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Abstract. This paper considers the design of a robust controller for a class of non-
linear systems subject to both model uncertainties and unknown external disturbances.
Using the concept of both backstepping design and sliding mode control theory, an in-
tegral type control algorithm is presented. The proposed controller not only stabilizes
nonlinear systems in the presence of mismatched uncertainties, eliminates/reconstructs
exogenous disturbances, but also provides smooth control effort. As a result, the devel-
oped method is adequate for practical implementation. A criterion of control gains setting
for achieving closed-loop stability and disturbance rejection is addressed. Control system
design for an unstable nonlinear system is used to illustrate the applicability of the pro-
posed approach and experimental study is also provided to demonstrate the disturbance
rejection/reconstruction capability.
Keywords: Integral controller, Disturbance rejection, Sliding mode control, Chattering

1. Introduction. In the uncertain nonlinear control system design, model uncertainties
and external disturbances are usually taken as the main issues when designing robust
controllers. Model uncertainties affect stability of the closed-loop systems and exogenous
disturbances degrade control precision, e.g., steady state accuracy. To analyze the stability
of perturbed systems, many approaches have been illustrated in [1]. Backstepping design
is a systematic recursive design procedure based on the choice of Lyapunov functions. This
approach is suitable for the design of a large class of feedback linearizable systems in strict
feedback form. The main concept of the backstepping design is to treat the system variable
as an independent input for subsystems and each step results in a new virtual controller
for the next step. The virtual control law for each step is adopted with satisfaction of
selected Lyapunov functions such that the stability of each subsystem can be guaranteed.
Owing to its systematic design concept, design of synthetic backstepping controller has
been explored to wide class of nonlinear systems and servo mechanisms [2-12]. In [2,3],
an integral function was integrated into the backstepping control design, which makes the
motion system insensitive to model uncertainties, external disturbance and improves the
closed-loop performance. Two robust adaptive backstepping controllers were developed in
[4] for dealing with systems subject to unknown backlash-like hysteresis nonlinearities. A
sign function is applied for achieving better tracking performance. Combinations of sliding
mode control (SMC) and adaption laws have also been studied in [5-7]. In [5], the robust
adaptive backstepping sliding controllers were developed for handling motion control with
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parametric uncertainties and friction force, where an adaptive law was introduced to
estimate the value of a lumped uncertainty in real time. A discontinuous sign function
was modified as the sigmoid-like function to smooth the switching action, which was
considered in [6]. For nonlinear systems with non-strict feedback form can refer to the
work in [7].
On the critical demand of control precision, disturbance estimation and rejection should

be taken into consideration. Owing to the robustness against to matched model uncer-
tainties and disturbances, SMC has been widely used to different control systems [13-18].
One of the important issues in SMC is the design of fast discontinuous actions, that force
the system to operate between two different dynamic structures, such that the desired
system behaviour, called sliding mode, appears on a sliding manifold [17]. The SMC
methodology has also been applied to the recovery of fault signals [18]. The basic idea
behind the employment of SMC for fault detection is the selection of an invariant manifold
or a sliding surface, where its dynamics involves the information of lumped fault signals.
Then, the task of fault reconstruction is to design a robust control law that achieves zero
output of the sliding dynamics in finite time. Since a pure switching control is utilized
in the conventional SMC, the solution of the given sliding dynamic equation is under-
stood in the sence of Filippov [19]. Actually, the solution not only represents the average
control effort of switching control signals used to maintain the ideal sliding motion, but
also stands for the profile of external faults as well. This average control effort is also
referred to as equivalent control injection [18]. However, the main problem in practical
applications is that the ideal solution is not available. In order to simultaneous alleviate
control switching and extract the solution hidden in the discontinuous signals, boundary
layer techniques are usually applied, at the cost of the resulting control performance.
In this decade, design of chattering-free SMC has attracted more and more attention.

Many results have been presented based on the works [20,21]. Since the conventional
approaching phase is no longer involved in the chattering-free SMC algorithms [20,21],
proof of the finite time approaching turns into the main issue and the procedure to deter-
mine the control gains can not be carried out in a straightforward manner as that used in
conventional SMC. A comparative study of the work [20] was recently presented in [22].
Without the information of system model, the method [22] is capable of offering precise
estimates of state variables in the face of additive noises. Other alternatives to generate
smooth SMC and preserve conventional design steps have been reported in [23,24]. How-
ever, the applied sliding surfaces involve unmeasurable states so that extra sensors are
required for controller realizations. This drawback can be improved by considering the
observer based control frameworks proposed in [25,27]. A common feature of the smooth
sliding controllers is the use of an integral sign function. This control component provides
extra robustness especially for external disturbance and is going to be applied in this
study.
This paper considers the control design problem for a class of nonlinear systems subject

to both mismatched model uncertainties and a matched exogenous unknown disturbance.
The main structure of the integral controller is similar with those presented in [26-28].
However, in [28], the design of control gains requires the second time derivative of lumped
uncertainties, which will cause difficulty for control gains determination and realization.
This drawback will be eliminated in this study. Moreover, without the use of the so called
sliding dynamics, we are going to address the closed-loop stability by the way of inter-
connected system. Under this control framework, the selection of control gains become
systematic, where the switching gain used in the integral sign function is used to reject
the external disturbance and the rest of control parameters will be determined to achieve
system stability. A numerical example is given to demonstrate the design procedure and
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experimental studies are also conducted to illustrate the disturbance rejection capability
of the proposed robust controller.

2. System Description and Control. To provide a more general control framework,
the following n-order uncertain nonlinear system with strict feedback form is considered
for the controller design.

ẋ1 = f1(x1) + g1(x1)x2 + ς1(x1) + ϱ1(x2)

ẋ2 = f2(x1, x2) + g2(x1, x2)x3 + ς2(x1, x2) + ϱ2(x3)

ẋ3 = f3(x1, x2, x3) + g3(x1, x2, x3)x4 + ς3(x1, x2, x3) + ϱ3(x4)

... (1)

ẋn−1 = fn−1(x1, · · · , xn−1) + gn−1(x1, · · · , xn−1)xn + ςn−1(x1, · · · , xn−1) + ϱn−1(xn)

ẋn = fn(x1, · · · , xn) + gn(x1, · · · , xn)u+ ςn(x1, · · · , xn) + d(t)

where x = [x1, · · · , xn] ∈ Rn, u ∈ R. For the nonlinear systems, the following assumptions
are imposed.

Assumption 1. The term fi(0) = 0 and gi(x) ̸= 0 with i = 1, · · · , n. fi(x) and gi(x)
are smooth functions. Moreover, the functions gi(x) do not change sign during the whole
control processes. Consequently, there must exist positive constants Gmi and GMi such
that Gmi ≤ gi(x) ≤ GMi.

Assumption 2. ςi(x) and ϱi(x) represents model uncertainty which satisfies |ςi(x)| ≤∑i
j=1 ℓij|xj| with ℓij ≥ 0 and |ϱi(x)| ≤ hi|xi+1| for a certain control region of interest,

where 0 ≤ hi < Gmi and i = 1, · · · , n− 1.

Assumption 3. d(t) ∈ C1 stands for a matched unknown exogenous disturbance.

Due to the presence of ϱi(x), it definitely causes uncertain coupling terms that perturb
system stability. Therefore, the determination of stabilizing control laws during backstep-
ping design and selection of control gains become extremely important. This issue will be
illustrated in the next section. In summary, two main objects are concerned in this study;
namely, achieving system stability in the presence of mismatched model uncertainties and
rejecting disturbance by a dynamic (nonlinear) integral controller.

2.1. Backstepping design based SMC revisited. In the following, backstepping de-
sign is applied to the system (1) and the concept of system stabilization will be briefly
illustrated. First, treat the system state x2 as an independent input and then suppose
that there exists a state feedback stabilizing control law ϕ1(x1) such that

ẋ1 = f1(x1) + g1(x1)ϕ1(x1) + ς1(x1) + ϱ1(ϕ1) (2)

is asymptotically stable.
Let a Lyapunov function be V1 for the subsystem x1 which satisfies V1 > 0 for x1 ̸= 0

and

V̇1 =
∂V1

∂x1

[f1(x1) + g1(x1)ϕ1(x1) + ς1(x1) + ϱ1(ϕ1)] ≤ −Q1(x1) (3)

where Q1(x1) > 0 for x1 ̸= 0. Equation (3) indicates that the desired closed-loop subsys-
tem is robust against the existence of model uncertain term ς1(x) and perturbed virtual
control input ϱ1(ϕ1). By adding and subtracting g1(x1)ϕ1(x1) (i.e., a virtual control law)
to the subsystem x1, let a new error variable be z1 = x2 −ϕ1(x1) and then the subsystem
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(x1, z1) can be represented as

ẋ1 = f1(x1) + g1(x1)(ϕ1(x1) + z1) + ς1(x1) + ϱ1(ϕ1, z1)

ż1 = f2(x1, z1) + g2(x1, z1)x3 − ϕ̇1(x1) + ς2(x1, z1) + ϱ2(x3) (4)

In a similar manner, consider x3 a virtual input and let the stabilizing control law
be ϕ2(x1, z1). Suppose that by applying the virtual control law, there exists a Lyapunov
candidate V2 such that V2 > 0 for x1, z1 ̸= 0 and its corresponding time derivative satisfies

V̇2 =
∂V2

∂x1

[f1(x1) + g1(x1)(ϕ1(x1) + z1) + ς1(x1) + ϱ1(ϕ1, z1)]

+
∂V2

∂z1

[
f2(x1, x2) + g2(x1, x2)ϕ2(x1, z1)− ϕ̇1(x1) + ς2(x1, z1) + ϱ2(ϕ2)

]
(5)

≤−Q2(x1, z1)

where Q2(x1, z1) is a positive definite function.
Further define a new error variable as z2 = x3 − ϕ2(x1, z1). From the control point of

view, it is easily found that the origin of the subsystem (x1, z1) is a stable equilibrium
point as long as the error variable z2 is equal to zero. Note that the virtual control laws,
ϕ1(x1) and ϕ2(x1, z1), are by no means specific forms.
For example, consider the following subsystems

ẋ1 = x2 + ς1(x1) + ϱ1(x2)

ẋ2 = x3 + ς2(x1, x2) + ϱ2(x3) (6)

Select the following stabilizing control laws

ϕ1(x1) = −k1x1

ϕ2(x1, z1) = −x1 − k2z1 +
∂ϕ1(x1)

∂x1

(z1 + ϕ1(x1)) (7)

Based on the Assumption 2, the nonlinear uncertain terms satisfy ς1(x1) ≤ ℓ11|x1|,
ς2(x1, x2) ≤ ℓ21|x1| + ℓ22|x2|, ϱ1(x2) ≤ h1|x2| and ϱ2(x3) ≤ h2|x3| with h1, h2 < Gm1 =
Gm2 = 1 for an interesting domain. Considering x2 = ϕ1(x1) and selecting a Lyapunov
candidates as V1 = x2

1/2 follows

V̇1 ≤ − (k1(1− h1)− ℓ1)|x1|2︸ ︷︷ ︸
Q1(x1)

≤ 0 (8)

In practice, the first subsystem should be modified to read ẋ1 = z1 + ϕ1(x1) + ς1(x1) +
ϱ1(x1, z1) when z1 = x2 − ϕ1(x1) ̸= 0. Now, letting x3 = ϕ2(x1, z1) and considering
V2 = V1 + z21/2 yields

V̇2 ≤ − (k1(1− h1)− ℓ11)

(
|x1|
|z1|

)T (
1 P2

P2 P1

)(
|x1|
|z1|

)
︸ ︷︷ ︸

Q2(x1,z1)

≤ 0 (9)

where

P1 =
k2(1− h2)− ℓ22 − k1(h1 + h2)

k1(1− h1)− ℓ11

P2 = −ℓ21 + k1(ℓ11 + ℓ22) + (1 + k2
1)(~1 + ~2)

2(k1(1− ~1)− ℓ11)



A ROBUST INTEGRAL TYPE BACKSTEPPING CONTROLLER DESIGN 2547

Equation (9) shows that the subsystems are locally robust stable providing the selected
control gains satisfy

k1 >
ℓ11

1− h1

k2 >
ℓ22 + k1(h1 + h2) + (k1(1− h1)− ℓ11)P

2
2

1− h2

(10)

In addition, the stability criterion reduces to

k1 > ℓ11

k2 > ℓ22 +
(ℓ21 + k1(ℓ11 + ℓ22))

2

4(k1 − ℓ11)
(11)

when h1 = h2 ≡ 0. Therefore, the applied control gains must be carefully selected
especially when ϱi(x) ̸= 0.

From (4), by adding and subtracting g2(x1, z1)ϕ2(x1, z1) to the subsystem z1, then the
subsystem dynamics of (x1, z1, z2) can be represented as

ẋ1 = f1(x1) + g1(x1)(ϕ1(x1) + z1) + ς1(x1) + ϱ1(ϕ1, z1)

ż1 = f2(x1, z1) + g2(x1, z1)(ϕ2(x1, z1) + z2)− ϕ̇1(x1) + ς2(x1, z1) + ϱ2(ϕ2, z2) (12)

ż2 = f3(x1, z1, z2) + g3(x1, z1, z2)x4 − ϕ̇2(x1, z1) + ς3(x1, z1, z2) + ϱ3(x4)

Using the recursive steps until the final subsystem, one can derive the following trans-
formed n− 1 order system

ẋ1 = f1(x1) + g1(x1)(ϕ1(x1) + z1) + ς1(x1) + ϱ1(ϕ1, z1)

ż1 = f2(x1, z1) + g2(x1, z1)(ϕ2(x1, z1) + z2)− ϕ̇1(x1) + ς2(x1, z1) + ϱ2(ϕ2, z2)

... (13)

żn−2 = fn−1(x1, · · · , zn−2) + gn−1(x1, · · · , zn−2)(ϕn−1(x1, · · · , zn−2) + zn−1)

− ϕ̇n−2(x1, · · · , zn−3) + ςn−1(x1, · · · , zn−2) + ϱn−1(ϕn−1, zn−1)

and a final subsystem in which the control input appears is

żn−1 = fN(x1, · · · , zn−1) + gn(x1, · · · , zn−1)u+H (14)

where fN(x1, · · · , zn−1) stands for a known term and H = fU(x1, · · · , zn−1)+d(t) denotes
as a smooth lumped uncertain perturbation. Moreover, the smooth functions satisfy
fN = 0 and fU = 0 at the origin.

For the transformed mismatched uncertainties in (13), considering Assumption 2 gives

|ς1(x1)| ≤ ℓ11|x1|
|ς2(x1, z1)| ≤ ℓ21|x1|+ ℓ22(|ϕ1|+ |z1|)

|ς3(x1, z1, z2)| ≤ ℓ31|x1|+ ℓ32(|ϕ1|+ |z1|) + ℓ33(|ϕ2|+ |z2|) (15)

...

|ςn−1(x1, · · · , zn−1)| ≤ ℓn−1,1|x1|+ · · ·+ ℓn−1,n−1(|ϕn−2|+ |zn−2|)
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and

|ϱ1(ϕ1, z1)| ≤ h1(|ϕ1|+ |z1|)
|ϱ2(ϕ2, z2)| ≤ h2(|ϕ2|+ |z2|)

... (16)

|ϱn−1(ϕn−1, zn−1)| ≤ hn−1(|ϕn−1|+ |zn−1|)

Equations (15) and (16) are used to evaluate adequate control gains during backstepping
design. For (13), choose a Lyapunov function that satisfies V̇n−1 ≤ −Qn−1(x1, · · · , zn−2)
with Qn−1(x1, · · · , zn−2) > 0 when zn−1 = xn − ϕn−1(x1, · · · , zn−2) = 0. However,
for zn−1 ̸= 0, there exists a function fL(x1, z1, · · · , zn−2)zn−1 which leads to V̇n−1 ≤
−Qn−1(x1, · · · , zn−2) + fL(x1, z1, · · · , zn−2)zn−1. Therefore, by the recursive design, the
stability of the n-order system can be simplified as a regulation problem of a scalar system
(14). In explicit words, the state zn−1 = 0 can be considered as a prescribed nonlinear
constraint or a sliding surface applied in the conventional SMC theory.
Using the concept of SMC, for gn(x1, · · · , zn−1) ̸= 0, first design

u =
1

gn(x1, · · · , zn−1)
(ν − wsgn(zn−1))

ν = −fL(x1, · · · , zn−2)− fN(x1, · · · , zn−1)− knzn−1 (17)

where fL(x1, · · · , zn−1) stands for a feedback term coming from the Lyapunov stability
requirement and kn and w are positive constants. Considering a Lyapunov function
V = Vn−1 + Vzn−1 in which Vzn−1 = z2n−1/2 and applying (17) results in

V̇ =−Qn−1(x1, · · · , zn−2) + fL(x1, · · · , zn−2)zn−1

+ zn−1 (−fL(x1, · · · , zn−2)− knzn−1 − wsgn(zn−1 +H))

≤−Qn−1(x1, · · · , zn−2)− knz
2
n−1 − zn−1fU(x1, · · · , zn−1)︸ ︷︷ ︸

M(x1,··· ,zn−1)

−|zn−1|(w − d(t)) (18)

Consider Assumption 2, there might exist a proper kn and a positive definite function
Qn(x1, · · · , zn−1) such thatM(x1, · · · , zn−1) ≤ −Qn(x1, · · · , zn−1) is satisfied for a certain
control domain of interest. Based on this condition, it is evident that by selecting w ≥
max|d(t)|, Equation (18) reduces to

V̇ ≤ −Qn(x1, · · · , zn−1) (19)

As a result, the asymptotic stability can be achieved by applying (17). Note that the
switching gain is selected to tackle the external disturbance only. However, (19) does not
provide any information about the existence of approaching phase. In the following, we
are going to address that whether the controller in (17) can be taken as a sliding controller
depends on the size of the switching gain w.
Considering the Lyapunov function Vzn−1 again and taking the time derivative gives

V̇zn−1 = zn−1(fN(x1, · · · , zn−1) + gn(x1, · · · , zn−1)u+H)

≤ zn−1(−fL(x1, · · · , zn−2)− knzn−1 − wsgn(zn−1) + |H|)
≤ −knz

2
n−1 − |zn−1|(w −F(x1, · · · , zn−1)− |d(t)|) (20)
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where F(x1, · · · , zn−1) = |fL(x1, · · · , zn−2)|+ |fU(x1, · · · , zn−1)| is a nonnegative function.
Three options regarding the magnitude of w are addressed:

w ≥ max |d(t)| (21a)

w ≥ wo +max |d(t)| (21b)

w ≥ wo + F(x1, · · · , zn−1) + max |d(t)| (21c)

It is obvious that (19) can be achieved by substituting any one of (21) into (18). How-
ever, for (20), the use of (21a) achieves the asymptotic convergence of the scalar dynamics
but no finite time arrival is guaranteed. On the contrary, (21c) provides the approaching
condition immediately, i.e., V̇zn−1 ≤ −knz

2
n−1 − wo|zn−1|. Once zn−1 = 0 is attained, the

stability of reduced order dynamics can be understood by V̇n−1 ≤ −Qn−1(x1, · · · , zn−2),
which is obtained by the preceding backstepping design.

Now, consider the case given in (21b). For a given (relatively small) value of wo, the
condition wo > F(x1, · · · , zn−1) may not be satisfied at the control beginning. Fortunately,
since (19) is also available by using (21b), it further reveals that the controlled state
trajectories will enter a compact residual set Ωa, described by

Ωa = {x1, · · · , zn−1|F(x1, · · · , zn−1) < wo} (22)

Building on the condition of (22), it can be seen that the approaching phase occurs
eventually.

According to the preceding analysis, the use of (21c) is able to fulfill the approaching
phase immediately. Nevertheless, the magnitude of w utilized in (21c) depends on system
state variables. For arbitrary given initial positions, it may lead to large value of w and
thereby causes serious control chattering. Applying (21b) alleviates the size of control
switching but the fulfillment of sliding mode is postponed. In conclusion, the controller
(17) associated with the use of (21b) or (21c) can be referred to as approaching phase
guaranteed sliding control laws. Although (17) together with the option (21a) cannot be
taken as a sliding controller, it significant reduces the discontinuous control force and the
asymptotic stability of the closed-loop system is still maintained.

Remark 2.1. In practical implementations, a common possibility is that the information
of external disturbances is totally known. Under this circumstance, it is difficult to confirm
that the selected w satisfies (21a), (21b), (21c) or even none of them. Consequently, the
magnitude of w is usually selected a large value but gives rise to serious control switching.
On the other hand, the selection of switching gain can be made with less conservativeness if
the upper bound of the disturbance is previously known. Nevertheless, no matter how large
the w is applied, the discontinuous control signals are still inevitable and the switching
magnitude depends on the size of unknown exogenous disturbance. As a result, a simple
integral controller will be presented to remedy this issue and some properties are going to
be discussed.

3. A Robust Integral Controller Design. Based on the work presented in [28], design
a (nonlinear) integral control law as follows:

u =
1

gn(x1, · · · , zn−1)

(
ν1 +

∫ t

0

ν2 dτ

)
ν1 = −fN(x1, · · · , zn−1)− knzn−1 (23)

ν2 = −kn+1zn−1 − ξsgn(zn−1)
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Proposition 3.1. By using the control law (23) in which ξ > max |ḋ(t)| is applied, there
may exist a proper pair (kn, kn+1) such that the controlled nonlinear uncertain system is
semi-globally quadratic stable.

Proof: Substituting (23) into (14) yields

żn−1 = −knzn−1 +

∫ t

0

ν2 dτ +H (24)

where its time derivative can be represented by z̈n−1 = −knżn−1 + ν2 + Ḣ. Let żn−1 = zn,
it leads to an augmented auxiliary 2nd order system as follows:

żn−1 = zn

żn =− kn+1zn−1 − knzn − ξsgn(zn−1) + Ḣ (25)

Consider the n−1 order dynamics given in (13) together with the augmented 2nd order
dynamics, the following object is to prove that the trajectories of the perturbed intercon-
nected system converge towards the equilibrium point providing the triple (kn, kn+1, ξ) is
properly selected. To this aim, the approach so called composite Lyapunov function [1] is
used. The main idea is briefly stated as below: separately find Lyapunov candidates for
the corresponding isolated status of systems (13) and (25) and then show that the origin is
a stable equilibrium point. Then, combine the Lyapunov functions to be a new Lyapunov
candidate for the interconnected system. The last step is to design the triple (kn, kn+1, ξ)
and prove that the origin of the interconnected system is also a stable equilibrium point
in the presence of uncertain coupling terms.
For (13), the corresponding isolated n− 1 order subsystem can be described by

ẋ1 = f1(x1) + g1(x1)(ϕ1(x1) + z1) + ς1(x1) + ϱ1(ϕ1, z1)

ż1 = f2(x1, z1) + g2(x1, z1)(ϕ2(x1, z1) + z2)− ϕ̇1(x1) + ς2(x1, z1) + ϱ2(ϕ2, z2)

... (26)

żn−2 = fn−1(x1, · · · , zn−2) + gn−1(x1, · · · , zn−2)ϕn−1(x1, · · · , zn−2)

− ϕ̇n−2(x1, · · · , zn−3) + ςn−1(x1, · · · , zn−2) + ϱn−1(ϕn−1)

It has been shown by backstepping design that (26) is asymptotic stable if zn−1 ≡ 0,
i.e., V̇n−1 ≤ −Qn−1(x1, · · · , zn−2).
Now, for (25), rewrite Ḣ by

Ḣ = Hd1(x1, · · · , zn−2) +Hd2(zn−1, zn) + ḋ(t) (27)

Therefore, the corresponding isolated subsystem of (25) can be represented by

żn−1 = zn

żn =− kn+1zn−1 − knzn − ξsgn(zn−1) +Hd2(zn−1, zn) + ḋ(t) (28)

Further consider ξ > max |ḋ(t)| and a change of state variable by zn = σ−γzn−1, where
γ > 0. The dynamics of (28) can be governed by

żn−1 =− γzn−1 + σ

σ̇ =− γ1zn−1 − γ2σ − ξ̃sgn(zn−1) +Hd2(zn−1, σ) (29)

where γ1 = γ2 − knγ + kn+1 > 0, γ2 = kn − γ > 0 and ξ̃ ∈ [ξ+, ξ−] > 0.
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Based on (15) and (16), there exist positive constants αp, βq and µp with p = 1, · · · , n−1
and q = 1, 2 so that

|Hd1(x1, · · · , zn−2)| ≤ α1|x1|+ α2|z1|+ · · ·+ αn−1|zn−2|
|Hd2(zn−1, σ)| ≤ β1|zn−1|+ β2|σ| (30)

|fL(x1, · · · , zn−2)| ≤ µ1|x1|+ µ2|z1|+ · · ·+ µn−1|zn−2|

in the domain of control interest.
For the isolated 2nd order system (29), choose as a Lyapunov function

Vσ =
γ1
2
z2n−1 +

1

2
σ2 + ξ̃|zn−1| (31)

Taking the time derivative follows

V̇σ = γ1zn−1(−kn+1zn−1 + σ) + ξ̃(−kn+1zn−1 + σ)sgn(zn−1)

+ σ(−γ1zn−1 − γ2σ − ξ̃sgn(zn−1) +Hd2(zn−1, σ))

≤− γ1kn+1z
2
n−1 − γ2σ

2 − ξ̃kn+1|zn−1|+ |σ||Hd2(zn−1, σ)| (32)

≤− γ1kn+1|zn−1|2 + β1|zn−1||σ| − (γ2 − β2)|σ|2 − ξ̃kn+1|zn−1|

=−
(
|zn−1|
|σ|

)T (
γ1kn+1 −β1/2
−β1/2 (γ2 − β2)

)
︸ ︷︷ ︸

S

(
|zn−1|
|σ|

)
− ξ̃kn+1|zn−1|

It can be seen that the isolated 2nd order perturbed system is quadratic stable if S > 0 is
attained.

Consequently for the n+ 1 order dynamics, a composite Lyapunov function is selected
as follows

VC = Vn−1 + Vσ (33)

Similar to those steps utilized to obtain (9), the positive function Qn−1(x1, · · · , zn−2)
can also be represented by a quadratic form. Thus, taking the time derivative of (33) and
considering (30) gives

V̇C ≤−Qn−1(x1, · · · , zn−2)−
(
|zn−1|
|σ|

)T

S
(
|zn−1|
|σ|

)
− ξ̃kn+1|zn−1|

+|fL(x1, · · · , zn−2)||zn−1|+ |Hd1(x1, · · · , zn−2)||σ|︸ ︷︷ ︸
FC

≤−

 |x1|
...

|zn−2|

T

P

 |x1|
...

|zn−2|

−
(
|zn−1|
|σ|

)T

S
(
|zn−1|
|σ|

)
(34)

+ (µ1|x1|+ · · ·+ µn−1|zn−2|)|zn−1|+ (α1|x1|+ · · ·+ αn−1|zn−2|)|σ|

≤ −
(
Z1

Z2

)T (
P −CT

−C S

)
︸ ︷︷ ︸

Ξ

(
Z1

Z2

)

where Z1 = (|x1|, · · · , |zn−2|), Z2 = (|zn−1|, |σ|) and C =

(
µ1/2 µ2/2 · · · µn−1/2
α1/2 α2/2 · · · αn−1/2

)
.

Equation (34) illustrates that the closed-loop stability is affected by the coupling term
FC . However, building on the properly selected control gains, there may exist Ξ = ΞT > 0
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such that (34) becomes

V̇C ≤ −ZTΞZ (35)

where Z = (Z1,Z2).
Based on (35), it can be concluded that the controlled system trajectories converge

towards the origin. Note that the Lyapunov stability criterion can be achieved by the
way of high gain control. The larger the applied gain values, the larger the stabilizing
domain, which leads to semi-globally quadratic stability.
The main design steps can be summarized as follows:

a). Apply the backstepping design the control law (23).
b). Analyze the first time derivative of the lumped perturbation term Ḣ.
c). Select proper control gains based on the Lyapunov stability criterion (34).

Remark 3.1. Suppose that Z → 0 has been achieved by applying (23), it follows from
(24) that ∫ ∞

0

ν2 dτ → −H (36)

Note that H → d(t) when Z → 0. Therefore, it implies that the matched external distur-
bance is eliminated asymptotically. In [18], it has been shown that external disturbances
can be reconstructed by way of the so called equivalent injection. The equivalent control
effort is extracted by using a boundary layer, where the size of the boundary layer domi-
nates the estimate precision. That is, the larger the size of boundary layer, the smoother
the control effort but the lower the estimate precision. This defect can be remedied by the
proposed method.

Remark 3.2. Note that the proposed integral type controller does not result the so called
ideal sliding motion. However, it still guarantees the closed-loop stability, which is similar
to the controller (17) together with the use of (21a). In regard to the selection of control
parameters, the control gains used in the recursive backstepping design are selected to
achieve the stability of each subsystem subject to mismatched model uncertainty. Based
on the state transformation, the pair (kn, kn+1) is designed to guarantee the quadratic
stability of the interconnected system. Finally, the parameter ξ is introduced to eliminate
the effect of exogenous disturbance d(t). The determination of the controller parameter
corresponding to design objective in each stage is clearly addressed. Based on the properly
selected triple (kn, kn+1, ξ), the stability issue turns into a stability problem of an auxiliary
interconnected dynamics as summarized in Figure 1. The developed method not only
provides robust stability, but removes serious control chattering as well. In addition, the
‘shape’ of external disturbance can be precisely reconstructed by measuring control signals
as long as |ḋ(t)| is finite, which is not a critical assumption. As argue in Remark 2.1,
the determination of ξ may not be easy if the disturbance is totally unknown. However,
different from the controller (17), ξ can be replaced by a sufficient large value without
causing serious control chattering.

4. Numerical Study: Controlling of an Uncertain Nonlinear Systems. In the
following, an unstable nonlinear uncertain system is used to demonstrate the feasibility
of the backstepping design based integral control algorithm.

ẋ1 = x1 + x2
1 + ax2

ẋ2 = x1 − bx2 + x3 (37)

ẋ3 = u+ d(t)
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Figure 1. An auxiliary interconnected system

The control objective is to drive the system trajectories moving towards origin in the
face of model uncertainties and an external perturbation. Suppose that system parameters
are not exactly known. Equation (37) is represented by

ẋ1 = x1 + âx2 + ς1(x1) + ϱ1(x2)

ẋ2 = x1 + x3 + ς2(x1, x2) + ϱ2(x3) (38)

ẋ3 = u+ d(t) + ς3(x1, x2, x3)

Comparing (38) with (1) follows f1(x1) = x1, f2(x1, x2) = x1, f3(x1, x2, x3) = 0,
g1(x1) = 1, g2(x1, x2) = 1, g3(x1, x2, x3) = 1, ς1(x1) = x2

1, ς2(x1, x2) = −bx2, ς3(x1, x2, x3) =
0, ϱ1(x2) = ãx2 and ϱ2(x3) = 0 in which

|ς1(x1)| ≤ ℓ11|x1|

|ς2(x1, x2)| ≤ ℓ22|x2|
|ς3(x1, x2, x3)| = 0 (39)

|ϱ1(x2)| ≤ h1|x2|
|ϱ2(x3)| = 0

for |x1| ≤ ℓ11, ℓ22 = |b| and h1 = |ã|. Following the Steps (2) – (14) results in

ẋ1 = x1 + â(ϕ1(x1) + z1) + ς1(x1) + ϱ1(ϕ1(x1), z1)

ż1 = x1 + â−1(1 + k1)(x1 + â(ϕ1(x1) + z1)) + ϕ2(x1, z1) + z2 (40)

+ â−1(1 + k1)(ς1(x1) + ϱ1(ϕ1(x1), z1)) + ς2(x1, z1)

and the last subsystem can be represented in the form of (14) as follows

ż2 = fN(x1, z1, z2) + u+H (41)

in which H = fU(x1, z1, z2) + d(t) and

fN(x1, z1, z2) = (K1 +K2)(x1 + â(ϕ1(x1) + z1)) +K3(x1 + ϕ2(x1, z1) + z2)

fU(x1, z1, z2) = (K1 +K2)(ς1(x1) + ϱ1(ϕ1(x1), z1)) +K3ς2(x1, z1)

K1 = 1 + â+ â−1(1 + k1)− â−1(1 + k1)
2

K2 = â−1(1 + k1)(1 + k1 + k2)

K3 = 1 + k1 + k2
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The transformed variables are defined by z1 = x2−ϕ1(x1), z2 = x3−ϕ2(x1, z1) and the
applied stabilizing control laws used to obtain (40) and (41) are

ϕ1(x1) = −â−1(1 + k1)x1

ϕ2(x1, z1) = −(1 + â)x1 − â−1(1 + k1)(x1 + â(ϕ1(x1) + z1))− k2z1 (42)

For (40), selecting a Lyapunov function V2 = x2
1/2 + z21/2 and considering the corre-

sponding isolated system, i.e., z2 ≡ 0, gives

V̇2 ≤ −
(
|x1|
|z1|

)T (
P1 P3

P3 P2

)
︸ ︷︷ ︸

P

(
|x1|
|z1|

)
(43)

where

P1 = (1− h1â
−1)k1 − ℓ11 − h1â

−1

P2 = k2 − ℓ22 − h1â
−1(1 + k1) (44)

P3 = −h1 + â−1(ℓ11 + ℓ22)(1 + k1) + h1â
−2(1 + k1)

2

2

To make P > 0, k1 and k2 should be selected to satisfy

k1 >
ℓ11 + h1â

−1

1− h1â−1

k2 > h1â
−1(1 + k1) + ℓ22 + P−1

1 P 2
3 (45)

For (41), applying the control law (23) and considering the isolated 2nd order system
follows the form of (29). The derivatives of the lumped perturbation satisfy

|Hd1(x1, z1)| ≤ α1|x1|+ α2|z1|
|Hd2(z2, σ)| ≤ β1|z2|+ β2|σ| (46)

where

α1 = 2ℓ11|K1 +K2|(ℓ11 + |1− aâ−1 − aâ−1k1|)
+ (h1|K1 +K2|+ ℓ22|K3|)|â− â−1 − 2â−1k1 − â−1k2

1|
α2 = (h1|K1 +K2|+ ℓ22|K3|)(2 + k1 + k2) + 2ℓ11|a(K1 +K2)| (47)

β1 = h1|K1 +K2|+ ℓ22|K3|
β2 = 0

Applying the Steps (32) and (33) yields the form of (34), where C =

(
0 1/2

α1/2 α2/2

)
in

this case. Consequently, the final step is to select a proper pair (k3, k4) used in (23) such
that

Ξ =

(
P −CT

−C S

)
> 0 (48)

In the following simulation, initial position of the unstable nonlinear system was set to
be at [x1(0), x2(0), x3(0)] = [−0.1, 0.05, 0]. The parameters ℓ11 = 0.125, a = 1, b = 0.1 and
ã = 0.2 are considered. The exogenous disturbance is simulated by d(t) = e(sinω1t+cosω2t)−
sinω3t with ω1 = 1.0, ω2 = 0.5 and ω3 = 2.5 rad/s, respectively. The control gains η = 1,

(k1, k2, k3, k4) = (0.3125, 1.4734, 125, 135) that meet (48) and ξ = 25 > max |ḋ(t)| = 24.7
are applied.
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Figure 2. Closed-loop response

Figure 2 shows the closed-loop state response. By using the proposed backstepping
integral controller, the system trajectories converge towards the origin even in the presence
of model uncertainties and external disturbances. The resulting control effort is illustrated
in Figure 3, which shows that the applied control signals are smooth. Since Z → 0, it
follows that the resulting control effort represents the external disturbance with the same
magnitude but opposite sign. During the finite control interval, the given disturbance
seems to be irregular such that the corresponding magnitude and period are hard to
observe. Under this situation, external model based disturbance rejection scheme [31,32]
might not be easy for implementation. Nevertheless, simulations evidently demonstrate
that the disturbance rejection and recovery task are simultaneously achieved by using a
single integral controller.

5. Experiments: Voltage Drifting Reconstruction. In the previous example, it has
been shown that the integral control law is capable of achieving disturbance rejection.
To demonstrate this property further, we are going to design an experiment, which is a
practical application of the proposed method, for voltage drifting reconstruction. It is
well known that due to the long-term use of hardware, it unavoidably causes wear and
tear in hardware devices. Here, we suppose that this fault induces voltage drifting. Thus,
the following objective is to detect this fault and reconstruct its drifting values by the
way of control manner.

To realize this experiment, a servo motor is used to be an experimental apparatus,
where the dynamical equation can be simply represented by

θ̇1 = θ2

θ̇2 = J−1(vin − vf ) (49)

where θ1 and θ2 are angular position and velocity, respectively. J = 0.581 is the moment
of inertia. The applied control input is denoted by vin and the fault voltage drifting is
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Figure 3. Control input and disturbance

given by vf . Note that Equation (49) is the simplest form of (1) and thus it can be
represented by

θ̇1 = ϕ1(θ1) + z1

ż1 = fN(θ1, z1) + J−1(vin − vf ) (50)

where z1 = θ2 − ϕ1(θ1), ϕ1(θ1) = −k1θ1 and fN(θ1, z1) = k1(ϕ1(θ1) + z1). The integral
controller (23) is applied for (50) with (k1, k2, k3) = (10, 69, 344) and ξ = 86.
In the following experiments, the command position was set to be zero and four types

of voltage drifting including sinusoidal, triangular, saw-tooth and composite waves, are
purposely injected into the system through the channel vf .
By applying the developed control algorithm, Figures 4 and 5 show that the resulting

control effort, which are applied to hold the system at origin, precisely represents the
voltage drifting. Note note the slope at the corners shown in Figure 5 can be understood
by the so called generalized gradient; that is, the time derivative at the corners are
bounded by the left and right derivatives. According to the result presented in [28], the
dynamic controller is not capable of overcoming triangular waves because the waves are
not twice time differentiable. However, as shown in Figure 5, the triangular fault can
be precisely reconstructed. Consequently, the conservativeness in [28] is reduced by this
work.
Figures 6 and 7 illustrate unsatisfied estimates at certain critical points in which the

injected voltage changes abruptly. This phenomenon is caused by the fact that the time
derivatives of the faults at these specific points are infinity. According to the developed
method, disturbances can only be rejected in the case where the external faults are gen-
eralized first time differentiable. Consequently for the saw-tooth and composite waves, it
is impossible to find a finite value of ξ to suppress these infinite fast switching. That is,
d(t) /∈ C1 at these time instants. Except for these critical points, the computed control
signals approach to the real faults closely.
Referring to the disturbance observer (DO) based approaches [29,30], the external dis-

turbance is assumed to be slow varying relative to the observer dynamics. The estimation
precision is affected by the varying rates of given disturbances. That is, the estimate
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Figure 4. Sinusoidal waves
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Figure 5. Triangular waves

performance will be degraded by a large varying rate. However, in the proposed method,
the disturbance is allowed to be time varying and the asymptotic estimation level can be
reached as long as d(t) ∈ C1. In addition, only one control parameter ξ is needed to be
determined for disturbance elimination, which makes the controller realization efficient.

Recently, a disturbance rejection scheme by utilizing half-period integration technique
was proposed [31,32]. With assumptions that the functions of the external disturbances
are previously known and periodic, these works are able to precisely estimate tricky types
of disturbances where the derivatives are not bounded such as saw-tooth, square waves,
etc. However, the functions of disturbances may not be easily known in advance such that
it cause certain degree of difficulty to apply the model based disturbance rejection scheme.
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Figure 6. Saw-tooth waves
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Figure 7. Composite waves

A more practical consideration has been argued in [32] that estimation of arbitrary dis-
turbances causes infinite dimension external model, which is not realizable in practice.
Thus, an adequate way is to estimate and compensate the main frequency components
involved in the disturbances. Interested readers can refer to these studies for detail.
In the previous couple of experiments, it is worthy to point out that the applied in-

tegral controller together with control parameters are fixed during the estimate of all
types of unknown voltage faults. As a result, the developed approach is suitable for the
estimation of wide class of unknown faults. The proposed approach does not use any
extra compensator or observer for the disturbance elimination and reconstruction. The
controller involves the least information about external disturbance and therefore it saves
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lots of effort for control law realization. As a result, the proposed method is adequate for
practical case studies.

6. Conclusions. In this work, a robust integral controller is developed, which is an
extension of our previous result to a class of perturbed nonlinear systems. With the
aid of systematic backstepping design, the controller can be applied to wide class of
nonlinear systems subject to mismatched uncertainties and a matched external unknown
disturbance. We also simplified the stability proof given in [28] and further proposed a
new criterion for the closed-loop stability. The way of selection of control parameters for
achieving system stability and disturbance rejection is given based on the new criterion.
Different from [27], the developed method doesn’t involved any extra observer (or dynamic
compensator). Moreover, the assumption d(t) ∈ C2 imposed on external disturbance
[27,28] is also relaxed to be d(t) ∈ C1 in the proposed approach. Briefly, the effectiveness
and efficiency of the proposed method include: 1). No extra compensator is required in
the control framework so that the time and cost for design work can be reduced. 2). The
robust PI-type controller is capable of recovering external disturbance precisely as long
as the disturbance is generalized first time differentiable. 3). System stabilization and
disturbance rejection can be simultaneously achieved. 4). Different to the previous work
[28], criteria to determine the applied control gains is addressed apparently. 5). The
generated control effort is smooth and adequate for practical implementation. 6). The
proposed approach can be extended to solve the problem of mismatched faults recovery
[33,34]. 7). Finally, realization of the control framework is systematic and simple.

Numerical simulations and experiments are presented to show the effectiveness and
applicability of the proposed method.
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