 2) = m+ 2 = m22 + m23 + m33 + 2. Now by substitut-
ing the values of m23 and m33, one obtains

m22 = n − 2h − r2.

�
Analogous to the proof of Theorem 3.1, one can easily obtain the ABC index

of a fluoranthene congener.

Theorem 4.2. Let H be a fluoranthene congener with n vertices, h hexagons
and r2 inlets. Then:

ABC(H) =
√

2
2

n + (2 −
√

2)h + 3
√

2 − 4
6

r2.
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18. Vukičević, D., and I. Gutman. 2003. Note on a class of modified Wiener indices.
MATCH Commun. Math. Comput. Chem. 47: 107–117.
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