
Application of Entransy Analysis in Self-Heat Recuperation
Technology
Jing Wu*,† and Zeng Yuan Guo‡

†School of Energy and Power Engineering, Huazhong University of Science & Technology, Wuhan 430074, China
‡Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics,
Tsinghua University, Beijing 100084, China

ABSTRACT: Aside from the introductory and concluding remarks, this article is divided into four sections. Following a brief
description of the concepts of entransy and entransy dissipation, which measures the irreversibility of heat transfer not related to
heat-to-work conversion, a temperature−heat-flow-rate diagram (T−Q̇ diagram) is applied to evaluate the heat-transfer
irreversibility graphically, which can be used to reflect the performance of self-heat recuperation technology (SHRT) in chemical
engineering. The entransy analyses in terms of temperature−heat-flow-rate diagrams for the chemical processes with gas and
vapor/liquid streams show that a lower entransy-dissipation rate corresponds to better heat-recovery performance. Finally, both
the quantitative entransy and exergy analyses indicate that, compared to the conventional self-heat exchange process, a process
with SHRT achieved by changing the pressure of the effluent stream with a compressor provides much higher heat recovery and
much lower energy requirement because of the much lower heat-transfer irreversibility measured by the entransy-dissipation rate
or exergy-destruction rate. In addition, the differences between the entransy and exergy analyses are also discussed.

1. INTRODUCTION

Effective energy utilization, which aims to reduce energy
consumption, has attracted significant attention because of
concerns about a worldwide energy shortage. Improving heat-
transfer performance is an important way to reduce energy
consumption because nearly 80% of energy utilization is related
to heat transfer. The chemical industry is a very large consumer
of energy that uses a large number of heat-transfer processes, so
improving their performance is critical to energy savings for the
industry.
In the late 1970s, against the background of the then-current

energy crisis,1 pinch technology emerged as a tool for the
design of heat-exchanger networks, which, as a method for
using energy efficiently, aims to achieve financial savings by
better process heat integration, maximizing heat recovery and
reducing external utility loads. This technology is applicable to
both single-stream and multistream processes.2 However, a
conventional heat-recovery process based on pinch technology
has the limitation that the process heat cannot be completely
recovered and additional heating and cooling loads are still
needed in practical processes.3

To resolve this issue, Kansha et al.4 developed self-heat
recuperation technology (SHRT) based on exergy recuper-
ation. Using SHRT, the reactor effluent stream is compressed
by a compressor and exchanged with the reactor feed stream.
As a result, the heat of the process stream can be circulated
without heat addition, leading to a better energy-saving effect
than can be achieved using a conventional heat-recovery
approach based on pinch technology. So far, SHRT has been
used in several industrial application cases including separa-
tion,5,6 drying,7,8 and CO2 absorption

9 processes.
Recently, the new physical quantity of entransy has been

introduced to describe the heat-transfer capacity of an object
during a time period.10 The entransy-dissipation rate rather

than the entropy-generation rate or exergy-destruction rate can
be used to measure the irreversibility of heat-transfer processes
not involved in thermodynamic cycles for heat−work
conversion.11−14 Furthermore, the entransy-dissipation extrem-
um principle has been proposed for the optimization of heat-
transfer processes.10,14

In most chemical processes using conventional heat-recovery
approaches or processes with SHRT, the objective of a heat-
transfer process is only feed-stream heating or effluent-stream
cooling, not heat−work conversion. Therefore, the entransy
theory14 should be applied to analyze SHRT. The contribution
of this present article is to propose a simple and practical
approach to evaluate the heat-transfer performances of
chemical processes with recuperation technologies based on
the concept of entransy dissipation.

2. ENTRANSY AND ENTRANSY DISSIPATION

The minimum-entropy-generation principle was presented by
Bejan15,16 for the optimization of heat-transfer performance,
which is called thermodynamic optimization. This principle has
been widely used to optimize the performance of various heat-
transfer devices17−20 based on the idea that the entropy
generation is a measurement of irreversibility for any
irreversible transport processes. However, the applicability of
this principle to the optimization of heat-transfer processes has
been called into question by some researchers.21−25 For
instance, Bertola and Cafaro21 found that, when the Onsager
reciprocal relation is satisfied, the principle of minimum
entropy generation is tenable only if there is zero generalized
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flow under a nonzero generalized force. Chen et al.11 and
Finlayson22 indicated that the heat-conduction equation can be
driven from the minimum-entropy-generation principle only if
the thermal conductivity is inversely proportional to the square
of the absolute temperature. In reality, however, the thermal
conductivity of most materials used in engineering is
independent of temperature under normal conditions. More-
over, in a study of balanced counterflow heat exchangers, the
heat-exchanger effectiveness in the range of 0−0.5 was
increased, not decreased, with increasing entropy-generation
number,23 which is referred to as the “entropy-generation
paradox”. In addition, Shah and Skiepko24 found that the
effectiveness of heat exchangers with 18 different flow types can
be a maximum, minimum, or intermediate value when the
entropy-generation number attains extrema, all depending on
the flow arrangement of the two fluids; that is, the entropy-
generation minimization is not a general criterion of
irreversibility for various kinds of heat exchangers. Because
the exergy destruction, I, is proportional to entropy generation,
Sg, according to the expression I = T0Sg, where T0 is the
environmental temperature, the minimum-exergy-destruction
principle is not applicable to the analysis and optimization of
some pure heat-transfer processes either. Investigating the
reason for this discrepancy, it can be found that entropy
generation or, equivalently, exergy destruction measures the
loss of heat−work conversion ability. Either the minimum
entropy generation or the minimum exergy destruction
corresponds to the minimum loss of ability to do useful
work. For some heat-transfer problems, however, the quantity
of interest is the heat-transfer rate or coefficient rather than the
heat−work conversion efficiency.11−14

Because entropy is not suitable for evaluating the
irreversibility of such heat-transfer problems, a new physical
quantity is needed to measure the irreversibility of heat-transfer
problems that are not related to heat−work conversion. It is
known that heat and electrical conduction processes are
analogous because of the analogy between Fourier’s law of
heat conduction and Ohm’s law of electrical conduction, where
the heat flow corresponds to the electrical current and the
thermal potential (i.e., the temperature) corresponds to the
electrical potential. The analogies between the parameters for
heat and electrical conduction processes are listed in ref 10,
where it can be seen that the thermal system lacks a parameter
that corresponds to the electrical potential energy of a
capacitor. Hence, Guo et al.10 defined the physical quantity
Gcm for an incompressible object as

= =G UT Mc T
1
2

1
2cm V

2
(1a)

where cV is the specific heat capacity at constant volume, which
is independent of temperature, T; M is the mass; U is the
internal energy of the incompressible object; and Gcm is a state
quantity called entransy, which was also referred to as the heat-
transport potential capacity in an earlier article.25 The physical
meaning of Gcm is the heat-transfer capacity of an
incompressible closed system during a time period, where the
subscript cm denotes control mass. When the properties of the
system are not uniform, the entransy of the system can be
determined by integration as

∫ ρ=G c T V
1
2

d
V

cm V
2

(1b)

where V is the volume of the system and ρ is the density. Note
that, for an incompressible object with a temperature-
dependent specific heat capacity, the entransy expression
becomes

∫ ∫= =G T U MTc Td d
U T

cm
0 0

V (1c)

or

∫ ∫ ρ=G Tc T Vd d
V

T

cm
0

V (1d)

For engineering calculations, the entransy change during a heat-
transfer process is of great interest, and the expressions for
entransy in eqs 1a and 1b can be used with reasonable accuracy
if the temperature range of the heat-transfer process is
sufficiently small that cV can be taken as a constant.
For heat-conduction problems in a closed system without

reference to any work process and without any heat source, the
energy conservation equation is

= ̇U
t

Q
d
d (2a)

where t is the time and Q̇ is the heat-transfer rate. Equation 2a
can be rewritten per unit of system volume as

ρ ∂
∂

= −∇· ̇c
T
t

qV (2b)

where ρ is the density and q ̇ is the heat flux. Multiplication of
eq 2b by temperature, T, gives10

ρ ∂
∂

= −∇· ̇ + ·̇∇c T
T
t

qT q T( )V (3a)

Integrating eq 3a over the whole volume of the closed
system, we obtain the entransy balance equation as

∫ ∫ ∫ρ ∂
∂

= −∇· ̇ + ·̇∇⎜ ⎟⎛
⎝

⎞
⎠c T

T
t

V qT V q T Vd ( ) d ( ) d
V V V

V

(3b)

Based on the expression for entransy in eq 1b, we have

∫ ρ ∂
∂

=⎜ ⎟⎛
⎝

⎞
⎠c T

T
t

V
G

t
d

d
dV

V
cm

(4a)

Furthermore, Gauss’s theorem gives

∫ ∫−∇· ̇ = − ̇ · ⃗qT V qT n S( ) d ( ) d
V S (4b)

where S is the boundary surface of the closed system.
Substituting eqs 4a and 4b and Fourier’s law, q ̇ = −k∇T, into
eq 3b, gives the entransy balance equation

∫ ∫= − ̇ · ⃗ − ∇
G

t
qT n S k T V

d
d

( ) d ( ) d
S V

cm 2
(3c)

where k is the thermal conductivity. The left side of eq 3c is the
time variation of the entransy stored in the closed system. The
first term on the right is the entransy-transfer rate associated
with heat transfer across the system boundary, whereas the
second term on the right is the total entransy-dissipation rate
within the system boundary, which resembles the electrical
energy dissipation rate in an electrical system and the
mechanical energy dissipation rate in viscous fluid flow.10,14,26

Equations 2a and 3c indicate that, during a heat-transfer process
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without volume variation, heat is conserved whereas entransy is
nonconserved but rather is dissipated due to the irreversibility.
The expressions for entransy in eqs 1a−1d are valid for

closed systems, whereas for open systems involving mass flow
such as in a heat exchanger, the entransy of a flowing fluid
(denoted by Gcv) becomes

= =G HT mc T
1
2

1
2cv p

2
(5)

where cp is the specific heat capacity at constant pressure
independent of temperature, T; H is the enthalpy of the flowing
fluid; and Gcv is a state quantity called the enthalpy entransy.27

It is worth noting that the notation, G, in this article represents
the entransy of an object and should not be confused with the
Gibbs free energy.
For heat transfer in a two-fluid heat exchanger with an

arbitrary flow arrangement, the heat-transfer rate between the
hot and cold fluids over a differential element is

̇ = − ̇ = ̇Q m h m hd d dh h c c (6)

where ṁ is the mass flow rate; h is the specific enthalpy; and the
subscripts h and c denote the hot and cold fluids, respectively.
If the specific heat capacities of the fluids at constant

pressure, cp,h and cp,c, are constant, eq 6 can be rewritten as

̇ = − ̇ = ̇Q m c T m c Td d dh p,h h c p,c c (7)

Multiplying both sides of eq 7 by Th and Tc yields
26

̇ = − ̇G T Qd dh h (8a)

̇ = ̇G T Qd dc c (8b)

where Ġh =
1/2ṁhcp,hTh

2 is the enthalpy entransy of the flowing
hot fluid with mass flow rate ṁh and Ġc =

1/2ṁccp,cTc
2 is the

enthalpy entransy of the flowing cold fluid with mass flow rate
ṁc. Note that, for simplicity of notation, we drop the subscript
cv denoting the control volume from Gcv in this remainder of
the article. The left-hand side in eq 8a or 8b is the change in
enthalpy entransy of the hot or cold fluid, respectively, and the
right-hand side is the local entransy-transfer rate out of the hot
fluid associated with heat-transfer rate dQ̇ at Th or that into the
cold fluid associated with dQ̇ at Tc, respectively.

26

By integrating eqs 8a and 8b over the total heat-transfer rate,
we obtain

∫̇ − ̇ = − ̇
̇

G G T Qd
Q

h,out h,in
0

h
t

(9a)

∫̇ − ̇ = ̇
̇

G G T Qd
Q

c,out c,in
0

c
t

(9b)

where the subscripts in and out denote the inlet and outlet
states, respectively, of the hot and cold fluids and Q̇t is the total
heat-transfer rate between the hot and cold fluids.
The entransy-dissipation rate in the heat exchanger due to

heat transfer from the hot fluid to the cold fluid can be obtained
by summing eqs 9a and 9b26

∫

̇ = ̇ + ̇ − ̇ − ̇

= ̇ + ̇

− ̇ + ̇

= − ̇

ϕ

̇

⎜ ⎟

⎜ ⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

G G G G G

m c T m c T

m c T m c T

T T Q

( ) ( )

1
2

1
2

1
2

1
2

( ) d
Q

h,in c,in h,out c,out

h p,h h,in
2

c p,c c,in
2

h p,h h,out
2

c p,c c,out
2

0
h c

t

(10)

where Ġϕ is the entransy-dissipation rate.
Chen et al.14 enumerated the differences between entransy

theory and entropy theory for optimization. Depending on two
different purposes, various heat-transfer problems have two
different irreversibility measures for process optimization.
When the transferred heat is for heat−work conversion, the
entropy-generation rate is the best measure of irreversibility,
and optimization should involve application of the minimum-
entropy-generation (-exergy-destruction) principle, whereas
when the transferred heat is for object heating or cooling
only, the entransy-dissipation rate is the best measure of
irreversibility, and the extremum-entransy-dissipation principle
should be applied for optimization. Use of these different
principles to optimize the same heat-transfer process will lead
to different optimization results.
The extremum-entransy-dissipation principle has been

applied to the optimization of several types of heat-transfer
processes not involved in thermodynamic cycles, including heat
conduction, convection, and radiation.10−14,28,29 Based on
theoretical analyses, a few heat-transfer enhancement ap-
proaches and technologies have been developed, such as the
use of discrete double inclined rib tubes and alternating
elliptical axis tubes.14 Entransy-dissipation-based thermal
resistance is, in fact, the least action of a pure heat-transfer
process,11 from which Fourier’s law with a constant thermal
conductivity can be derived. Moreover, it was found that, unlike
the nonmonotonic variation of the heat-exchanger effectiveness
with the entropy-generation number, the dimensionless thermal
resistance of a heat exchanger defined on the basis of the
entransy-dissipation rate decreases monotonically with increas-
ing effectiveness,26 that is, no paradox occurs, showing that the
entransy-dissipation rate is a preferable irreversibility measure-
ment for heat-transfer processes with the purpose of object
heating or cooling only.

3. TEMPERATURE−HEAT-FLOW-RATE DIAGRAM AND
ITS PHYSICAL MEANING

In thermodynamics, property diagrams, such as p−v and T−s
diagrams, have served as great visual aids in the analysis of
thermodynamic processes. Such property diagrams can directly
show the variation of the properties of a system during a
reversible thermodynamic process. More importantly, the
magnitudes of the expansion work and heat exchanged between
the system and the surroundings of a reversible process can be
represented by the areas under the process curves in p−v and
T−s diagrams, respectively, providing a convenient approach
for studying and understanding thermodynamic processes.
In heat transfer, the common diagram used to analyze the

variation of fluid temperatures in a heat exchanger is the T−A
diagram, as shown in Figure 1a. A T−A diagram consists of two
axes, where the x axis represents the heat-exchange area and the
y axis represents the temperature of the hot or cold fluid. The
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heat-transfer rate between the hot and cold fluids over a
differential area, dA, is

̇ = −Q K T T Ad ( ) dh c (11)

where K is the overall heat-transfer coefficient of the heat
exchanger and Th and Tc are the temperatures of the hot and
cold fluids, respectively, on the two sides of the differential area,
dA, as shown in Figure 1a.
By integrating eq 11 from the inlet of the heat exchanger to

its outlet, one can obtain the total heat-transfer rate between
the hot and cold fluids in the heat exchanger, which is
proportional to the quadrilateral area enclosed by the two
curves of hot and cold fluids, that is, the area a−b−c−d shown
in Figure 1a. Note that, although the area between the two
curves in the T−A diagram corresponds to the total heat-
transfer rate, the projected area of each curve on the x axis, as
shown in Figure 1b, is meaningless. More importantly, there is
no way to describe the heat-transfer irreversibility with the T−A
diagram.30

Taking the temperature and the enthalpy change of the
flowing hot or cold fluid in a heat exchanger as the y and x axes,
respectively, one can construct a T−ΔḢ (ΔḢ = Ḣin − Ḣ)
diagram to represent the state changes of the hot and cold
fluids, as illustrated in Figure 2. With a constant heat-capacity
flow rate, that is, a constant product of the mass flow rate and
the specific heat of the fluid, ṁcp, the temperature varies linearly
with the enthalpy of the flowing fluid with a slope of 1/ṁcp.

During the heat-transfer process, the total heat supplied by the
hot fluid and obtained by the cold fluid is equal to the enthalpy
change of each fluid, that is, Q̇ = −ṁhΔhh = ṁcΔhc or Q̇ = ΔḢh
= ΔḢc. Thus, the T−ΔḢ diagram is usually referred to as the
T−Q̇ diagram.4,30,31

In fact, according to the energy conservation relation

̇ = ̇ − ̇ = ̇ − ̇Q m h m h m h m hh h,in h h c c c c,in (12)

when the inlet enthalpies of the hot and cold fluids, ṁhhh,in and
ṁchc,in, respectively, are prescribed, the heat-transfer rate, Q̇,
corresponds to the enthalpy of the hot or cold fluid at any state,
that is, −ṁhhh or ṁchc, during the heat-transfer process. Thus,
the heat-transfer rate, Q̇, that is, the horizontal ordinate in
Figure 2, can be regarded as a state parameter of the flowing
fluid.
Unlike on the T−A diagram, where the projected area of

each curve on the x axis is meaningless and the heat-transfer
irreversibility cannot be represented graphically, the projected
area of each temperature line for the hot and cold fluids on the
x axis and the area between them on the T−Q̇ diagram have
clear physical meanings thanks to the concept of entransy. The
patterned area in Figure 3a is equal to Th dQ̇, which is the

differential entransy-transfer rate out of the hot fluid associated
with heat-transfer rate dQ̇ according to eq 8a. Thus, the total
entransy-transfer rate out of the hot fluid during the entire heat-
transfer process, as shown in eq 9a, can be obtained by adding
all of the differential entransy-transfer rates, which is equal, in
magnitude, to the total area under temperature line 1−2 of the
hot fluid in the T−Q̇ diagram. Similarly, the magnitude of the
total entransy-transfer rate into the cold fluid is represented by
the area under temperature line 3−4 of the cold fluid in the T−
Q̇ diagram. Therefore, the difference between these two areas,
as represented by the shaded area in Figure 3b, is the total
entransy-dissipation rate, Ġϕ, as shown in eq 10.30

Because the entransy-dissipation rate is a measurement of the
irreversibility of heat-transfer processes not involved in
thermodynamic cycles, T−Q̇ diagrams can be used as valuable
tools for visualizing heat-transfer performances. For instance,30

it is well-known that the effectiveness of a counterflow heat
exchanger is higher than that of a parallel-flow heat exchanger
under the same heat load. Consider a given heat exchanger with
a finite heat-transfer area, as in Figure 4a. In the case of
counterflow, the area of trapezoid 1−2−3−4 shown in Figure
4b represents the entransy-dissipation rate of the heat-transfer
process. If the flow pattern changes to parallel flow with the
transferred heat and the inlet temperature of the hot fluid

Figure 1. Variation of fluid temperatures with heat-transfer area in a
counterflow heat exchanger: (a) patterned area is proportional to the
heat-transfer rate, (b) patterned area is meaningless.

Figure 2. T−ΔḢ diagram for the hot and cold fluids in a counterflow
heat exchanger.

Figure 3. T−Q̇ diagram of a counterflow heat exchanger: (a) patterned
area is the differential entransy-transfer rate out of the hot fluid, (b)
shaded area is the total entransy-dissipation rate.
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unchanged, the variation of the cold fluid temperature with the
heat-transfer rate is shown by line 5−6 in Figure 4b. Note that,
to transfer the same amount of heat as in the case of
counterflow, the inlet temperature of the cold stream in the
case of parallel flow drops from T3 to T5. As a result, the area of
isosceles triangle 4−5−7 is larger than that of the isosceles
triangle 3−6−7. This shows that the entransy-dissipation rate
of the heat-transfer process in the counterflow heat exchanger is
smaller than that in the parallel-flow heat exchanger, which
leads to a higher effectiveness, that is, a better heat-transfer
performance.
It might appear that the T−Q̇ diagram discussed above is the

same as the T−Q̇ diagram used in both pinch technology and
self-heat recuperation technology (SHRT),3,4,31 but in fact,
there are significant differences between them. First, without
the concept of entransy, it was not possible to establish the
relationship between the area in the T−Q̇ diagram and the
irreversibility of the heat-transfer process in previous studies of
pinch technology or SHRT. Second, in pinch technology
studies, a single hot composite curve of all hot streams and a
single cold composite curve of all cold streams can be
constructed in the T−Q̇ diagram.1,2,31 However, the area
between the hot and cold composite curves cannot reflect the
irreversibility of the multistream heat-transfer process because
the area is no longer the entransy-dissipation rate. Third, in
previous literature on pinch technology,3,4,31 the T−Q̇ diagram
is referred to as a temperature−heat diagram even though the
unit of the horizontal ordinate is not joules but watts, so that it
should be called a temperature−heat-transfer-rate diagram. It is
known from equilibrium thermodynamics that heat is a process
quantity. In contrast, the heat-transfer rate, Q̇, can be
considered as a state quantity in heat transfer because it
corresponds to the enthalpy of the flowing hot or cold fluid at
any state when the inlet enthalpies of the hot and cold fluids are
prescribed, as discussed above based on eq 12.

4. APPLICATION OF T−Q̇ DIAGRAM IN SHRT
In this section, following a previous study of SHRT,4 we
present an analysis of irreversibility by using the T−Q̇ diagram
based on entransy theory. For consistency, we partially use the
same notation as in ref 4. Moreover, the specific heat capacity
of the hot or cold fluid at constant pressure is assumed to be
constant for the sake of simplicity, as in ref 4.

4.1. Gas Stream. Simple chemical process I mentioned in
ref 4 is shown in Figure 5a, where a gas stream is heated from

temperature T0 to a certain operating temperature T1 of the
following process X (e.g., reactor) by a fired heater (FH) and
cooled to temperature T0 by cooling water (CW) after process
X. Figure 5b shows the T−Q̇ diagram, where the shaded and
patterned areas together represent the entransy-dissipation rate
of this process.
If the temperatures of the gas stream before and after process

X, namely, T2 and T3, are the same, the external heating load,
Q̇FH

I , is equal to the external cooling load, Q̇CW
I , which can be

written as4

̇ = ̇ = ̇Q Q Qtotal FH
I

CW
I

(13)

where Q̇total is the total heating duty of the fired heater or the
cooler.
Assuming that the temperature of the fuel in FH, TFH, is kept

constant when it supplies heat to the gas stream during process
1−2, the entransy-dissipation rate of this heat-transfer process
is

∫̇ = − ̇

= ̇ − ̇ − ̇

ϕ

̇

⎜ ⎟
⎛
⎝

⎞
⎠

G T T Q

Q T mc T mc T

( ) d

1
2

1
2

Q

,FH
I

0
FH g

total FH p 1
2

p 0
2

total

(14)

which is represented by the shaded area, Ġϕ,FH
I , in Figure 5b. In

eq 14, the term Q̇totalTFH is the entransy-transfer rate out of the
fired heater, whereas the term 1/2ṁcpT1

2 − 1/2ṁcpT0
2 stands for

the total enthalpy entransy obtained by the flowing gas stream
with mass flow rate ṁ. Thus, the difference between these two

Figure 4. Counterflow and parallel-flow heat exchangers with the same
heat load: (a) flow diagram, (b) T−Q̇ diagram.

Figure 5. Simple thermal process I for the gas stream: (a) flow
diagram;4 (b) T−Q̇ diagram, where the shaded and patterned areas
together represent the entransy-dissipation rate.
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terms is the entransy-dissipation rate of heat-transfer process
1−2.
Similarly, if the temperature of CW, TCW, is unchanged

during cooling process 3−4, the entransy-dissipation rate
during this process is given by

∫̇ = − ̇ = ̇ − ̇

− ̇

ϕ

̇
⎜ ⎟
⎛
⎝

⎞
⎠G T T Q mc T mc T

Q T

( ) d
1
2

1
2

Q

,CW
I

0
g CW p 1

2
p 0

2

total CW

total

(15)

as shown by the patterned area, Ġϕ,CW
I , in Figure 5b. In eq 15,

the term 1/2ṁcpT1
2 − 1/2ṁcpT0

2 is the decreased enthalpy
entransy of the flowing gas stream, and the term Q̇totalTCW is the
entransy-transfer rate into the cooling water.
Combining eqs 14 and 15, we obtain the total entransy-

dissipation rate of simple chemical process I as

̇ = ̇ + ̇ = ̇ −ϕ ϕ ϕG G G Q T T( ),total
I

,FH
I

,CW
I

total FH CW (16)

which is just the area of the rectangle a−b−c−d consisting of
two trapezoids as shown in Figure 5b. Here, the letters a−d
represent the four vertices of the rectangle. Because the
entransy-dissipation rate measures the irreversibility of heat-
transfer processes, it can be seen from Figure 5b that the
irreversibility of simple chemical process I is very large because
of the large temperature difference between the fired heater
(>800 °C) and the cooling water (∼25 °C).
Note that, for some cases (e.g., variable heat capacities or T2

≠T3), heating line 1−2 and cooling line 3−4, as shown in
Figure 5b, might not be symmetrical, in which case the
rectangle cannot be obtained. However, for these conditions,
the total entransy-dissipation rate can also be calculated by
adding the areas between the hot and cold curves of each heat-
transfer process in the T−Q̇ diagram.
Figure 6a shows improved chemical process II, which uses a

feed−effluent heat exchanger in which heat is exchanged
between the feed and effluent streams to recirculate the self-
heat of the streams.4 Figure 6b shows the T−Q̇ diagram, where
the shaded and patterned areas together represent the entransy-
dissipation rate of this process.
In the feed−effluent heat exchanger under the condition of a

minimum temperature difference, ΔTmin, the feed stream is
preheated in the heat exchanger from T0 to T2, and the effluent
stream is cooled from T1 to T5. The feed stream is then heated
by FH to the required temperature T1, for process X, and the
effluent stream is finally cooled to T0 by CW. It can be seen in
Figure 6b that4

̇ − ̇ = ̇ = ̇Q Q Q Qtotal HX
II

FH
II

CW
II

(17)

where Q̇HX
II is the feed−effluent heat-exchanger duty and Q̇FH

II

and Q̇CW
II are the external heating load and external cooling

load, respectively.
The total entransy dissipation of process II, as shown in

Figure 6b, consists of three parts, namely, the entransy
dissipations during the heat-transfer processes in the fired
heater (FH), in the feed−effluent heat exchanger (HX), and in
the cooler (CW). They are represented by the three shaded or
patterned areas Ġϕ,FH

II , Ġϕ,HX
II and Ġϕ,CW

II , respectively, and their
expressions can be derived from the trapezoid formula as

̇ = − + Δ ̇ϕ ⎜ ⎟
⎛
⎝

⎞
⎠G T T T Q

1
2,FH

II
FH 1 min FH

II

(18)

̇ = ̇ ΔϕG Q T,HX
II

HX
II

min (19)

̇ = − + Δ ̇ϕ ⎜ ⎟
⎛
⎝

⎞
⎠G T T T Q

1
2,CW

II
0 CW min CW

II

(20)

Summing the shaded and patterned areas in Figure 6b gives the
total entransy-dissipation rate in chemical process II as

̇ = ̇ + ̇ + ̇ = ̇ −ϕ ϕ ϕ ϕG G G G Q T T( ),total
II

,FH
II

,HX
II

,CW
II

FH
II

FH CW

(21)

which is just the area of the rectangle a′−b′−c′−d′ as shown in
Figure 6b. It can be seen from eqs 16 and 21 that the entransy-
dissipation rate of process II is dramatically decreased
compared with that of process I because Q̇FH

II is much smaller
than Q̇total.
The total entransy-dissipation rates given by eqs 16 and 21

can also be calculated by taking overall chemical processes I and
II, respectively. For process I, the entransy-transfer rate
corresponding to the heat-transfer rate of the fired heater is
Q̇FH

I TFH, and the entransy-transfer rate corresponding to the
heat-transfer rate of the cooling water is Q̇CW

I TCW. The change
in the entransy of the gas stream is zero because the inlet
temperature (point 1) equals the outlet temperature (point 4).
As a result, according to the entransy balance relation, the
entransy dissipation of process I is Q̇FH

I TFH − Q̇CW
I TCW, the

same expression as in eq 16 using Q̇FH
I = Q̇CW

I in eq 13. For
process II, the same analysis is also applicable.
Thermal process III of the gas stream for heat circulation

using SHRT is shown in Figure 7a, where a compressor is used
to provide perfect internal heat circulation.4 Before entering the
heat exchanger, the effluent stream is compressed adiabatically

Figure 6. Improved thermal process II with a feed−effluent heat
exchanger for the gas stream: (a) flow diagram;4 (b) T−Q̇ diagram,
where the shaded and patterned areas together represent the entransy-
dissipation rate.
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by a compressor to a higher temperature, T1′. As a result, the
total heating duty of the feed stream can be entirely provided
by the effluent stream with the self-heat exchanger. Then, the
effluent stream is adiabatically decompressed by an expander to
recover part of the work of the compressor. Finally, the effluent
stream is cooled to T0 by cooling water. The shaft powers of
the compressor and expander are denoted as Ẇc and ẆE,
respectively.
The entransy-dissipation rate of process III comes from two

heat-transfer processes with finite temperature differences, as
shown by the patterned areas in Figure 7b, namely, the heat
transfer in the feed−effluent heat exchanger (HX) and that in
the cooler (CW). The corresponding expressions are

̇ = ̇ ΔϕG Q T,HX
III

total min (22)

and

̇ = + − ̇ϕG T T T Q
1
2

( 2 ),CW
III

0 2 CW CW
III

(23)

Therefore, the total entransy-dissipation rate of the chemical
process with SHRT is

̇ = ̇ + ̇ = ̇ Δ

+ ̇ +
−

ϕ ϕ ϕ

⎜ ⎟⎛
⎝

⎞
⎠

G G G Q T

Q
T T

T
2

,total
III

,HX
III

,CW
III

total min

CW
III 2 0

CW
(24)

For further analysis, the total entransy-dissipation rate of
process II is rewritten as

̇ = ̇ Δ + ̇ − + −ϕG Q T Q T T T T( ),total
II

total min CW
II

FH CW 0 1

(25)

Subtracting eq 25 from eq 24 gives

̇ − ̇ = ̇ Δ − ̇ Δϕ ϕG G Q T Q T,total
III

,total
II

CW
III III

CW
II II

(26)

where

Δ = − + −T T T T TII
FH CW 0 1 (27)

Δ =
+

−T
T T

T
2

III 2 0
CW (28)

For practical chemical processes, (T2 − T0)/2 is much
smaller than TFH − T1, and thus ΔTIII ≪ ΔTII. Moreover, Q̇CW

III

< Q̇CW
II according to the energy relation Q̇CW

II = Q̇CW
III = ẆE. As a

consequence, we obtain Ġϕ,total
III ≪ Ġϕ,total

II .
It is known that the introduction of a feed−effluent heat

exchanger into a chemical process can improve the heat-transfer
performance. Furthermore, a chemical process using SHRT has
a better heat-transfer performance than a comparable process
using a conventional heat-recovery approach. These improve-
ments are essentially attributed to the decrease in the
irreversible loss during heat-transfer processes. As the
entransy-dissipation rate is a measurement of the irreversibility
of a heat-transfer process with the purpose of pure object
heating or cooling, the heat-transfer irreversibility character-
istics of processes I−III can be compared graphically by the
entransy-dissipation rates represented by the areas in the T−Q̇
diagram, as illustrated in Figure 8. This comparison reveals that

the low entransy-dissipation rate is the underlying mechanism
for the good heat-transfer performance and the consequent
significant energy savings of SHRT.

4.2. Vapor/Liquid Stream. Figure 9a shows simple
chemical process IV for a vapor/liquid stream. The specific
heat capacities of the liquid and vapor at constant pressure, cp,l
and cp,g, respectively, are assumed to be constant. A phase
change from liquid to vapor occurs in the fired heater, and a
change from vapor to liquid occurs in the cooling water cooler.
The T−Q̇ diagram of process IV, in which the shaded and
patterned areas together represent the entransy-dissipation rate,
is shown in Figure 9b. It can be seen that, without any heat
recovery, the fired heater and cooler have to provide the whole
heating and cooling load, where Tb stands for the boiling
temperature of the stream at the operating pressure.

Figure 7. Thermal process III with SHRT for the gas stream: (a) flow
diagram;4 (b) T−Q̇ diagram, where the patterned areas together
represent the entransy-dissipation rate.

Figure 8. Comparison of the entransy-dissipation rates of processes I−
III.
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Assuming that the temperatures of the fired heater, TFH, and
cooling water, TCW, remain constant during process 1−2 and
3−4, respectively, the total entransy-dissipation rate of process
IV is the sum of Ġϕ,FH

IV and Ġϕ,CW
IV represented by the shaded

and patterned areas, respectively, in Figure 9b with the
expression

̇ = ̇ + ̇ = ̇ −ϕ ϕ ϕG G G Q T T( ),total
IV

,FH
IV

,CW
IV

total FH CW (29)

which is just the area of the rectangle e−f−g−h shown in
Figure 9b. Here, the letters e−h represent the four vertices of
the rectangle. It can be found from eq 29 that the total
entransy-dissipation rate of process IV is very large because TFH
is much higher than TCW.
Improved chemical process V with a feed−effluent heat

exchanger for the vapor/liquid stream is illustrated in Figure
10a, where only a small part of the latent heat in the phase
change is recovered because of the finite temperature
difference, ΔTmin, of the heat exchanger. As a result, the
external heating and cooling loads, that is, the unrecovered
latent heat and sensible heat, Q̇FH

V and Q̇CW
V , respectively, are

much larger than the self-heat duty Q̇HX
V .4 Entransy dissipation

occurs in the fired heater, the heat exchanger, and the cooler, as
illustrated by the areas of the three polygons in Figure 10b,
where Ġϕ,FH

V , Ġϕ,HX
V , and Ġϕ,CW

V denote the entransy-dissipation
rates of the heat-transfer processes occurring in these three
pieces of equipment.
Calculations of the three areas give

̇ = − ̇ − ̇ −ϕG T T Q mc T T( )
1
2

( ),FH
V

FH b FH
V

p,g 1 b
2

(30)

̇ = ̇ − + ̇ −ϕG mc T T mc T T
1
2

( )
1
2

( ),HX
V

p,l b 0
2

p,g 1 b
2

(31)

and

̇ = − ̇ − ̇ −ϕG T T Q mc T T( )
1
2

( ),CW
V

b CW CW
V

p,l b 0
2

(32)

where Q̇CW
V = Q̇FH

V . By adding the areas of the three polygons,
one can obtain the total entransy-dissipation rate of process V
as

̇ = ̇ + ̇ + ̇ = ̇ −ϕ ϕ ϕ ϕG G G G Q T T( ),total
V

,FH
V

,HX
V

,CW
V

FH
V

FH CW

(33)

which just equals the area of rectangle e′−f′−g′−h′, as shown
in Figure 10b. This result can also be obtained by a series of
parallel movements of the areas because the curves of the feed
and effluent streams in Figure 10b are symmetric.
Comparison of eqs 29 and 33 reveals that the entransy-

dissipation rate of process V is lower than that of process IV
because Q̇FH

V < Q̇total. However, the decrease in the entransy-
dissipation rate (i.e., the decrease in the irreversibility) caused
by the introduction of a feed−effluent heat exchanger is not
remarkable because Q̇FH

V is still large for process V.
Figure 11a shows thermal process VI for a vapor/liquid

stream for heat circulation using SHRT.4 Before entering the
heat exchanger (HX), the effluent stream is compressed
adiabatically by a compressor to a higher temperature, T1′.
Consequently, the total heating duty of the feed stream can be
provided solely by the effluent stream with the self-heat
exchanger. After that, the effluent stream from HX is
depressurized by a valve (VL) and finally cooled to T0 by
releasing heat to the cooling water (CW).
The total entransy-dissipation rate of process VI can be

represented by the sum of the two patterned areas in the T−Q̇
diagram presented in Figure 11b, where Ġϕ,HX

VI and Ġϕ,CW
VI are

the entransy-dissipation rates of the heat-transfer process

Figure 9. Simple thermal process IV for the vapor/liquid phase change
stream: (a) flow diagram;4 (b) T−Q̇ diagram, where the shaded and
patterned areas together represent the entransy-dissipation rate.

Figure 10. Improved thermal process V with a feed−effluent heat
exchanger for the vapor/liquid phase change stream: (a) flow
diagram;4 (b) T−Q̇ diagram, where the shaded and patterned areas
together represent the entransy-dissipation rate.
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between feed and effluent streams in the heat exchanger (HX)
and that between effluent stream and the cooling water,
respectively.
A comparison of entransy-dissipation rates among processes

IV−VI is shown in Figure 12. It can be seen that the entransy
dissipation of process V is lower than that of process IV because
of the lower irreversibility of heat-transfer processes achieved

by heat recovery. Nevertheless, because most of the latent heat
of the phase change cannot be recovered by self-heat exchange,
the entransy-dissipation rate of process V is still large. Using
SHRT, however, in addition to the sensible heat, the latent heat
is also circulated,4 avoiding the large irreversible loss of the
heat-transfer process in the fired heater due to the large
temperature difference between the stream and the fuel. As a
consequence, process VI has a much lower entransy-dissipation
rate than processes IV and V, which can be intuitively seen
from Figure 12. A further, more detailed quantitative analysis is
presented in a case study in the next section.
The extremum-entransy-dissipation principle indicates that,

when the total heat exchange is prescribed, the lower the
entransy dissipation, the better the heat-transfer performance.
Under conditions of both gas streams and vapor/liquid streams
as analyzed above, the total heat load Q̇total is fixed, and it can be
seen that the introduction of a compressor, which changes the
pressure parameter of the stream, can dramatically decrease the
entransy-dissipation rate of the thermal process, leading to
greater heat recovery and/or lower external heating and cooling
loads.

5. CASE STUDY AND DISCUSSION
In this section, we show the two cases of a gas stream and a
vapor/liquid stream to further illustrate the feasibility of
entransy analysis of self-heat recuperation technology based
on heat-transfer irreversibility. For both cases, the stream is
heated from T0 = 300 K to a set temperature of T1 = 500 K.
The mass flow rate of the stream, ṁ, is set to 10 kg/s, and the
minimum temperature difference, ΔTmin, is assumed to be 10
K. In addition, the temperatures of the fuel in the fired heater,
TFH, and the cooling water in the cooler, TCW, are assumed to
be 1100 and 290 K, respectively. There is no heat loss in the
heat exchangers.
First, consider thermal processes II and III as shown in

Figures 6a and 7a. Methane is used for the gas stream, and an
average specific heat capacity at constant pressure within the
temperature interval between 300 and 500 K of cp = 2.58 kJ/
(kg·K) is taken.
For process II, according to eqs 18−20, one can obtain the

entransy-dissipation rates of the heat-transfer processes in the
fired heater (FH), the feed−effluent heat exchanger (HX), and
the cooling water cooler (CW) as shown in Table 1. The
entransy-dissipation rate in FH is approximately three-quarters
of the total entransy-dissipation rate, indicating that the
irreversibility mainly occurs in the fired heater because of the
very large temperature difference between the stream and the
fuel in FH.
For process III, assuming that the expander recovers half of

the shaft work of the compressor, we have T2 = 305 K. Based
on eqs 22 and 23, the entransy-dissipation rates of the heat-
transfer processes in HX and CW can be derived and are also
listed in Table 1. It can be seen from Table 1 that, because of
the removal of the fired heater, the entransy-dissipation rate of
process III with SHRT is only one-fourth that of conventional
self-heat exchange thermal process II. From the point of view of
energy, the energy requirement of process III is one-half that of
process II.
The second case is for a vapor/liquid stream with water used

as the working fluid. Consider thermal processes V and VI as
shown in Figures 10a and 11a. The boiling point, Tb, is set to
373 K, and the latent heat of vaporization of water is γ = 2258
kJ/kg. We assume that the specific heat capacities at constant

Figure 11. Thermal process VI with SHRT for the vapor/liquid phase
change stream: (a) flow diagram;4 (b) T−Q̇ diagram, where the
patterned areas together represent the entransy-dissipation rate.

Figure 12. Comparison of the entransy-dissipation rates of processes
IV−VI.
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pressure of the vapor and liquid, cp,g and cp,l, are approximately
4 and 2 kJ/(kg·K), respectively, during processes V and VI.
The self-heat-exchange load and the total heat duty of

process V as shown in Figure 10b can be calculated as

̇ = ̇ − − Δ + ̇ −Q mc T T T mc T T( ) ( )HX
V

p,l b 0 min p,g 1 b (34)

and

γ̇ = ̇ − + ̇ − + ̇Q mc T T mc T T m( ) ( )total p,l b 0 p,g 1 b (35)

Based on eqs 34 and 35, the external heating load, Q̇FH
V , is

γ̇ = ̇ − ̇ = ̇ Δ + ̇Q Q Q mc T mFH
V

total HX
V

p,l min (36)

Substituting the given values of the parameters into eq 36 yields
Q̇FH

V = 22.98 MW.
Further, based on eqs 30−32, the entransy-dissipation rates

Ġϕ,FH
V , Ġϕ,HX

V , and Ġϕ,CW
V can be obtained as shown in Table 2,

where the entransy-dissipation rate in FH is approximately
nine-tenths of the total, showing once again that the irreversible
loss is mostly attributable to the large temperature difference of
the heat-transfer process between the stream and the fuel in
FH.
For process VI, the boiling temperature at a higher pressure,

Tb′, is shifted to 388 K, 15 K higher than Tb, as shown in Figure
13. The entransy-dissipation rates of heat transfer in CW and
HX are represented by the areas of trapezoid a−b−6−7 and

polygon 1−c−f−2−4−h−i−6, respectively. The area of
trapezoid a−b−6−7 is given by

=
− + − ̇− − −A

T T T T
Q

( )
2a b 6 7

0 CW 2 CW
CW
VI

(37)

where T2 = T0 + ΔTmin and Q̇CW
VI = ṁcp,1ΔTmin.

Similarly, the areas of trapezoids c−d−i−j and e−f−g−h can
be expressed as

=
Δ + ′ −

̇ ′ − − Δ− − −A
T T T

mc T T T
( )

2
( )c d i j

min b b
p,l b b min

(38)

and

=
′ − + ′ −

̇

′ − − ′ −

− − −A
T T T T

mc

T T T T

( )
2

[( ) ( )]

e f g h
b b 1 1

p,g

1 1 b b (39)

Meanwhile, the areas of the three parallelograms are given by

= Δ ̇ −− − −A T mc T T( )1 c j 6 min p,l b 0 (40)

γ= ′ − ̇ − ̇ ′ − − Δ

− ̇ ′ − − ′ +

− − −A T T m mc T T T

mc T T T T

( )[ ( )

( )]

d e h i b b p,l b b min

p,g 1 1 b b (41)

and

= ′ − ̇ −− − −A T T mc T T( ) ( )f 2 4 g 1 1 p,g 1 b (42)

By adding eqs 38−42, one can obtain the entransy-dissipation
rate of heat transfer in HX.
The unknown values of T1′ in eqs 38−42 can be derived as

follows: In process VI, the enthalpy change of the vapor during
process 3−4 is equal to that of the liquid during process 6−7
according to the law of energy conservation, that is

̇ ′ − = ̇ Δmc T T mc T( )p,g 1 1 p,l min (43)

Thus, we have

′ = Δ +T
c

c
T T1

p,l

p,g
min 1

(44)

With the given parameters, we obtain T1′ = 520 K.
The total entransy-dissipation rate for process VI shown in

Table 2 is dramatically reduced because of the removal of the
fired heater. Moreover, because the thermal process with SHRT
recovers all the latent heat of the stream, the entransy-
dissipation rate of the heat transfer in CW is also reduced

Table 1. Entransy-Dissipation Rates and Energy Requirements of Conventional Thermal Process II and the Process with SHRT
for the Gas Stream (Process III)

entransy-dissipation rate (MW·K) energy requirement (kW)

process fired heater feed−effluent heat exchanger cooler total fired heater compressor and expander (Ẇc − ẆE) total

II 156.09 49.02 3.87 208.98 (100%) 258 − 258 (100%)
III − 51.60 1.61 53.21 (25%) − 129 129 (50%)

Table 2. Entransy-Dissipation Rates and Energy Requirements of Conventional Thermal Process V and the Process with SHRT
for the Vapor/Liquid Stream (Process VI)

entransy-dissipation rate (MW·K) energy requirement (kW)

process fired heater feed−effluent heat exchanger cooler total fired heater compressor (Ẇc) total

V 16545.17 267.87 1800.76 18613.80 (100%) 22980 − 22980 (100%)
VI − 418.45 6.00 424.45 (2.2%) − 400 400 (1.7%)

Figure 13. Schematic T−Q̇ diagram for the calculation of the entransy-
dissipation rate of process VI.
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greatly. As a result, the total entransy-dissipation rate of the
process VI with SHRT is only 1/44 that of the conventional
self-heat-exchange thermal process V. The energy requirement
of process VI is approximately 1.7% of that of process V only.
In previous studies, the irreversibility of a thermal process

with heat circulation using SHRT was analyzed on the basis of
exergy destruction.3 Neglecting the flowing resistance, the
exergy-destruction rate due to heat transfer between the hot
and cold fluids in a heat exchanger is

̇ = ̇ −
⎛
⎝⎜

⎞
⎠⎟I Q T

T T
1 1

0
c h (45)

where Q̇ is the total heat-transfer rate in the heat exchanger,
and

=
−

=
−

T
T T

T
T T

ln
,

ln
T

T

T

T

c
c,out c,in

h
h,in h,out

c,out

c,in

h,in

h,out (46)

For the two cases of gas and vapor/liquid streams with the
values of parameters as presented above, the exergy-destruction
rates of the heat-transfer processes in the fired heater (FH),
feed−effluent heat exchanger (HX), and cooler (CW) are
obtained as reported in Tables 3 and 4, respectively. It can be
seen that the exergy-destruction rates of the thermal processes
with SHRT are dramatically reduced compared with those of
the corresponding conventional self-heat-exchange thermal
processes.
Although the results based on the exergy analysis shown in

Tables 3 and 4 have the same trends as those derived from the
entransy analysis shown in Tables 1 and 2, respectively, there
are important differences between these two analysis methods.
First, unlike the exergy-destruction rate, the entransy-
dissipation rate of a thermal process can be graphically
represented by the area between the lines of the hot and
cold fluids in the T−Q̇ diagram, providing a convenient
approach to compare the irreversibility of an advanced process
using SHRT with that of a conventional self-heat-exchange
thermal process. Second, in exergy analysis, the choice of the
environmental temperature, T0, is arbitrary to some extent.
Consequently, different choices of T0 will result in different
exergy-destruction rates for a given thermal process, as shown
in Table 5. The value of the entransy-dissipation rate, however,
is independent of T0, and there is a unique value of entransy-
dissipation rate for each given thermal process. This is because,
for the concept of exergy, the reference point is the state in
thermodynamic equilibrium with the environment, whereas for

the concept of entransy, according to its definition,10 the
reference point is a temperature of absolute zero. Third,
previous studies have shown that the minimum exergy-
destruction rate does not correspond to the maximum heat-
transfer rate between hot and cold fluids when a heat-transfer
process is for the purpose of pure object heating or
cooling.12,32,33 Hence, for the analysis of optimization problems
of heat-transfer processes using SHRT whose purpose is object
heating or cooling rather than heat−work conversion, the
entransy analysis might be more appropriate. Research in this
area is still in progress.

6. CONCLUSIONS
Heat-transfer processes can be divided into two categories
depending on their purpose. When the transferred heat is for
heat−work conversion, the exergy-destruction rate is the
appropriate measure of irreversibility, and optimization should
involve application of the exergy-destruction principle. In
contrast, when the transferred heat is for object heating or
cooling only, the entransy-dissipation rate is the appropriate
measure of irreversibility, and the entransy-dissipation principle
should be applied for optimization of the global heat-transfer
performance. In view of the fact that the objective of heat-
transfer processes in SHRT is to heat or cool streams only,
entransy analysis should be applied to evaluate the performance
of SHRT.
A temperature−heat-flow-rate diagram (T−Q̇ diagram) can

be applied to describe heat-transfer irreversibility graphically
and quantitatively. The T−Q̇ diagram used in entransy analysis
is different from that used in both pinch technology and SHRT.
First, the area between the lines of the hot and cold fluids with
the physical meaning of the entransy-dissipation rate can be
used to evaluate the performance of SHRT. Second, unlike in
pinch technology, the lines of the hot and cold fluids in the T−
Q̇ diagram for irreversibility analysis cannot be added together
because the area between the composite curves is no longer the
entransy-dissipation rate of the multistream heat-exchange
process.

Table 3. Exergy-Destruction Rates and Energy Requirements of Conventional Thermal Process II and the Process with SHRT
for the Gas Stream (Process III) (T0 = 25 °C)

exergy-destruction rate (kW) energy requirement (kW)

process fired heater feed−effluent heat exchanger cooler total fired heater compressor and expander total

II 85.44 96.77 13.01 195.22 (100%) 258 − 258 (100%)
III − 99.85 5.47 105.32 (54%) − 129 129 (50%)

Table 4. Exergy-Destruction Rates and Energy Requirements of Conventional Thermal Process V and the Process with SHRT
for the Vapor/Liquid Stream (Process VI) (T0 = 25 °C)

exergy-destruction rate (kW) energy requirement (kW)

process fired heater feed−effluent heat exchanger cooler total fired heater compressor total

V 11851.04 546.07 4991.31 17388.42 (100%) 22980 − 22980 (100%)
VI − 849.95 20.18 870.13 (5.0%) − 400 400 (1.7%)

Table 5. Exergy-Destruction Rates (kW) of Process VI for
Different Environmental Temperatures

environmental
temperature (°C)

fired
heater

feed−effluent heat
exchanger cooler total

20 − 835.69 19.84 855.53
25 − 849.95 20.18 870.13
30 − 864.21 20.52 884.73
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Both entransy analyses in terms of temperature−heat-flow-
rate diagrams and exergy analyses indicate that, compared to
conventional self-heat-exchange processes, much greater heat
recovery and much lower energy requirements can be
attributed to much lower entransy dissipation or exergy
destruction for SHRT as a result of changing the pressure of
the effluent stream with a compressor. However, for the
performance analysis of SHRT, exergy analysis has some
disadvantages, including arbitrary values of exergy-destruction
rates due to the arbitrary choice of reference point and no
graphical plot of the exergy-destruction rate.
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