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Molecular motors are proteins or protein complexes which function as transporting engines in biological cells.

This paper models the tether between motor and its cargo as a symmetric linear potential. Different from Elston and

Peskin’s work for which performance of the system was discussed only in some limiting cases, this study produces

analytic solutions of the problem for general cases by simplifying the transport system into two physical states, which

makes it possible to discuss the dynamics of the motor–cargo system in detail. It turns out that the tether strength

between motor and cargo should be greater than a threshold or the motor will fail to transport the cargo, which was

not discussed by former researchers yet. Value of the threshold depends on the diffusion coefficients of cargo and motor

and also on the strength of the Brownian ratchets dragging the system. The threshold approaches a finite constant

when the strength of the ratchet tends to infinity.
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1. Introduction

Molecular motors are a protein or protein com-

plex which functions as a transporter in biological

cells. They move along rotatory or translatory track

against an external force by converting the biochem-

ical energy source, adenosine triphosphate (ATP), to

mechanic work.[1] Filaments (actin filaments, micro-

tubules), tracks that motor proteins in eukaryotic cells

move along, are composed of periodic and relatively

rigid protein structures with a periodicity of order 10

nanometers.[2,3] Molecular motors play essential roles

in cell division and cellular material transport. Along-

side their importance in cellular processes, their small

size and high efficiency inspire wide interests, both in

basic research and engineering fields.

While the performance mechanism of molecular

motors has not been answered definitively, many valu-

able models for motor protein function have been pro-

posed. The Brownian ratchet model is one of the

well-known models.[4−12] In such a model, both the

diffusion coefficient of a motor and the diffusion coef-

ficient of its cargo impose fundamental effects on the

performance of a motor.

It should be noted that within cells, cargo

often consists of larger vesicles instead of single

molecules.[13] Thus, generally the cargo, which the

motor transports, is considerably larger than the mo-

tor itself in size. For example, newly synthesized

synaptic vesicles with a diameter of 20–50 nm from

the soma of a neuron are transported to the synapses

at the end of the axons up to one meter away, by

a much smaller kinesin’s motor with size of only

7×4.5×4.5 nm.

According to the Einstein relation D = kBT/γ =

kBT/6πηr, where γ is the drag coefficient, diffusion

constants decrease sharply as particle size increases.

Therefore, for the Brownian ratchet models the molec-

ular motor would hardly work with a cargo of large size

and relatively small diffusion coefficient. Researchers

proposed ways to overcome this problem. Berg and

Kahn,[5] and Meister et al.[6] as well, suggested an

elastic linkage between the motor and its cargo. This

spring potential allows a small motor to diffuse rapidly

without missing its cargo by stretching the linkage.

Elston and Peskin et al.[14] reported a model

which introduced a linear spring with zero rest length

between the cargo and motor and put the system

into the Brownian ratchet model. The elastic tether

between the cargo and motor overcame the problem

caused by the relatively small diffusion coefficient of

the cargo. However, there is a serious pitfall for this

model: when the distance between the cargo and mo-

tor becomes very large, the stretching force between

∗Project supported by the National Natural Science Foundation of China (Grant No. 30600121) and Doctoral Foundation of

Shandong Province of China (Grant No. 2007BS09002).
†Corresponding author. E-mail: fzli1976@gmail.com

c⃝ 2010 Chinese Physical Society and IOP Publishing Ltd
http://www.iop.org/journals/cpb　http://cpb.iphy.ac.cn

020503-1



Chin. Phys. B Vol. 19, No. 2 (2010) 020503

the cargo and motor as well becomes extremely large.

This is impossible in a real situation, since a large

distance will obviously make them disassociated. An-

other description of the pitfall is as follows: in this

model, a very weak linkage between the cargo and

motor also works well, which is obviously impossible

too.

In our previous work,[15] we proposed a linear

symmetric potential as the tether between the cargo

and motor. In this study, we propose an assumption

that the cargo–motor system is categorized into two

states with regard to the relative position of the motor

and the cargo in the movement. Based on this simpli-

fication, analytic solutions are achieved with the per-

formance of the motor–cargo system being discussed

in detail.

The following part of the paper is arranged as

follows. In Section 2, we briefly describe our linear

symmetric potential model, and then discuss the sim-

plification of the problem and general solution for the

model. In Section 3, the impact of the diffusion coef-

ficient of the cargo and motor on the transport of the

system is presented. In Section 4, we discuss the im-

pact of the strength of the ratchet dragging the motor

on the transport system. Some discussions are given

in Section 5. We finish up with some conclusions in

Section 6.

2. Formulation and general solu-

tion of our model

Although the cargo is free to move in any direc-

tion, its mean velocity perpendicular to the track is

zero apparently. Thus we can just take the motion

of the cargo parallel to the track into consideration

in our problem. The potential energy of the system

satisfies the following equation:

U(x1, x2) = ϕ(x1) + S(|x1 − x2|), (1)

where x1 stands for the position of the motor and

x2 stands for the position of the cargo. The potential

ϕ(x1) describes the interaction between the motor and

track, whereas S(|x1−x2|) describes the tether which
connects the cargo to the motor.

For the potential ϕ(x1) between the motor and

track, we adopt the imperfect Brownian ratchet model

proposed by Elston and Peskin.[14] In their model the

motor–cargo system moves in a ‘staircase’ potential

ϕ(x1) (Fig. 1), which is a special case of the ‘titled’

periodic potential.

Fig. 1. The motor–cargo system moving in the imper-

fect ratchet potential plus an applied load force Fl. The

ratchet is characterized by the barrier potential F0L.

We propose that the tether between the cargo and

motor is a linear symmetric potential. So the potential

between cargo and motor takes the form:[15]

S(r) = κr, (2)

where κ is a measure of the intensity of the potential

and r = |x1 − x2| is the distance between the cargo

and motor.

In principle, this problem can be solved by com-

bining with diffusion equations. However, it is quite

hard to obtain an analytical solution for the general

case. Analytical solutions have been achieved in some

limiting cases.[14]

When the system is examined by considering the

relative physical position of the cargo and motor in

the transport, the system falls into two states since

the motor and cargo are under an overdamped situa-

tion where acceleration of the system can be omitted.

One is the state that the cargo is moving behind the

motor and the other is the state that the cargo is mov-

ing ahead of the motor. In the transport system, the

average velocity of motor and cargo is equal. For the

sake of simplicity, intermediate states were not taken

into consideration in our model. Under this two-state

assumption we can formulate the system’s average ve-

locity as

v = v1cp+ v2c(1− p) = v1mp+ v2m(1− p), (3)

where v1c, v1m are the velocities of cargo and mo-

tor when the cargo lags behind the motor (state 1),

respectively, and v2c, v2m are the velocities of cargo

and motor when the cargo goes in front of the motor

(state 2), respectively, p is the probability of state 1

in which cargo lags behind the motor. Advantages of

this model lie in the simplicity of its description. It is

easy to obtain an analytical solution for it.

In our simplified model, the cargo is always within

constraint of the symmetric linear potential. In state
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1 for which the cargo lags behind the motor, since

the cargo feels a constant force κ, its mean velocity is

simple:

v1c =
κD2

kBT
=

D2

L
ωl, (4)

where D2 is the diffusion coefficient of the cargo and

ωl = κL/kBT .

When the cargo jumps into state 2, that is, when

the cargo moves in front of the motor it still feels a

constant, but with opposite direction to state 1, force

κ, so its speed gets into

v2c =
−κD2

kBT
=

−D2

L
ωl. (5)

The load-speed curve of an imperfect Brownian

ratchet gives the speed of the motor which is followed

by the constant load force κ. Following the results ob-

tained by Elston and Peskin[14] we can directly get the

speed of the motor in state 1 and state 2, respectively:

v1m =
D1

L

ω2
l

(exp(ω0)− 1)(exp(ωl)− 1)

exp(ω0)− exp(ωl)
− ωl

, (6)

v2m =
D1

L

ω2
l

(exp(ω0)− 1)(exp(−ωl)− 1)

exp(ω0)− exp(−ωl)
− (−ωl)

, (7)

where ωl = κL/kBT , ω0 = (F0/kBT )L and D1 is the

diffusion coefficient of the motor.

Substituting Eqs. (4)–(7) into Eq. (3) we can cal-

culate the values of p and v as follows:

p =
v2m − v2c

v1c − v2c − v1m + v2m

=

D1ωl

(exp(ω0)− 1)(exp(−ωl)− 1)

exp(ω0)− exp(−ωl)
+ ωl

+D2

2D2 −
D1ωl

(exp(ω0)− 1)(exp(ωl)− 1)

exp(ω0)− exp(ωl)
− ωl

+
D1ωl

(exp(ω0)− 1)(exp(−ωl)− 1)

exp(ω0)− exp(−ωl)
+ ωl

, (8)

v = v1cp+ v2c(1− p)

=
D2

L

D1ωl

 1

(exp(ω0)− 1)(exp(−ωl)− 1)

exp(ω0)− exp(−ωl)
+ ωl

+
1

(exp(ω0)− 1)(exp(ωl)− 1)

exp(ω0)− exp(ωl)
− ωl



2D2ωl +D1

 1

(exp(ω0)− 1)(exp(−ωl)− 1)

exp(ω0)− exp(−ωl)
+ ωl

− 1

(exp(ω0)− 1)(exp(ωl)− 1)

exp(ω0)− exp(ωl)
− ωl


. (9)

We first consider how p, which denotes the proba-

bility that cargo lags behind the motor, changes with

κ. The κ–p curve was given in Fig. 2. It turns out

that p decreases with increasing κ. And there is a

lower limit for p when κ → ∞. Making κ → ∞ in

Eq. (8) we get this lower limit of p which is 1/2.

It could be explained that, when the force be-

tween the cargo and motor is so strong that they could

hardly separate from each other, chances for the two

states are equal and p trends towards 1/2.

Note that in the left region of Fig. 2 the value of

p is above unit. Since equation (8) is derived from

Eq. (3) we can find that the appearance of p greater

than 1 stems from the hypothesis for which the motor

and cargo always hold a common mean velocity. It is

self-obvious that we should not get a p greater than 1

in a real situation and this constraint hints a thresh-

old for κ which we name as κ0, i.e., the value of κ that

makes p equal to 1. This point means that the cargo

always trails behind the motor and when κ < κ0, p is

greater than 1. Substituting p with 1 into Eq. (3) and

combining it with Eqs. (4) and (6) we get

D2

D1
=

ωl

(exp(ω0)− 1)(exp(ωl)− 1)

exp(ω0)− exp(ωl)
− ωl

. (10)

This equation implicitly determines ωl, or equally κ0.

Substituting κ0 into Eq. (4) or Eq. (6) determines the
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common speed of the motor and cargo with the cor-

responding unit p, which is denoted by v0.

Fig. 2. The probability of cargo lagging behind the motor

in transport versus the logarithm of the potential strength

κ in units of kBT/L. There is a lower limit 0.5 for the

probability. F0 is set to 1 kBT/L.

Now we have understood the behaviour of the sys-

tem for the case of κ ≥ κ0. That is, the motor and

cargo as a whole move ahead together and the cargo

moves around the motor as well, and the mean system

speed can be obtained by solving Eq. (9). But what

about the system behaviour when κ < κ0? As noted

before, p is greater than 1 when κ < κ0 (Fig. 2). Since

the hypothesis that the motor and cargo have a com-

mon mean velocity results in the unrealistic p, it does

not hold anymore in this region of κ. Note that v1m
decreases as κ increases (according to Eq. (6)) while

v1c increases as κ increases (according to Eq. (4)) and

they are identical at the point κ = κ0. Thus we can

deduce that in the region of κ < κ0 the speed of the

cargo induced by the linear tether is lower than that

of the motor, so the cargo will always lag behind the

motor and the distance between them becomes larger

and larger until eventually the cargo goes out of the

linear potential and is disassociated from the motor,

then diffused freely in the cell.

Figure 3 shows the dependence of the mean veloc-

ity of transport on the value of κ. Because the cargo

will depart from the motor when κ < κ0, only the

curve of region κ ≥ κ0 is given. We can see from the

figure that the curve is increasing as κ increases and

will get its upper limit as κ → ∞. This upper limiting

velocity can be obtained by solving Eq. (9), i.e.

lim
κ→∞

v =
1

2L

D1D2

D1 +D2
[exp(ω0)− exp(−ω0)]. (11)

And the lower limit of the average velocity as

κ → κ0 can be calculated by Eq. (4) or Eq.(6).

Fig. 3. The mean velocity of the transport in units of

D2/L versus the logarithm of the potential strength κ in

units of kBT/L for an imperfect ratchet with the barrier

potential kBT when κ > κ0. F0 is set to 1 kBT/L. The

upper horizontal line stands for the value of velocity with

the limit κ → ∞.

3. Impact of diffusion coefficients

on the system’s transport

Performance of the molecular motor system

highly depends on the diffusion coefficients of the sys-

tem’s components. Firstly we consider dynamics of

the threshold κ0 with regard to the diffusion coeffi-

cients of the cargo and motor. The value of κ0 depends

not only on the strength of the ratchet F0 but also on

the ratio of diffusion coefficient of the cargo to that

of the motor. Define this ratio as ε = D2/D1. From

Eq. (10) we can deduce that κ0 is the increasing func-

tion with respect to F0 but decreasing function with

respect to ε. Figure 4 shows how κ0 changes with ε.

The height of the ratchet barrier is taken as 1 kBT . It

shows that κ0 is within the range 0 < κ0 < F0.

Fig. 4. The threshold of the tether strength κ in units of

kBT/L versus the logarithm of ε. F0 is set to 1 kBT/L.

020503-4



Chin. Phys. B Vol. 19, No. 2 (2010) 020503

Equation (10) can also give the limiting values

of κ0 for the cases ε → 0 and ε → ∞ respectively.

Letting D1 → ∞ with all other parameters fixed we

get

lim
ε→0

κ0 = F0. (12)

And letting D2 → ∞ with all other parameters fixed,

we get

lim
ε→∞

κ0 = 0. (13)

Equation (12) means that, for large value of 1,

the minimum force κ0 required for the cargo to move

together with the motor approaches the strength F0 of

the ratchet dragging the motor, and equation (13) in-

dicates that the diffusion coefficient of the cargo helps

to enhance the transport of system.

Then we discuss how the average velocity of the

transport system changes with the diffusion coeffi-

cients of the cargo and motor. It can be easily seen

from Eq. (9) that the average velocity of the system

increases with both D1 and D2. Also, we can eas-

ily deduce the upper limits of the average velocity as

D1 → ∞ or D2 → ∞. The computation of these

limiting values is left for the reader.

Reversely, the transport of the system will ter-

minate as long as one of the two diffusion coefficients

trends towards zero. This phenomenon shows that the

diffusion coefficients of cargo and motor both play key

roles in the transport of system

4. Impact of F0 on the system’s

transport

Now we test the dynamics of the system with

varying strength F0 of the ratchet dragging the sys-

tem. Intuitively, the velocity of transport increases as

F0 gets larger. Since the threshold κ0 is the increasing

function of F0 then when F0 gets large enough κ0 will

go above κ and the cargo and motor will become dis-

associated. So we first discuss how κ0 depends on F0.

Equation (10) implicitly determines the relationship

between κ0 and F0. Figure 5 is a plot of κ0 as a func-

tion of F0. As is shown, κ0 increases as F0 increases

and there is an upper-limit for κ0. By setting F0 → ∞
in Eq. (10) we can implicitly express this upper limit

of κ0 as the following equality:

ε =
ωl

exp(ωl)− 1− ωl
, (14)

where ωl = κ0L/kBT .

Fig. 5. The threshold κ0 of the tether potential in units

of kBT/L versus F0: the strength of the ratchet dragging

the motor in units of kBT/L. The upper horizontal line

denotes the value of κ0 while F0 → ∞. D1 is taken as 2

and D2 is taken as 1.

This result indicates that if the linkage strength

between cargo and motor exceeds this upper-limit of

threshold it becomes impossible for the cargo to de-

part from motor, no matter how large the ratchet

strength is. With parameters as D1 = 2 and D2 = 1

the upper-limit of κ0 is 1.90kBT/L.

Impact of F0 on the average velocity of the motor–

cargo system is determined by Eq. (9). For the sake

of simplicity, we just consider the situation where κ

is above the upper-limit of κ0, which is determined

by Eq. (14). The average velocity of the motor–cargo

system increases with F0 while there is an upper-limit

for it. We can derive from Eq. (9) the upper limit

value of transport speed:

lim
F0→∞

v =
D2

L

D1ωl[exp(ωl) + exp(−ωl)− 2]

2D2ωl[exp(−ωl)− 1 + ωl][exp(ωl)− 1− ωl] +D1[exp(ωl)− exp(−ωl)− 2ωl]
. (15)

This equation shows that too large ratchet strength cannot enhance the efficiency of the system significantly

any more and so is not necessary for the system’s transport.
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5. Discussions

In the previous sections the performance of the

motor–cargo transport system was checked in detail.

It was shown in our study that the diffusion coeffi-

cients of cargo and motor both play key roles in the

transport of the system. The threshold for the linkage

strength between cargo and motor depends not only

on the strength of the ratchet F0 but also on the ra-

tio of the diffusion coefficient of the cargo to that of

the motor. As the diffusion coefficient of the motor

tends to be large enough in comparison with the dif-

fusion coefficient of the cargo, the threshold tends to

be identical to the strength of the ratchet dragging the

motor. The average velocity of the motor–cargo sys-

tem increases with the increasing diffusion coefficient

of the motor or that of the cargo. The transport of

the system will terminate as long as one of the two dif-

fusion coefficients trends towards zero. These results

show that the diffusion coefficients of cargo and motor

both help to accelerate their common motion in cell.

The impact of the strength of the ratchet dragging

the motor on the transport system was also studied in

this article. The threshold for the linkage strength

between cargo and motor increases as the strength

of the ratchet dragging the motor increases, and an

upper-limit for it was revealed. This result makes

sense in that if the linkage strength between cargo

and motor exceeds this upper-limit of threshold the

cargo–motor system will never collapse, no matter how

large the ratchet strength is. The average velocity of

the motor–cargo system increases as the strength of

the ratchet dragging the motor becomes larger. How-

ever, in the situation that the linkage strength between

cargo and motor is lower than the maximum (as the

ratchet strength tends to infinity) of the threshold the

common speed of the system may not exist, since the

cargo will depart from the motor and the system col-

lapses when the ratchet strength gets large enough.

On the other hand, for the linkage strength greater

than the maximum threshold there is also an upper-

limit for the average velocity as the ratchet strength

tends to infinity.

6. Conclusions

With a proposal that the tether between the cargo

and motor acts as a linear symmetric potential, and

together with a simplification of the problem, an an-

alytical solution for the molecular transport system

was easily obtained. By contrast, for Elston and Pe-

skin’s model[14] they only got analytical solutions for

three limiting cases, i.e. large motor diffusion coeffi-

cient limit, stiff-spring limit and soft-spring limit. It

turns out that the average velocity of transport in-

creases as the intensity of linear symmetric potential

between the cargo and motor increases and there is an

upper limit of the velocity. A threshold for the linkage

strength between cargo and motor was revealed in our

model, which makes our model physically more rea-

sonable in comparison with the spring model reported

by Elston and Peskin et al.[14] Only when the linkage

stiffness exceeds the threshold can the cargo keep up

with the movement of the motor. Otherwise, the cargo

will be dissociated from the motor and diffuse freely

in the cell. Generally, the threshold is smaller than

the strength of the ratchet dragging the motor but

when the diffusion coefficient tends to be infinite, the

threshold is identical with the strength of the ratchet

dragging the motor. However, in Elston and Peskin’s

model, there is no threshold for the stiffness of the

spring linking the cargo and motor and the cargo al-

ways keeps up with the motor. Obviously, it is not

physically reasonable in reality, in which a too soft

linkage should not be capable of dragging the cargo.

Introducing the above threshold in our model erased

this pitfall.

The explanation of such a difference between our

model and the spring model is as follows. For a spring

connecting the motor and the cargo, the minimum

force required for the cargo to keep up with the motor

can always be achieved by stretching their distance.

However, in our model such a mechanism does not

exist, since the force produced by the symmetric lin-

ear potential is constant, independent of the distance

between the motor and the cargo.
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