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Abstract

This paper addresses the robust stabilization and robust H∞ control problems of uncertain fuzzy delayed systems via a parallel
distributed compensation (PDC) scheme. The uncertainties are norm bounded, and the delay may be either constant or time varying,
and either differentiable or non-differentiable. Presented in this paper are some robust stabilization and robust H∞ control criteria,
which are delay dependent in general and delay derivative dependent when the delay is differentiable. These results enjoy much
less conservatism and more computational simplicity compared with those in the existing literature, and permit, if the delay is
differentiable, the derivative to be larger than one. Some examples are given to illustrate the results in this paper.
c© 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Stability is one of the most important problems in the synthesis of control systems. With the development of fuzzy
systems, various kinds of fuzzy control methods have appeared. A quite popular one is performing control design
based on the Takagi–Sugeno (T–S) fuzzy model via the PDC design technique [1–7]. The underlying idea is that for
each local linear model, a linear feedback control is designed and the resulting overall controller, which is nonlinear in
general, is a fuzzy blending of all the local linear controllers. Therefore, it provides a good opportunity to employ the
well-established linear systems theory for theoretical analysis and design of the overall closed-loop controlled systems.
The most conspicuous among these systems are those with uncertainties and/or time delays, since they often appear
in various engineering systems and are frequently a source of instability [8–16]. Related literature usually adopts a
Lyapunov functional for system analysis and design, and sometimes uses the Razumikhin method in conjunction with
the Riccati inequality [14].

In recent years, much attention has been paid to studying the robust H∞ control of fuzzy systems so as to stabilize
systems robustly or reject disturbance [10,11,13,17]. As far as the author knows, for time delay systems, most reported
results are delay independent [11,13,17], and for the time-varying delay systems, few results are delay dependent or
delay derivative dependent. It is widely believed that criteria which are both delay derivative dependent and delay
dependent have less conservatism than those that are delay independent or delay derivative independent. Ref. [10]
discussed the delay-dependent robust H∞ control condition for uncertain systems with constant delay, but that method,
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if applied to time-varying delay systems, only results in a highly conservative delay-derivative-dependent H∞ control
condition that is subject to following restrictions: the delay derivative exists, and is less than 1.

On these grounds, the problem mainly addressed in this paper is the robust H∞ control of a fuzzy system with
uncertainties and time-varying delay, especially as regards weakening the restrictions and hence improving the
conservatism of the results in [10]. Since robust H∞ control augments robust stabilization with guaranteed disturbance
attenuation, the robust stabilization problem is first explored to pave the way to our goal.

In this paper, the uncertainties are norm bounded, and delay may be either constant or time varying and either
differentiable or non-differentiable. The main contribution of this paper lies in the following aspects. Firstly, on
the basis of a novel Lyapunov–Krasovskii functional and PDC design technique, some robust stabilization criteria
are established via state feedback. Secondly, some robust H∞ control criteria are proposed. All the criteria are less
conservative than many existing results and, if the delay is differentiable, allow its derivative to be arbitrarily large.
Note that these advantages are not obtained at the cost of high computational complexity.

The rest of this paper is organized as follows. In Section 2, the main problem is formulated. Some robust
stabilization criteria are derived in Section 3 via state feedback. Section 4 discusses the robust H∞ control condition
for such a system. In Section 5, two numerical examples are given to illustrate the correctness and advantages of our
theoretical results. And Section 6 concludes this paper.

Notation: L2 denotes the space of square integrable functions on [0, ∞) and ‖.‖2 the L2 norm, A > 0 (<0) means
A is a symmetrical positive (negative) definite matrix, A−1 denotes the inverse of matrix A and A′ the transpose,

−→
A

represents the sum of A and its transpose, C+ means the set of all positive real constants, and diag(a1, a2, . . . , an) a
diagonal matrix with diagonal entries a1, a2, . . . , an .

2. Problem formulation

Consider a uncertain fuzzy system with arbitrary delay, which is represented by T–S fuzzy model composed of a
set of fuzzy implications each of which is expressed by a linear system model. The i th rule of this T–S fuzzy model
is represented as: Rule i : IF z1(t) is Mi1 and · · · and z p(t) is Mi p, THEN

ẋ(t) = (Ai + 1Ai ) x(t) + (Ai + 1Ai ) x(t − τ(t)) + (Bi + 1Bi ) u(t) + Bi w(t),

y(t) = Di x(t) +Di u(t), t ≥ 0, x(t) = ϕ(t), t ∈ [−h, 0],

in which z1(t), . . . , z p(t) are the premise variables and each Mi j ( j = 1, 2, . . . , p) is a fuzzy set. Ai ,Ai ∈

Rn×n, Bi ∈ Rn×m,Bi ∈ Rn×r , Di ∈ R p×n , and Di ∈ R p×m are constant matrices, x(t) ∈ Rn is a state
variable, u(t) ∈ Rm is a control input vector, w(t) ∈ Rr is the disturbance input which is assumed to belong
to L2[0, ∞), and y(t) ∈ R p is the controlled output vector. 1Ai , 1Ai , 1Bi are called admissible uncertainties
satisfying [1Ai , 1Ai , 1Bi ] = N F(t)[Ei , E1i , E2i ], where N , Ei , E1i , E2i are known constant matrices and F(t) is
an unknown matrix with the property F(t)F ′(t) ≤ I . ϕ(t): [−h, 0] → Rn is an initial vector-valued smooth function,
and 0 ≤ τ(t) ≤ h ∈ C+. τ(t) may be non-differentiable, and when it is differentiable, suppose that τ̇ (t) ≤ d ∈ C+.

Using a center-average defuzzifier, the final output of the fuzzy system is

ẋ(t) =

r∑
i=1

ωi (z(t)) {(Ai + 1Ai ) x(t) + (Ai + 1Ai ) x(t − τ(t)) + (Bi + 1Bi ) u(t) + Bi w(t)}

r∑
i=1

ωi (z(t))

=

r∑
i=1

hi (t)
{

Āi x(t) + Āi x(t − τ(t)) + B̄i u(t) + Bi w(t)
}

= Ax(t) +Ax(t − τ(t)) + Bu(t) + Bw(t),

y(t) =

r∑
i=1

hi (t) {Di x(t) +Di u(t)} = Dx(t) +Du(t), t ≥ 0, x(t) = ϕ(t), t ∈ [−h, 0],

(1)

where r is the number of fuzzy implications, ωi (z(t)) =
∏p

l=1 Mil(zl(t)) with z(t) = [z1(t), . . . , z p(t)]′. Mi (zl(t))
is the grade of membership of zl(t) in Mil , and hi (t) = ωi (z(t))/

∑r
i=1 ωi (z(t)). It is assumed that ωi (z(t)) ≥ 0;
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therefore hi (t) ≥ 0,
∑r

i=1 hi (t) = 1, ∀t ≥ 0, and

Āi = Ai + 1Ai , Āi = Ai + 1Ai , B̄i = Bi + 1Bi , A =

r∑
i=1

hi (t) Āi , A =

r∑
i=1

hi (t)Āi ,

B =

r∑
i=1

hi (t)B̄i , B =

r∑
i=1

hi (t)Bi , D =

r∑
i=1

hi (t)Di , D =

r∑
i=1

hi (t)Di .

For notational simplicity, let hi (t) = hi , x(t) = x, x(t − τ(t)) = xτ , w(t) = w, y(t) = y, u(t) = u.

Definition. Given scalars θ̄ > 0 and γ > 0, if there is a fuzzy control law for (1) such that (i) for any time delay
0 ≤ τ(t) ≤ θ satisfying 0 ≤ θ ≤ θ̄ and all admissible uncertainties, the resulting closed-loop system is asymptotically
stable when w ≡ 0, (ii) under the zero initial conditions, ‖z‖2 ≤ γ ‖w‖2 holds for any nonzero w ∈ L2, then system
(1) is said to be robustly asymptotically stabilizable with disturbance attenuation γ .

3. Robust stabilization

Initially, we consider the problem of stabilization of system (1) with w = 0, i.e.

ẋ = Ax +Axτ + Bu or ẋ = f , f = Ax +Axτ + Bu. (2)

On the basis of the PDC design technique, we consider the following fuzzy control rules:
Control Rule i : IF z1(t) is Mi1 and · · · and z p(t) is Mi p, THEN u = −Ki x, where Ki ∈ Rm×n is a constant gain
matrix to be determined later. The overall controller is represented as

u = −

r∑
i=1

hiKi x. (3)

Applying (3) to (2), the resulting closed-loop system can be recast as

ẋ = f , f =

(
A − B

r∑
j=1

h jK j

)
x +Axτ = W x +Axτ , (4)

where W = A − B
∑r

j=1 h jK j =
∑r

i=1
∑r

j=1 hi h j ( Āi − B̄iK j ).
Before presenting the main results, we define some notation which will be used throughout this paper.

H1 = h X22 −
−→
X23 + (d − 1)Q, H2i j =

Ai R − Bi K j + A j R − B j Ki

2
,

H3i j = h X33 − 2R + ei j N N ′, H5 = hX22 −
−→X23 + (d − 1)Q.

First, assume that 0 ≤ τ(t) ≤ h and τ̇ (t) ≤ d , and we have the following theorem.

Theorem 1. Closed-loop system (4) is asymptotically stabilizable if there exist matrices P > 0, Q > 0, R > 0, K j ,
Xlk (l, k = 1, 2, 3), and positive scalars ei j (1 ≤ i ≤ j ≤ r), such that (5)–(7) hold, and the control gain matrix is
given by K j = K j R−1.

Θi i =


−−−−−−−−→
Ai R − Bi Ki + h X11 +

−→
X13 + Q + ei i N N ′

∗ ∗ ∗

P − R + Ai R − Bi Ki + ei i N N ′ H3i i ∗ ∗

RA′

i + h X21 − X31 + X23 RA′

i H1 ∗

Ei R − E2i Ki 0 E1i R −ei i

 < 0, i = 1, 2, . . . , r, (5)

Θi j =


−−→H2i j + h X11 +

−→
X13 + Q + ei j N N ′

∗ ∗ ∗

P − R +H2i j + ei j N N ′ H3i j ∗ ∗

R
A′

i +A′

j

2
+ h X21 − X31 + X23 R

A′

i +A′

j

2
H1 ∗

Ei R − E2i K j + E j R − E2 j Ki

2
0

E1i + E1 j

2
R −ei j

 ≤ 0, 1 ≤ i < j ≤ r, (6)
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X21 X22 ∗

X31 X32 X33

 > 0. (7)

Proof. Let R = R−1,Xlk = RXlkR,Q = RQR,P = RPR, where R, P, Q, Xlk (l, k = 1, 2, 3) are solutions to
(5)–(7). Chose the Lyapunov functional candidate

V =

∫ 0

−h

∫ t

t+β

ẋ′(s)X33ẋ(s) ds dβ +

∫ t

t−τ(t)
x′(s)Q x(s) ds + V1 + V2, (8)

in which

V1 = x′Px, V2 =

∫ t

0

∫ θ

θ−τ(θ)

 x(θ)

x(θ − τ(θ))

ẋ(s)

′X11 ∗ ∗

X21 X22 ∗

X31 X32 X33

 x(θ)

x(θ − τ(θ))

ẋ(s)

 ds dθ.

Taking the time derivative of V along trajectories of (4), we have

V̇1 = 2x′P ẋ = 2x′Pf = 2x′Pf + 2
(
x′

+ f ′
)
R (W x +Axτ − f )

= 2x′Pf − 2x′Rf − 2f ′Rf + 2x′RW x + 2x′RAxτ + 2f ′RW x + 2f ′RAxτ .

The derivative of V2 is

V̇2 =

∫ t

t−τ(t)

 x
xτ

ẋ(s)

′X11 ∗ ∗

X21 X22 ∗

X31 X32 X33

 x
xτ

ẋ(s)

 ds

≤

∫ t

t−h

[
x
xτ

]′ [X11 ∗

X21 X22

] [
x
xτ

]
ds +

∫ t

t−τ(t)
ẋ(s) {2X31x + 2X32xτ + X33ẋ(s)} ds

≤ x′

{
hX11 +

−→X13

}
x + 2x′

{hX12 − X13 + X32} xτ + x′
τ

{
hX22 −

−→X23

}
xτ +

∫ t

t−h
f ′(s)X33 f (s) ds.

Then it follows that

V̇ ≤ 2f ′RAxτ + x′

{
−−→RW + hX11 +

−→X13 +Q
}

x + 2x′
{RA+ hX12 − X13 + X32} xτ

+ 2x′
{
P −R+ W ′R

}
f + f ′

{hX33 − 2R} f + x′
τ

{
hX22 −

−→X23 + (d − 1)Q
}

xτ

=

 x
f

xτ

′ −−→RW + hX11 +
−→X13 +Q ∗ ∗

P −R+RW hX33 − 2R ∗

A′R+ hX21 − X31 + X23 A′R H5

 x
f

xτ

 . (9)

Apply W =
∑r

i=1
∑r

j=1 hi h j ( Āi − B̄iK j ) to (9), and note that
∑r

i=1 hi = 1. Then it is yielded that

V̇ ≤

r∑
i=1

r∑
j=1

hi h jρ
′Mi jρ =

r∑
i=1

h2
i ρ

′Mi iρ + 2
∑

1≤i< j≤r

hi h jρ
′
Mi j + M j i

2
ρ, (10)

where ρ =
[
x′, f ′, x′

τ

]′, and

Mi j =


−−−−−−−−−→
R( Āi − B̄iK j ) + hX11 +

−→X13 +Q ∗ ∗

P −R+R( Āi − B̄iK j ) hX33 − 2R ∗

Ā′

iR+ hX21 − X31 + X23 Ā′

iR H5

 .

Define σ =
[
a′, b′, c′, (a′

+ b′)N F(t)
]′ with arbitrary vectors a, b, c of appropriate dimension. Since Θi i < 0, i =

1, . . . , r and Θi j ≤ 0, 1 ≤ i < j ≤ r ,

σ ′Θi iσ < 0, i = 1, . . . , r, σ ′Θi jσ ≤ 0, 1 ≤ i < j ≤ r. (11)
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Recalling that F(t)F ′(t) ≤ I , we can easily obtain the following inequalities:

ei j (a′
+ b′)N F(t)F ′(t)N ′(a + b) ≤ ei j

(
a′N N ′a + 2b′N N ′a + b′N N ′b

)
,

(a′
+ b′)N F(t)Ei Ra = (a′

+ b′)1Ai Ra, (a′
+ b′)N F(t)E1i Rc = (a′

+ b′)1Ai Rc,

(a′
+ b′)N F(t)E2i K j a = (a′

+ b′)1Bi K j a.

(12)

It follows from (11) and (12) that

σ̄ ′M̄i i σ̄ ≤ σ ′Θi iσ < 0, i = 1, . . . , r, σ̄ ′M̄i j σ̄ ≤ σ ′Θi jσ ≤ 0, 1 ≤ i < j ≤ r, (13)

where σ̄ =
[
a′, b′, c′

]′, and the symmetrical matrix

M̄i i =


−−−−−−−−→
Āi R − B̄i Ki + h X11 +

−→
X13 + Q ∗ ∗

P − R + Āi R − B̄i Ki h X33 − 2R ∗

RĀ′

i + h X21 − X31 + X23 RĀ′

i H1

 , i = 1, . . . , r,

M̄i j =



−−−−−−−−−−−−−−−−−−−−→
Āi R − B̄i K j + Ā j R − B̄ j Ki

2
+ h X11 +

−→
X13 + Q ∗ ∗

P − R +
Āi R − B̄i K j + Ā j R − B̄ j Ki

2
h X33 − 2R ∗

R
Ā′

i + Ā′

j

2
+ h X21 − X31 + X23 R

Ā′

i + Ā′

j

2
H1

 , 1 ≤ i < j ≤ r.

Since a, b, c are arbitrary vectors, we have M̄i i < 0, i = 1, . . . , r, M̄i j ≤ 0, 1 ≤ i < j ≤ r .
Let Σ1 = diag[R,R,R]; it follows that

Mi i = Σ1 M̄i iΣ1 < 0, i = 1, . . . , r,
Mi j + M j i

2
= Σ1 M̄i jΣ1 ≤ 0, 1 ≤ i < j ≤ r.

On the basis of (10), we have V̇ < 0. The proof ends. �

Remark 1. Compared with [10], the present paper generalizes its Lyapunov–Krasovskii functional with the summand
V2. This key generalization, together with the additional free weighting matrices that it results in, generally leads to
less conservatism than for the results in [10]. The performance improvement is demonstrated in Section 5.

Remark 2. When τ(t) is a constant, i.e., d ≡ 0, this theorem still holds.

Consider a special case of system (1) where w = 0, u = 0, and there are no uncertainties, i.e.

ẋ =

r∑
i=1

hi (Ai x +Ai xτ ). (14)

We can construct a Lyapunov functional which is the same as that in Theorem 1 but with P,Q, and Xlk replaced by
P, Q, Xlk (l, k = 1, 2, 3), respectively. According to the proof of Theorem 1, one has

Corollary 1. System (14) is asymptotically stable if there exist matrices P > 0, Q > 0, R > 0, and Xlk (l, k =

1, 2, 3) such that (7) and (15) hold: −−→
R Ai + h X11 +

−→
X13 + Q ∗ ∗

P − R + R Ai h X33 − 2R ∗

A′

i R + h X21 − X31 + X23 A′

i R h X22 −
−→
X23 + (d − 1)Q

 < 0, i = 1, 2, . . . , r. (15)

If τ(t) in (1) is non-differentiable, one can construct a Lyapunov–Krasovskii functional similar to that in Theorem 1
but without the summand

∫ t
t−τ(t) x′(s)Q x(s) ds. Following the proof process of Theorem 1, we have

Corollary 2. Closed-loop system (4) is asymptotically stabilizable if there exist matrices P > 0, R > 0, K j ,
Xlk (l, k = 1, 2, 3), and positive scalars ei j (1 ≤ i ≤ j ≤ r), such that (5), (6) with Q = 0 and (7) hold, and
the control gain matrix is given by K j = K j R−1.
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4. Robust H∞ control

System (1) can be recast as

ẋ = f , f = Ax +Axτ + Bu + Bw, y = Dx +Du. (16)

Applying (3) to (16), we have

ẋ = f , f = W x +Axτ + Bw, y =

(
D −D

r∑
j=1

h jK j

)
x. (17)

Under the condition that τ̇ (t) ≤ d , we have the following theorem.

Theorem 2. Given scalar γ > 0, if there exist matrices P > 0, Q > 0, R > 0, Xlk (l, k = 1, 2, 3), K j ∈ Rm×n , and
positive scalars ei j (1 ≤ i ≤ j ≤ r), such that (18), (19) and (7) hold, then (1) is robustly asymptotically stabilizable
with disturbance attenuation γ , and moreover, the control gain matrix K j = K j R−1.

Γi i =



−−−−−−−−→
Ai R − Bi Ki + h X11 +

−→
X13 + Q + ei i N N ′

∗ ∗ ∗ ∗ ∗

P − R + Ai R − Bi Ki + ei i N N ′ H3i i ∗ ∗ ∗ ∗

RA′

i + h X21 − X31 + X23 RA′

i H1 ∗ ∗ ∗

B′

i B′

i 0 −γ 2
∗ ∗

Di R −Di Ki 0 0 0 −I ∗

Ei R − E2i Ki 0 E1i R 0 0 −ei i

 < 0,

i = 1, 2, . . . , r, (18)

Γi j =



−−→H2i j + h X11 +
−→
X13 + Q + ei j N N ′

∗ ∗ ∗ ∗ ∗ ∗

P − R +H2i j + ei j N N ′ H3i j ∗ ∗ ∗ ∗ ∗

R
A′

i +A′

j

2
+ h X21 − X31 + X23 R

A′

i +A′

j

2
H1 ∗ ∗ ∗ ∗

B′

i B′

i 0 −γ 2
∗ ∗ ∗

Di R −Di K j 0 0 0 −2I ∗ ∗

D j R −D j Ki 0 0 0 0 −2I ∗

Ei R − E2i K j + E j R − E2 j Ki

2
0

E1i + E1 j

2
R 0 0 0 −ei j


≤ 0,

1 ≤ i < j ≤ r. (19)

Proof. Chose the Lyapunov functional candidate defined by (8). The derivative of V2 is the same as that in Theorem 1
too. On the basis of (17), one gets

V̇1 = 2x′Pf + 2
(
x′

+ f ′
)
R (W x +Axτ + Bw − f ) . (20)

By a process like that going from (8) to (9), the following inequality can be obtained:

V̇ ≤

r∑
i=1

r∑
j=1

hi h jθ
′


−−−−−−−−−→
R( Āi − B̄iK j ) + hX11 +

−→X13 +Q ∗ ∗ ∗

P −R+R( Āi − B̄iK j ) hX33 − 2R ∗ ∗

Ā′

iR+ hX21 − X31 + X23 Ā′

iR H5 ∗

B′

iR B′

iR 0 0

 θ (21)

with θ =
[
x′, f ′, x′

τ , w′
]′.

On the other hand, we have

y′y =

r∑
i=1

r∑
j=1

r∑
k=1

r∑
l=1

hi h j hkhlx′(Di −DiK j )
′(Dk −DkKl)x

≤

r∑
i=1

r∑
j=1

hi h j x′(Di −DiK j )
′(Di −DiK j )x.
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Consequently

y′y − γ 2w′w ≤

r∑
i=1

r∑
j=1

hi h j x′(Di −DiK j )
′(Di −DiK j )x − γ 2w′w + V̇ − V̇

=

r∑
i=1

r∑
j=1

hi h jθ
′Mi jθ − V̇ =

r∑
i=1

h2
i θ

′Mi iθ + 2
∑

1≤i< j≤r

hi h jθ
′
Mi j +M j i

2
θ − V̇ , (22)

where

Mi j =


H4 ∗ ∗ ∗

P −R+R( Āi − B̄iK j ) hX33 − 2R ∗ ∗

Ā′

iR+ hX21 − X31 + X23 Ā′

iR H5 ∗

B′

iR B′

iR 0 −γ 2


withH4 =

−−−−−−−−−→
R( Āi − B̄iK j ) + hX11 +

−→X13 +Q+ (Di −DiK j )
′(Di −DiK j ). It is obvious that if

Mi i < 0, i = 1, 2, . . . , r, and
Mi j +M j i

2
≤ 0, 1 ≤ i < j ≤ r, (23)

then y′y − γ 2w′w + V̇ < 0. Under the zero initial conditions, we have
∫

∞

0

(
y′y − γ 2w′w

)
ds ≤ 0, namely,

‖y‖2 ≤ γ ‖w‖2.

By the Schur complement,Mi i < 0 (i = 1, . . . , r) is equivalent to

M̄i i =


−−−−−−−−−→
R( Āi − B̄iKi ) + hX11 +

−→X13 +Q ∗ ∗ ∗ ∗

P −R+R( Āi − B̄iKi ) hX33 − 2R ∗ ∗ ∗

Ā′

iR+ hX21 − X31 + X23 Ā′

iR H5 ∗ ∗

B′

iR B′

iR 0 −γ 2
∗

Di −DiKi 0 0 0 −I

 < 0, (24)

and M̄i j +M̄ j i
2 ≤ 0 (1 ≤ i < j ≤ r) is equivalent to

M̄i j =



−−−−−−−−−−−−−−−−−−−→

R
Āi − B̄iK j + Ā j − B̄ jKi

2
+ hX11 +

−→X13 +Q ∗ ∗ ∗ ∗ ∗

P −R+R
Āi − B̄iK j + Ā j − B̄ jKi

2
hX33 − 2R ∗ ∗ ∗ ∗

Ā′

i + Ā′

j

2
R+ hX21 − X31 + X23

Ā′

i + Ā′

j

2
R H5 ∗ ∗ ∗

B′

iR B′

iR 0 −γ 2
∗ ∗

Di −DiK j 0 0 0 −2I ∗

D j −D jKi 0 0 0 0 −2I


≤ 0.

(25)

By a process like that from (11) to (13), on the basis of (18) and (19), we know that

M̂i i =


−−−−−−−−→
Āi R − B̄i Ki + h X11 +

−→
X13 + Q ∗ ∗ ∗ ∗

P − R + Āi R − B̄i Ki h X33 − 2R ∗ ∗ ∗

RĀ′

i + h X21 − X31 + X23 RĀ′

i H1 ∗ ∗

B′

i B′

i 0 −γ 2
∗

Di R −Di Ki 0 0 0 −I

 < 0, i = 1, 2, . . . , r, (26)
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M̂i j =



−−−−−−−−−−−−−−−−−−−−→
Āi R − B̄i K j + Ā j R − B̄ j Ki

2
+ h X11 +

−→
X13 + Q ∗ ∗ ∗ ∗ ∗

P − R +
Āi R − B̄i K j + Ā j R − B̄ j Ki

2
h X33 − 2R ∗ ∗ ∗ ∗

R
Ā′

i + Ā′

j

2
+ h X21 − X31 + X23 R

Ā′

i + Ā′

j

2
H1 ∗ ∗ ∗

B′

i B′

i 0 −γ 2
∗ ∗

Di R −Di K j 0 0 0 −2I ∗

D j R −D j Ki 0 0 0 0 −2I


≤ 0,

1 ≤ i < j ≤ r. (27)

Let Σ2 = diag[R,R,R, I, I ], Σ3 = diag[R,R,R, I, I, I ]; then it is straightforward to get

M̄i i = Σ2M̂i iΣ2 < 0, i = 1, 2, . . . , r, M̄i j = Σ3M̂i jΣ3 ≤ 0, 1 ≤ i < j ≤ r. (28)

i.e., (23) holds. Simultaneously, inequalities (18) and (19) imply (5) and (6), respectively. According to Theorem 1,
(1) is asymptotically stabilizable when w = 0. Thus, the proof is completed. �

Remark 3. Now, we compare the computational complexity of the main results in this paper with that in [10]. Let r
be the number of fuzzy rules. Theorem 4 in Ref. [10] needs to compute 3 + r + 2r2 parameters including matrices
and scalars, while Theorem 2 of this paper needs r(r+1)

2 + 9 + r parameters, which is far fewer when r ≥ 3. The
dimension of LMIs in this paper is much lower, too.

If τ is non-differentiable or τ̇ is unknown, we can easily get:

Corollary 3. Given scalar γ > 0, if there exist matrices P > 0, R > 0, Xlk (l, k = 1, 2, 3), K j ∈ Rm×n , and
positive scalars ei j (1 ≤ i ≤ j ≤ r), such that (18), (19) and (7) hold with Q = 0, then (1) is robustly asymptotically
stabilizable with disturbance attenuation γ , and moreover, the control gain matrix K j = K j R−1.

Remark 4. It is conceivable that generally, Corollary 3 is more conservative than Theorem 2, as demonstrated in
Section 5. The lack of rate information on the time delay is responsible for the relative conservatism of Corollary 3,
which indicates the important role of rate information in robust control.

5. Examples

Example 1. First we consider a fuzzy system ẋ =
∑2

i=1 hi (Ai x +Ai x(t − h)) with x(t) ∈ R2,

A1 =

[
−2 0
0 −0.9

]
A2 =

[
−1.5 1

0 −0.75

]
A1 =

[
−1 0
−1 −1

]
A2 =

[
−1 0
1 −0.85

]
.

According to Theorem 1 in [10], the upper boundary of h is 0.8005. However, on the basis of Corollary 1 of this paper,
the upper boundary of h is 1.2163.

Example 2. Now we apply Theorem 2 to design the controllers of the following fuzzy system:

ẋ =

2∑
i=1

hi {(Ai + N F(t)E)x + (Ai + N F(t)E)xτ + (Bi + N F(t)E)u + Bi w},

y =

2∑
i=1

hi (Di x +Di u) , t ≥ 0, x = ϕ(t), t ∈ [−h, 0],

(29)

where x ∈ R2, u ∈ R2, w ∈ R2, 0 ≤ τ(t) ≤ τ , and

A1 =

[
0.3 0.1
0 0.2

]
A2 =

[
0.1 0.3
0.7 0.1

]
A1 =

[
−1 0.4
0.2 0.1

]
A2 =

[
0.1 0
0.5 0.4

]
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B1 =

[
0.1 0.4
0 −1

]
B2 =

[
0.2 1
0.4 −0.3

]
B1 =

[
1 0
0 1

]
B2 =

[
1 0
0 1

]
D1 =

[
0.1 1
0 1

]
D2 =

[
0.1 0.4
0 0.1

]
D1 =

[
0.3 −0.3
0 0.2

]
D2 =

[
0.2 0
0 −0.1

]
N =

[
−0.1 0
0.1 −0.1

]
E =

[
0.1 0
0 0.1

]
F(t) =

[
cos t 0

0 sin t

]
.

To begin, assume that τ(t) is differentiable and τ̇ ≤ d. Fixing γ = 2 and applying Theorem 2, we can get

d 0.1 0.5 0.6 0.9 1.1 5×105

τ (the upper bound of τ(t)) 0.9103 0.8763 0.8626 0.7832 0.7454 0.7454

and then we can design controllers for (29) accordingly. For example, when d = 0.5 and τ = 0.8763, the gain
matrices are as follows:

K1 =

[
2.6779 5.9123
0.2088 −3.4727

]
, K2 =

[
3.0965 6.5227
0.0689 −3.1462

]
.

According to Theorem 2, controller u = −
∑2

i=1 hiKi x can robustly asymptotically stabilize the above-mentioned
system with disturbance attenuation γ = 2.

In contrast, to show the conservatism caused by the lack of rate information, now assume that τ is non-differentiable
or τ̇ is unknown. Applying Corollary 3 we have that, corresponding to the fixed γ = 2, the upper bound of τ(t) is
τ = 0.7454. It can be seen from the above table that Theorem 2 is less conservative than Corollary 3.

6. Conclusions

Using a novel Lyapunov–Krasovskii functional, we have explored the robust stabilization and robust H∞ control
problems of delayed fuzzy systems with uncertainties and perturbation. All results have less conservatism than the
previous ones. Most importantly, the derivatives of the delays are allowed to be arbitrarily large. Two numerical
examples exemplify our theoretical results, indicating the advantage of our criteria. In the future, we hope to further
explore the robust H∞ control problems of uncertain delayed fuzzy systems via observer-based output feedback using
a similar approach.
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