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In this study, an interval fixed-mix stochastic programming (IFSP) model is developed for greenhouse gas
(GHG) emissions reduction management under uncertainties. In the IFSP model, methods of interval-
parameter programming (IPP) and fixed-mix stochastic programming (FSP) are introduced into an
integer programming framework, such that the developed model can tackle uncertainties described in
terms of interval values and probability distributions over a multi-stage context. Moreover, it can reflect
dynamic decisions for facility-capacity expansion during the planning horizon. The developed model is
applied to a case of planning GHG-emission mitigation, demonstrating that IFSP is applicable to
reflecting complexities of multi-uncertainty, dynamic and interactive energy management systems, and
capable of addressing the problem of GHG-emission reduction. A number of scenarios corresponding to
different GHG-emission mitigation levels are examined; the results suggest that reasonable solutions
have been generated. They can be used for generating plans for energy resource/electricity allocation and
capacity expansion and help decision makers identify desired GHG mitigation policies under various
economic costs and environmental requirements.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Currently, climate change isoneof thehot topics inmakingenergy
and environmental policies, and it makes a global challenge with
serious consequences for social and economic infrastructures as well
as natural systems. A number of researchworks demonstrate that an
increase in greenhouse gas (GHG) (e.g. carbon dioxide, methane,
fluorine chlorination carbon, nitrous oxide, and ozone) concentra-
tions in the terrestrial atmosphere that discharged by human activi-
ties induce global warming [1e4]. Most CO2 emissions are emitted
mainly fromburning fossil fuels such as coal, oil and natural gas [5]. A
number of impact factors, such as population growth, global
economic development, rapid urbanization and industrialization,
energy demand increase, lead to an increasing consumption of fossil
fuels. This would inevitably result in conflicts among economic
.
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objective, energy demand/supply, and environmental requirement.
Therefore, effective energy systems planning method with GHG-
emission mitigation is desired.

Previously, many deterministic models for GHG management in
planning energy systems were developed [6e11]. For example,
Kwaczek et al. [12] presented an optimization model for under-
standingeconomic impacts of various emission-reduction strategies
on energy activities in Saskatchewan, Canada. Sailor [13] conducted
an integrated assessment of climate change impacts on renewable
energy supply and demand technologies at many locations. Zhang
et al. [14] scrutinized relationships between global warming and
structural shift in the power-generation sector in southChina. Unger
and Ekvall [15] used MARKAL (MARK et Allocation Model) for
exploring CO2-abatement costs under bilateral trades of electricity,
natural gas and emission-permits among Nordic countries. Chinese
et al. [16] developed an optimization model to assess technical and
economic feasibilities of renewable energy utilizations and thus to
minimize GHG emissions in a region. Klaassen and Riahi [17]
employed the long-term MESSAGE (Model for Energy Supply
Strategy Alternatives and their General Environmental Impact) to
analyze energy planning and climate change response. Chung et al.
[18] used a hybrid E-IO (Energy top-down approach) table with
higher classification sector resolution to determine the intensities of
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energy use and GHG emission in Korea. However, the abovemodels
could only reflect the relationships of various energy activities (e.g.
demand and supply) and GHG emissions under deterministic
conditions. In fact, energy system is complicated with various
uncertain factors associated with economic and technique param-
eters as well as dynamics of facility expansion related to issues of
timing, sizing and siting. Moreover, many processes are linked to
energy system management, such as exploration/exploitation,
conversion/processing, and supply/demand of energy resources. In
addition, energy system planning is highly convoluted, involving
a large number of social, economic, environmental, technical, and
political factors, coupled with complex temporal and spatial vari-
abilities and cascading effects. All of these processes and factors are
associated with uncertainties and complexities, which are difficult
to be handled by decision makers without considerable expertise
[19]. Such uncertainties and complexities could not effectively be
addressed in the previous deterministic models. Therefore, it is
desired to develop more robust methods to deal with these uncer-
tainties and complexities in energy systems.

As a result, many inexact optimization methods were developed
for energy systems planning; their results could effectively provide
desired decision alternatives under various uncertainties [20e26].
For instance, Loulou and Kanudia [27,28] analyzed marginal costs
associated with GHGmitigation in provinces of Ontario, Quebec, and
Alberta, Canada, which might lead to transfers from fossil fuels to
renewable energy resources in these areas; they further used MAR-
KAL to compare the key results of minimax regret and minimum
expected value strategies for GHG abatement in the Province of
Quebec. Kanudia and R. Loulou [29] developed a multi-stage
stochastic programming strategy to create a flexible energy plan that
took into consideration climate change and economic growth factors,
whichwasa stochastic version of ExtendedMARKALmodel, andused
to study the greenhouse gas emission control in Quebec. Messner
et al. [30] introduceda stochastic versionofMESSAGE III andanalyzed
the structures of energy development strategies derived from the
deterministic and stochastic versions, where the stochastic version
deals with uncertainties concerning future investment costs by
incorporating the expectation of incurring higher costs due to these
uncertainties into the objective function. Spangardt et al. [31]
proposed a stochastic programming model for power planning and
GHG-emission reduction, where power demand was expressed as
randomvariable. Li et al. [25] advanced an interval-parameter robust
minimax-regret programmingmethod for theplanningofenergyand
environmental systems, where methods of robust programming,
interval-parameter programming (IPP), and minimax regret analysis
were incorporated within a general optimization framework to
enhance the robustness of the optimization effort. Lin andHuang [32]
developed an inexact-dynamic stochastic programming model to
plan energy systems management and GHG-emission control in the
municipality of Beijing, where techniques of mixed integer, IPP and
two-stage stochastic programming (TSP) method were incorporated
to deal with uncertainties in energy systems. Chen et al. [33] formu-
lated a two-stage inexact-stochastic programming model for CO2-
emission tradingplanning inan integratedenergyandenvironmental
management system, where IPP and TSP were integrated into
a general framework to deal with uncertainties existed as intervals
and probabilities.

Among the above approaches, TSP is an effective method for
problems where an analysis of policy scenarios is desired and the
related data are mostly uncertain; however, it cannot adequately
reflect the dynamic variations of system conditions, especially for
sequential structure of large-scale problems [34]. To deal with such
a dynamic feature, a number of multi-stage stochastic programming
(MSP) methods were developed as extensions of dynamic stochastic
optimization methods [34e36]. Fixed-mix stochastic programming
(FSP) is a MSP method, which is based on the simple decision rule of
constant rebalancing, canpermit revised decisions in each time stage
based on the uncertainty realized so far [28,37]. FSP is applicable to
large-scale practical problems over a long-term planning context.
However, few studies focused on FSPmethods for GHGmanagement.

The existing FSP methods are effective in handling probabilistic
uncertainties in the model’s right-hand sides which are often
related to resources availability; however they have difficulties in
dealing with independent uncertainties of the model’s left-hand
sides and cost coefficients. Interval-parameter programming (IPP)
is an alternative for handling uncertainties in the model’s left-
and/or right-hand sides as well as those that cannot be quantified
as membership or distribution functions, since interval numbers
are acceptable as its uncertain inputs [38]. Previously, a number of
inexact optimization methods based on the IPP approach were
developed for dealing with uncertainties presented as intervals,
fuzzy sets and/or random variables [21,34,39,40]. Nevertheless, no
previous studies were focused on development of interval fixed-
mix stochastic programming (IFSP) method through integrating IPP
and FSP into a general framework for GHG-emission management
in energy systems.

Therefore, the objective of this study is to develop an interval
fixed-mix stochastic programming method (IFSP) for greenhouse
gas (GHG) mitigation in energy systems under uncertainty. This is
the first attempt that interval-parameter programming (IPP) and
fixed-mix stochastic programming (FSP) methods are integrated
into a general framework to manage GHG emissions under uncer-
tainties presented as interval values and probabilities within
a multi-stage context. A case study will then be provided for
demonstrating how the IFSP method will support energy and
environmental management systems planning under uncertainty.
Furthermore, it will be shown how it can be used to mitigate GHG
emissions in the energysystems, aswell asdeterminewhichof these
designs canmost efficiently lead to the optimized systemobjectives.

2. Model development

A typical energy system often contains various components such
as energy supply/demand, processing and transformation technol-
ogies, andelectricitygeneration. These components are related to an
array of economic activities and energy-consumption behaviors.
Energy supply options are typically classified as fossil- or renewable
resources. Each of the resources has its own subsectors representing
the characteristics of its related technologies. Fossil resources
include coal, crude oil and natural gas; renewable resources usually
include biomass, hydro, solar, geothermal and wind energy. When
the supplyofmined resources and renewable resources cannotmeet
the end-user demand, import becomes necessary. When the
productions are greater than domestic demands and exporting is
profitable, export becomes possible [10,24].

In an energy system, technologies are utilized to deal with
supply- and demand-side options. On the supply side, only a small
group of energy resources can be used directly; a large number of
energy resources needs to be converted or processed before it can
be utilized by consumers or technologies. Processing technologies
are used to transform energy resources into usable forms of
energy carriers; for example, crude oil is converted into gasoline,
diesel, alcohol, etc. With respect to demand-side technologies, all
energy carriers including electricity can be used by end-users with
various devices. Since different technologies have different char-
acteristics regarding energy efficiency, GHG emission, capital
investment and operation/maintenance cost, they compete against
each other to provide a mixture of options to decision makers.
Electricity is an important component in the energy system. It can
be used not only to satisfy end-use demands but also to drive
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other technologies. A large amount of electricity is generated from
fossil resources such as coal, and natural gas; nuclear power is
a popular alternative to provide electricity with large-scale
capacity in many energy systems; and electricity generations from
renewable sources are encouraged because they are much more
sustainable and cleaner in comparison with fossil resources.
Among the options based on renewable resources, hydropower
has been developed extensively in the past decades, and instal-
lations of wind, solar, and biomass power facilities are still at high
costs. This leads to limited utilization of renewable resources other
than hydro energy [19,32].

Consider an energy systemwherein a manager is responsible for
allocating energy flows to multiple users over a multi-period
planning horizon. The decisionmaker can formulate the problem as
minimizing the expected cost of various energy activities in the
region over the planning horizon. Moreover, decision makers
always seek to control the emissions of environmental pollutants
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Fixed-mix stochastic programming (FSP) method is useful for
dealing with the complexities and uncertainties. FSP is a static
approach based on MSP technique, and determined by a matrix pth,
t ¼ 1,2,3, ..T; h ¼ 1,2,3,.H (“t” denotes “period”, and “h” denotes
“scenario”), with pth > 0 and

PH
h¼1 pth ¼ 1. FSP prescribes that

each scenario in each time period would correspond to a fixed
probability level pth. The dynamics of the strategic decision are
given by pth ¼ pt�1,h and lt ¼ PH

h¼1 pth$lth. A strategy l is called
a fixed-mix strategy associatedwith thematrix p¼ pth [37,41]. Fig. 2
shows the structure of FSP, where uncertainties are allowed to be
described in terms of outcome streams or scenarios, the nodes
represent decisions, while the arcs are for realizations of the
uncertain variables. “L”, “M” and “H” denote the scenarios with
a fixed low, medium, and high probability levels, respectively. Each
scenario would correspond to a fixed probability level pth in each
time period (e.g. L - L - L -. - L), and the sum of low, medium, and
high probability in each time period is 1. Although FSP is incapable
of exploiting the foresight as implied in the second stage and the
later, this method has advantages in reflecting uncertainties for
large-scale problems with a long planning period.

In addition, in real-world energy and environmental manage-
ment problems, many uncertainties presented as different formats
may exist. For example, it may often be difficult for a planner to
promise a deterministic target to end-users when the available
energy resources and/or demands are uncertain. The economic
data (i.e. benefit and cost) conversion efficiency, and produce
capacities may not be available as deterministic values. Based on
the above considerations, interval-parameter programming (IPP)
can be introduced into the FSP framework to reflect multiple
uncertainties. IPP is useful for handling interval format uncer-
tainties in both the left- and right-hand sides of the constraints as
well as the coefficients in the objective function [39]. On the other
hand, from a long-term planning point of view, energy demands
from multiple end-users may keep increasing due to population
increases and economic development. Moreover, the available
capacities of energy-generation facilities may also vary among
different time periods. This tendency could often result in insuffi-
cient capacities of energy-generation facilities to meet the overall
demand. Consequently, capacity expansion for energy-generation
facilities is a crucial issue in energy systems planning, where
a related optimization analysis will typically require the use of
integer variables to indicate whether a particular facility develop-
ment or expansion option needs to be undertaken. 0e1 integer
programming is used to tackle facility expansion issues. Therefore,
through incorporating IPP and FSP techniques within an 0e1
integer programming framework, an interval fixed-mix stochastic
programming (IFSP) model for planning energy systems with GHG-
emission mitigation consideration can be formulated as follows
(Model A): the objective function is to minimize the expected value
of system cost, which includes (a) cost for purchasing coal, nature
gas, crude oil, diesel and gasoline, (b) operation cost for coal-fired
power, gas-fired power, hydropower, wind power, solar power, and
L

L L L L

M M MMM

H H H HH

Period 3Period 2Period 1 Period t

Fig. 2. T-stage fixed mix approach scenario tree.
nuclear power (c) capacity expansion cost, and (d) air pollutant
mitigation cost. In the IFSP model, the decision variables can be
classified into two types: continuous and 0e1 integer variables. The
continuous variables represent energy resources allocation and
technology utilization; the 0e1 integer variables stand for the
expansion options of power conversion facilities, and each facility
may have multiple options with different expansion scales.
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where f� ¼ the net expected system cost (million dollar); Z�it ¼ the
supplyofenergy resource i inperiod t (PJ),where i¼ 1 forcoal, i¼ 2 for
natural gas, i¼ 3 for crude oil, i¼ 4 for gasoline, i¼ 5 for diesel, i¼ 6
for imported power; PES�it ¼ the supply cost of energy sources i in
period t ($million/PJ);PV�

kt ¼ thevariable cost forelectricitygenerated
by technology k inperiod t ($million/GWh),where k¼ 1 for coal-fired
power, k¼ 2 for natural gas-fired power, k¼ 3 for hydropower, k¼ 4
for wind power, k¼ 5 for solar power, k¼ 6 for nuclear power;-
PP�kt ¼ penalty cost of excess electricity generated by technology k in
period t ($million/GWh); W�

kt ¼ allowable power generation by
technology k during period t; Q�

kth ¼ excess power generation by
technology k in scenario h during period t; pth ¼ probability of
occurrence for scenario h in period t; PVR�krt ¼ variable cost for heat
supply technology kr in period t ($million/GWh), where kr¼ 1 for
coal-fired boiler heat, kr¼ 2 for gas-fired boiler heat; RZ�krt ¼ heat
supply from technology kr in period t (PJ); Y�

ktmh ¼ binary variable for
technology kwith expansion optionm in scenario h during period t;
ECkmt ¼ capacity expansion size option m for power generation
technology k in period t (GW); ICkmt ¼ capacity cost of capacity
expansion size m for power generation technology k in period t
($Million/GW);PT�rkt ¼ the emission intensity of pollutant r from
powergeneration technologyk inperiod t (kiloton/GWh),where r¼ 1
for sulfur dioxide, r¼ 2 for nitrogen oxides, r¼ 3 for particulate
matter; CT�rkt ¼ the removal cost of pollutant r frompower generation
technology k in period t (dollar/kiloton).
2.1. Mass balance constraints

The mass balance constraints describe the balance of energy
flows in an energy system. They can be classified into three groups:
(1) balance for energy resource (6), (2) balance for electricity
generation (7), (8) and (9), and (3) balance for heat generation (10).
These constraints are established to ensure that the input energy is
greater than the output one.

FE�kt$
�
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�
þ

XS
s¼1

D�
ist � Z�it ;ct; h; i (6)
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2.2. Capacity constraints of technologies

For an individual technology, it is assumed that its output or
production should be less than the amount that total installed
capacity can provide. If this requirement is not satisfied, invest-
ments will be made for additional capacities.
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2.3. Environmental constraints

For an energy system planning, it is assumed that environ-
mental requirement should be considered as an important
constraint. Eq. (13) is the constraint of pollutants emission of power
generation technologies; Eq. (14) is the constraint of GHG emission
of the energy system.
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where FE�kt ¼ the conversion efficiency of power generation tech-
nology k in period t (PJ/GW); D�

ist ¼ the demand of energy resource i
in sector s during period t; ZIE�t ¼ import electricity supply in period
t (GWh);DTE�th ¼ electricity demand in scenario h during period t
(GWh);ST�kt ¼ the working hours of power generation technology k
in period t (hour); RCk ¼ residual capacity of power generation
technology k (GW); h�krt ¼ the proportion of heat supply from tech-
nology kr account for the total in period t;DTR�t ¼ heat demand
during period t (PJ); bkrt ¼ the efficiency of heat supply from tech-
nology kr in period t; h�krt ¼ the removal efficiency of pollutant r from
power generation technology k;EP�rt ¼ the total allowable emissions
of pollutant r in period t (kiloton); INT�s ¼ CO2 emission intensity of
sector s (kiloton/PJ); COT�kt ¼ CO2 emission intensity of power
generation technology k in period t (kiloton/GWh);EC�

th ¼ the total
allowable CO2 emissions in scenario h during period t (kiloton).

In the IFSP model, when the allowable amount of power
generation ðW�

ktÞ are known, model A can be transformed into two
sets of deterministic submodels, which correspond to the upper
and lower bounds of the desired objective-function value. This
transformation process is based on an interactive algorithm, which
is different from normal interval analysis and best/worst case
analysis, and the existing methods for solving inexact linear
programming problems cannot be used directly [17,21]. In this
study, an optimized set of target values will be identified by having
ukt being decision variables; this optimized set will correspond to
minimized system cost under the uncertain electricity demands
and supplies. Accordingly, let W�

kt ¼ W�
kt þ DWktukt , where

DWkt ¼ Wþ
kt �W�

kt and ukt ˛ [0, 1]. ukt are decision variables that
are used for identifying an optimized set of target values ðW�

ktÞ in
order to support the related policy analyses. For example, whenW�

kt
approach their upper bounds (i.e., when ukt ¼ 1), a relatively low
cost would be obtained if the electricity demands are satisfied;
a low penalty may have to be paid when the promised electricity is
delivered. Conversely, when W�

kt reach their lower bounds (i.e.,
when ukt ¼ 0), we may have a high cost and a higher risk of
violating the promised targets. Therefore, by introducing decision
variables ukt, and according to Huang and Loucks [42], the model
can be transformed into two deterministic submodels based on an
interactive algorithm. Since the objective is to minimize the net
system cost, the submodel corresponding to lower-bound objective
function value (f�) is first desired, where the lower bounds of cost
coefficients and energy demands will correspond to f�. Thus, we
have (Model B):
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where Q�
kth, Z

�
it , ukt, and RZ�krtare continuous decision variables, and

Y�
kthm are binary ones. Solution for f� provides the extreme lower

bound of system cost under uncertain inputs. Then, the optimized
electricity targets would be Wktopt ¼W�

ktþDWktukt opt . Conse-
quently, the submodel (Model C) corresponding to the upper bound
of the objective function value (i.e.,fþ) is:
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kt � ECþ
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Zþit � Z�it opt;ci; t (45)

Qþ
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RZþkrt � RZþkrt opt;ct; kr (47)

Yþ
ktmh � Y�

ktmh opt;ck; t;m; h (48)

where Qþ
kth, Z

þ
it and RZþkrt are continuous variables, and Yþ

kthm are
binary ones; Z�it optQ

�
kth optRZ

þ
krt opt

, and Y�
ktmh opt are solutions of the

first submodels. Thus, the solutions for model under the optimized
targets can obtain through incorporating the solutions of the two
submodels.”
3. Case study

The following GHG-emission management problem in energy
systems is used to demonstrate the applicability of the developed
IFSPmodel. In this study system, a decisionmaker is responsible for
allocating energy resources/services from multiple facilities to
multiple end-users through multiple technologies within a multi-
period horizon based on different GHG-emission levels. Based on
different GHG-emission mitigation levels (e.g., 0%, 20%, 40%, 60%
and 80% of total GHG emissions), managers are considering
expected energy and electricity demand to optimize fossil fuel
production, manage power generation, and plan the facility
expansion. Generally, increasing energy demand can be met
through capacity expansion, fuel exploitation, and energy import.
However, sustainable development cannot be achieved due to the
ever-increasing economic and environmental costs as well as
unlimited energy expansion and exploitation. Therefore, the
problem under consideration is how to incorporate different GHG
mitigation targets into energy system planning.

In the study system, nine planning periods are considered, with
each one being five years. Multiple energy resources/technologies
need to be allocated to multiple end users (agricultural, trans-
portation, industrial, and municipal/commercial sectors). Conven-
tional energy resources (e.g., coal, diesel, gasoline, crude oil, natural
gas) with limited availabilities are employed formeeting the energy
demands. In detail, coal is used for power generation,municipal and
industrial heat production, agriculture/industry and commercial
sectors. Diesel and gasoline are mainly used for transportation
activities. Natural gas is used for power generation, municipal and
industrial heat production. Renewable energy resources (e.g., solar,
wind, nuclear power and hydropower) are mainly employed for
power generation. The energy demands of the 5 end users are
affected by many uncertainty factors (e.g., the growing population,
energy-consumption rate, and related costs); all of those factorswill
lead to the uncertainties of the energy demands. Furthermore, these
uncertainties are complicated by a variety of imprecise information
such as socio-economic, environmental and geographic conditions,
and energy carrier characteristics. They can hardly be available as
deterministic data, which can be expressed as intervals or distri-
bution information. Once these energy sources are determined,
costs, efficiencies and capacities of corresponding technologies can
be defined.

Under different GHG-mitigation levels, decision-makers are
responsible for (i) assigning power load to six conversion tech-
nologies (including coal-fired power, gas-fired power, hydropower,
wind power, solar power, and nuclear power), and heat load to two
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conversion technologies (including coal boiler heating technology
and nature-gas boiler technology); (ii) planning the capacity
expansion of electricity generation; (iii) managing the producing
quantities of fossil fuels (including coal, nature gas, crude oil, diesel
and gasoline). If energy supply cannot sufficiently meet end-user
demands, decision-makers will face a dilemma of either investing
more funds on capacity expansion of existing facilities or turning to
other energy production options with higher costs.

In this study, GHG is considered as the typical gaseous emission
generated from the power conversion, agricultural, trans-
portation, industrial, and municipal/commercial sectors; based on
the GHG emission intensity and specific demand by fuel of these
sectors, the total amount of GHG emission is calculated. The fuel
demand of the five sectors has been predicted in each period,
whether or not consider GHG-emission reduction, the fuel supply
of the end-use sectors would be determined to meet the fuel
demand. Therefore, under the scenarios of GHG-emission reduc-
tion, six power generation processes are chosen to decarbonize in
the energy system. Meanwhile, GHG emission intensity of these
sectors are affected by many uncertain factors (e.g., GHG emission
inventory, control measures, related costs), which can be
expressed as intervals without distribution information. Avail-
abilities of electricity demand are directly affected by natural
fluctuations, which can be presented as probability distributions.
Most of the other parameters (such as energy demand, techno-
logical efficiency and utilization factors) are expressed as intervals.
Table 1 presents the available electricity demands under different
probability distributions. The related economic data are shown in
Table 2. Table 3 lists GHG emission intensity of the sectors. All of
the three tables are shown in Appendix. Besides, coal-fired power
has a residual capacity of 1.0 GW, natural gas-fired power has
Fig. 3. Results of energy suppl
a residual capacity of 0.28 GW, hydropower has a residual capacity
of 0.26 GW. The representative costs and technical data are
investigated based on governmental reports and other related
literature [21,24,43e52].

4. Results and discussion

The objective of the IFSP model is to minimize the expected
value of the costs under different GHG mitigation levels over the
planning horizon. Solutions provide an effective linkage between
the predefined environmental policies and the associated economic
implications (e.g., losses and penalties caused by improper poli-
cies). The solutions contain a combination of deterministic, interval
and distributional information, and can thus facilitate the reflection
for different forms of uncertainties [34]. The interval solutions can
help managers obtain multiple decision alternatives, as well as
provide bases for further analyses of tradeoffs between energy
management cost and GHG-emission reduction; the binary-vari-
able solutions represent the decisions of facility expansion, where
several alternatives are generated; the continuous variable solu-
tions are related to decisions of electricity generation and energy
resources supply.

4.1. Solutions without considering GHG-emission reduction

This case is proposed as a reference one to show the pattern of
resource production and system development without constraints
on GHG emissions reduction (i.e. 0% GHG-emission reduction).

Fig. 3 shows the results of energy supply schemes under this
case. Coal would be the largest energy source among all energy
supplies during the planning periods. Because coal demands
y without GHG emissions.
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fluctuate and coal-fired power generations change, coal supply
would fluctuate over the planning horizon, for example, the upper
bound would increase from 817.9 PJ in period 1 to 847.3 PJ in
period 2, and then decrease from 754.9 PJ in period 3 to 541.9 PJ in
period 9. Natural gas needs would increase from [191.7, 284.3] PJ in
period 1 to [548.5, 693.1] PJ in period 5, and then decrease to
[445.4, 573.6] PJ in period 9. A significant portion of coal and
natural gas are directly used by commercial, industry and
municipal sectors, which would be used for electricity generation.
Diesel and gasoline would mainly be used for transportation.
Along with clean fuels use increase in transportation, diesel and
gasoline supplies show a downward trend. Diesel supply would
decrease from [56.5, 76.5] PJ in period 1 to [20.2, 40.2] PJ in period
9, and gasoline demand would decrease from [61.2, 81.2] PJ in
period 1 to [42.9, 62.9] PJ in period 9. Crude oil is refined into
gasoline, diesel fuel, gasoline, liquid petroleum gas, propane,
ethanol and many other products. Due to diesel and gasoline
supplies with a downward trend, the amount of crude oil supply
Fig. 4. Amount of power generation without GHG-emission reduction. [(a) low electri
“NFP”,“HP”,“WP”,“SP” and “NP” denote “coal-fired power”, “gas-fired power”, “hydropower
would be reduced from [148.6, 213.6] PJ in period 1 to [101.7,163.6]
PJ in period 9. The heat from coal and natural gas-fired facilities
would vary in meeting the increasing residential and commercial
heating demands. The coal-fired heat production would fluctuate
during the planning horizon, and would always have an advantage
over gas-fire one, increasing from [6.9, 8.8] PJ in period 1to [22.4,
24.6] PJ in period 9.

As a part of intermediate energy conversion, the electricity
generation technologies include coal-fired power, natural gas-fired
power, hydropower, wind power, solar power, and nuclear power.
Fig. 4 shows that electricity productionwould increase steadily over
the planning horizon, which would increase from [70.8, 80]�
103GWh to [154,165]� 103GWh. The amount of power load is given
in Table 1, which is same as the trend of power increase as shown in
Fig. 3. The major power generation technologies include coal-fired
power, gas-fired power, hydropower, and nuclear power. The pre-
regulated electricity generated bycoal-fired power, gas-fired power,
and hydropower conversion technologies would increase, and
city demand, (b) medium electricity demand, (c) high electricity demand] (“CFP”,
, “wind power”, “solar power” and “nuclear power”, respectively.)
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electricity would be generated primarily by coal-fired facilities. The
pre-regulated coal-fired power generationwould bedecreased from
50.00�103 GWh in period 1 to 30.00�103 GWh in period 9. For the
nature gas-fired power, its pre-regulated targetswould be increased
from9.75�103 GWh in period 1 to 43.92�103 GWh in period 9. For
the hydropower, its pre-regulated targets would be 7.50�103 GWh
in period 1, 7.70�103 GWh in periods 2 to 6, 10.00�103 GWh in
period 7, and 10.45�103 GWh in periods 8 and 9. The pre-regulated
nuclear power targetswould be increased from0 in periods 1 to 5 to
3.10�103 GWh from period 9. The pre-regulated wind and solar
power targets would both be zero over the planning horizon. If the
electricity targets cannot meet the random demand, excess elec-
tricity have to be produced under different demand levels. The
excess generation quantities of every power conversion technology
would be different from those under the scenario of 0% GHG-emis-
sion reduction as shown in Fig. 4. In case of insufficient electricity
supply, coal-fired power would be vital important as the recourse
Fig. 5. Capacity of various power generation technologies without GHG emissions reductio
demand].
action to compensate the deficits over the planning horizon, while
the other power conversion technologies would only be supple-
ments. In addition, as the level of electricity demand growth, excess
electricity generated by coal-fired power technologies would
increase. For example, in period 1, the total electricity generated
from coal-fired power facility would be 50.00 � 103 and [56.25,
62.65]� 103 GWh under low and high power demand levels,
respectively; excess electricity generated by coal-fired power tech-
nologies would be 0 GWh under low demand [Fig. 4(a)], and [6.25,
12.65]� 103 GWh under high demand [Fig. 4(c)].

Fig. 5 displays the solutions of capacity expansion schemes of
each conversion technology under the scenario of 0% GHG-emis-
sion reduction in the whole planning horizon. Generally, short-
ages would occur if the electricity demand levels are continuously
high, and a capacity expansion project would be undertaken to
avoid insufficient electricity supply. Under the low demand level,
coal-fired power conversion technology would be expanded with
n. [(a) low electricity demand, (b) medium electricity demand, and (c) high electricity
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0.1 GW in periods 6 and 7; installed capacity of gas-fired power
would be maintained at 1.22 GWover the planning horizon. Under
the medium demand level, coal-fired power facilities would be
expanded from [1.70, 1.80] GW in period 5 to [2.60, 2.70] GW in
period 9; and the capacity of nature gas-fired power would be
expanded from 1.47 GW in period 5 to 2.87 GW in period 9. Under
the high demand level, more capacities for electricity generation
would be required to meet the increased energy demand, espe-
cially for coal-fired power and hydropower generation technolo-
gies. For example, in period 9, the hydropower capacity would
increase to 3.78 GW, while the capacities of coal-fired and gas-
fired power would respectively reach to [3.30, 3.70] and 2.97 GW.
It indicates that as the level of power demand growth, the capacity
of coal-fired and gas-fired power generation technologies would
be expanded more than other technologies, because of low
operating and penalty costs, and low capital cost for capacity
expansion.

GHG emissions associated with energy-related activities can be
categorized into electricity generation, agriculture, residential,
commercial, industrial, and transportation sectors. Fig. 6 presents
the detailed solutions of GHG emissions by sectors and electricity
generation technologies in a 45-year horizon. Different energy
resources would be supplied to the five sectors to meet their
demands; the amount of GHG emissions would be related to energy
activities. Among all the five sectors (agriculture, residential,
commercial, industrial, and transportation), the order of GHG
emissions from highest to lowest is transportation, agriculture,
industry, residential, and commercial. For example, in period 1, the
amount of GHG-emission from transportation, agriculture,
Fig. 6. Amount of GHG emissions in different sec
industry, residential, and commercial would be [2272.8, 3202.8],
[1740.0, 2640], [1047.4, 1587.4], [909.4, 1169.4], and [277.8, 592.8]
kilotons. The coal-fired power generation technologies would be
the largest GHG emission source in the whole planning horizon,
and GHG emissions of coal-fired power generation technologies are
twice more than natural gas-fired power generation technologies.
For example, the largest amount of GHG emissions generated by
coal-fired power generation technologies would be [54000.0,
67545.0] kilotons in period 6; and [24018.5, 35292.0] kilotons
generated by natural gas-fired power generation technologies in
period 6. The total GHG emissions are shown in Fig. 7. It indicates
that as the power demand growth during the whole planning
horizon, the total amount of GHG emissions would increase from
period 1 to 9. Energy system planning with GHGmitigation is based
on the total amount of GHG emissions to calculate GHG-emission
reduction.

4.2. Solutions under GHG-emission reduction

In this study, four scenarios of GHG-emission reduction are
considered (i.e. 20%, 40%, 60%, and 80% of total GHG-emission
reduction). The results indicate that increased substantive capacity
expansion investment for clean energy (to reduce GHG emissions)
could lead to an increased system cost. In this study, coal and
natural gas would be supplied based on the results of the scenario
of 0% GHG-emission reduction; this is to guarantee the security of
energy supplies under uncertainty. Fig. 8 shows coal supply under
the different GHG-emission reductions. Compared with the result
without considering GHG-emission reduction, the amount of coal
tors and electricity generation technologies.



Fig. 7. Amount of GHG emission under different electricity generation technologies.
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would be largely decreased, and there would be a significant vari-
ation of coal supply. For example, coal supplies would be [647.8,
817.9] PJ under 0% GHG-emission reduction and [12.2, 22.2] PJ
under 80% GHG emissions reduction in period 1. This is because,
with GHG-emission reduction increasing, strict environmental
policies for GHG mitigation management would be adopted. Thus,
electricity generated from coal-fired power conversion technolo-
gies would significantly decrease. Fig. 9 shows nature-gas supply
under different scenarios of GHG-emission reduction. Natural gas
supply under scenarios of 20% and 40% GHG-emission reduction
would increase insignificantly, compared to that under 0% GHG-
Fig. 8. Coal supply patterns under different GHG reduction scenarios. (“20%”, “40%”, “60%”
40% GHG emissions reduction”, “scenario under 60% GHG emissions reduction and “scenar
emission reduction condition. Conversely, under the scenarios of
60% and 80% GHG-emission reduction, the natural gas would
decrease with GHG-emission reduction increasing. For example, in
period 5, natural gas supply would be [548.5, 693.1] PJ under 0%
GHG-emission reduction, [548.9, 693.1] PJ under 40% GHG-emis-
sion reduction, and [206.3, 329.6] PJ under 80% GHG-emission
reduction. Compared the two energy resources’ supplies under
GHG mitigation condition in each period, natural gas supplies
would be greater than coal supplies. Therefore, it recommends that
natural gas is more popular than coal in considering the case of
GHG-emission reduction. This is because the totaling amount of
and “80%” denote the “scenario under 20% GHG emissions reduction”, “scenario under
io under 80% GHG emissions reduction”, respectively).



Fig. 9. Nature gas supply patterns under different GHG reduction scenarios.
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GHG emissions would be confined with a certain level during the
planning periods, while coal-fired power conversion technology
corresponds to a higher GHG-emission rate, compared with natural
gas-fired conversion technologies. Crude oil is refined into gasoline,
diesel fuel, gasoline, liquid petroleum gas, propane, ethanol and
many other products to meet the energy demand from agricultural,
transportation, industrial, and municipal/commercial sectors.
Under different GHG-emission reduction level, the energy demand
of the five sectors is not changed in each period, and the objective
of themodel A is tominimize the system cost, therefore, whether or
not consider the GHG-emission reduction, the amount of crude oil
is only to meet the demand of the sectors, and not increase or
decrease with GHG-emission reduction increasing in each period.
Along with clean fuels use increase in transportation, diesel and
gasoline supplies show a downward trend, the amount of crude oil
supply would be reduced from [148.6, 213.6] PJ in period 1 to [101.7,
163.6] PJ in period 9 under different level of GHG-emission
reduction.

Fig. 10 shows the results for power generation under 60% GHG-
emission reduction. Coal-fired electricity would no longer be cost-
effective option under this scenario. Natural gas-fired power,
hydropower, and nuclear power technologies are the main way to
generate power. Coal-fired power facilities would be only used in
period 1, 2 and 9, solar power facilities would be operated in period
1to 5, and power generations of the two technologies are smaller
than other power generation modes. Moreover, the pre-regulated
targets for coal-fired power, wind power, and solar power would be
different from those under 0% GHG-emission reduction condition.
Under 60% GHG-emission reduction, the pre-regulated coal-fired
power generation would decrease, being 5.34, 2.11, 0.07, and
2.53�103 GWh in periods 1, 2, 8, and 9, and 0 in the rest periods.
Wind power technologies would be operated, being
1.60�103 GWh in period 1 and 0.80�103 GWh in periods 2 to 4;
solar power would be adopted in periods 1 to 5, being
3.20�103 GWh in each period. The excess power generationwould
increase with demand level increasing. For example, under the low
demand level, the pre-regulated power generation can meet the
power demands [Fig. 10(a)]; under high demand level, the excess
gas-fired power generation would increase from 10.00�103 GWh
in period 1 to [15.87, 20.00]� 103 GWh in period 3, then increase
from [6.42, 19.58]� 103 GWh in period 4 to [10.96, 15.96]�
103 GWh in period 6, and decrease from [0, 14.65]� 103 GWh in
period 7 to [21.19, 26.45]� 103 GWh in period 9; the excess
hydropower and solar power generation would be the same as the
pre-regulated power generation in each period [Fig. 10(c)].

Fig. 11 shows the facility expansion schemes under different
power demand levels. Under GHG-emission mitigation conditions,
the capacity of coal-fired power would be maintained at 1.5 GW
without expansion in the low, medium and high power demand
level. Through comparing Fig. 11(a), (b), (c), it is indicated that the
expansion capacities for the traditional power conversion tech-
nologies (e.g., coal-fired power and gas-fired power) would be
decreased. The nature gas-fired power technologies would not be
expanded and maintained at 1.22 GW under the low level of power
demand, and expanded in the condition of medium and high power
demand levels. For example, in the scenario of 60% GHG-emission



Fig. 10. Amount of power generation with 60% GHG reduction. [(a) low electricity demand, (b) medium electricity demand, and (c) high electricity demand].
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reduction, the capacity of nature gas-fired power technologies
would be expanded in periods 6 to 9 with medium power demand,
being [1.22, 1.37] GW in each period, and enlarged from [1.22, 1.37]
GW in period 5 to [1.52, 1.67] GW in period 9 with high power
demand. Correspondingly, more renewable power conversion
technologies (e.g., hydropower, wind power, solar power, and
nuclear power) would be expanded over the planning horizon,
especially when the demand levels and GHG-emission reduction
requirement are both high. For example, under the condition of low
power demand level and 20% GHG-emission reduction, hydro-
powerwould be expanded in each period, from 0.28 GW in period 1
to 0.98 GW in period 9 [Fig. 11(a)]; under the condition of high
power demand level and 80% GHG-emission reduction, it would be
from 0.55 GW in period 1 to 4.38 GW in period 9 [Fig. 11(c)].
4.3. Discussion

Compared the various power generation technologies’ contri-
bution to the medium electricity demand, it indicates that
different power conversion technologies have varied generation
quantities under changed GHG-emission reduction scenarios. As
the previous section analysis, coal-fired power would be the most
important electricity supply source under 0% GHG-emission
reduction. Gas-fired power conversion technology would play the
most important part in the electricity generation activities, coal-
fired power would be the secondary important electricity supply
source, while hydropower and nuclear power would be the
supplement under 20% GHG-emission reduction. This is because
coal-fired power conversion technology has relatively low



Fig. 11. Facility expansion schemes under different GHG reduction scenarios. [(a) low electricity demand, (b) medium electricity demand, and (c) high electricity demand].
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operating and penalty costs and comparatively low capital cost for
capacity expansion with higher GHG-emission, and the related
cost of gas-fired power conversion technology is slightly higher
than coal-fired power and the GHG-emission from gas-fired power
generation process is smaller than coal-fired power. The maximum
optimized hydropower generation would be 10.45�103 GWh in
periods 7 to 9; this is due to the relatively high operating cost and
capital cost for its capacity expansion, which limits the develop-
ment of hydropower. Nuclear would enhance the diversity of
power generation, and thus increase the stability and security of
the study system. The dominant role of coal-fired power would be
replaced by the other conversion technologies with an increased
requirement for GHG-emission reduction. For example, under 80%
GHG-emission reduction, the optimized target of coal-fired power
would decrease to zero in each period. Although gas-fired power
would decrease, and the optimized targets of hydropower, wind
power, nuclear power and solar power would have slight increase,
gas-fired power and the hydropower would play an important role
to meet the power demand. It is indicated that more and more
environment-friendly power conversion technologies would be
chosen for electricity generation to satisfy the ever-increasing
electricity demands and enhancing GHG-emission reduction
requirements.

Table 1 shows the imported electricity under different GHG-
emission levels. As GHG-emission reduction increasing, coal-fired
and gas-fired power would both decrease, and the optimized
targets of hydropower, wind, nuclear and solar power would have
slightly increase; this would inevitably result in increasing loss of
power supply, and capacity expansion and imported power would
be the choices to fill the power shortage in the energy system. The
total external power would be [50.9, 108.3] � 103, [238.2, 307.6]
� 103, [425.2, 488.0] � 103, [593.9, 652.6] � 103, and [803.9,
891.2]� 103 GWh under the scenarios of 0%, 20%, 40%, 60% and 80%
GHG-emission reduction, respectively. From that point, it indicates
that as one of the recourse actions to be chosen, imported elec-
tricity would not be the first selection under the scenario of 0%



Table 2
Results of energy resources supply from model A without ILP under 0% GHG
emissions.

Energy resources (PJ)

Period Coal Natural
gas

Crude
oil

Gasoline Diesel Coal-fired
boiler heat

Gas boiler
heat

t¼ 1 732.9 241.1 181.1 71.2 66.5 24.9 7.9
t¼ 2 722.4 419.3 165.7 64.2 60.2 28.0 8.8
t¼ 3 696.3 488.2 154.5 61.4 51.7 27.3 11.1
t¼ 4 712.3 537.6 152.2 60.3 50.5 29.0 12.0
t¼ 5 680.8 620.8 146.9 59.2 46.2 28.5 14.8
t¼ 6 662.4 589.2 143.1 58.1 42.0 30.0 15.8
t¼ 7 629.5 562.9 137.7 56.4 36.4 29.4 18.9
t¼ 8 576.0 529.9 133.7 55.3 31.7 30.7 19.8
t¼ 9 514.4 509.5 132.7 52.9 30.2 29.6 23.5

Table 1
Imported power under different scenarios.

Period GHG-emission reduction level (103GWh)

0% 20% 40% 60% 80%

t¼ 1 0 0 10.4 [22.6, 24.4] 39.3
t¼ 2 [0, 3.5] 9.2 [22.7, 26.1] [36.2, 53.1] [56.9, 71.9]
t¼ 3 [0, 14.5] [17.1, 21.2] [31.2, 49.4] [46.8, 62.7] [69.8, 84.6]
t¼ 4 [0, 3.5] 26.1 [38.7, 50.0] [58.3, 60.1] [79.0, 89.4]
t¼ 5 [0.6, 8.5] 30.7 [45.3, 52.2] 67.1 [91.1, 98.6]
t¼ 6 1.7 41.6 58.6 79.7 [107.6, 109.4]
t¼ 7 [5.8, 13.4] [6.2, 68.7] [75.7, 82.4] [96.9, 97.0] [118.1, 125.8]
t¼ 8 [16.4, 26.7] [56.1, 58.9] [72.5, 80.7] [93.8, 107.7] [120.6, 135.6]
t¼ 9 [26.4, 36.8] 51.2 [70.1, 78.3] [92.5, 100.7] [121.6, 136.6]
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GHG-emission reduction. As GHG-emission reduction increasing,
imported electricity would be one of the most important recourses,
especially in the scenarios of 60% and 80% GHG-emission reduction.
In addition, because of the power demand increasing in the nine
periods, whether or not consider GHG mitigation; imported power
would increase from period 1 to period 9. For example, under 80%
GHG-emission reduction, the imported electricity would increase
from 39.3 �103 GWh in period 1 to [121.6, 136.6] � 103 GWh in
period 9.

As shown in Fig. 12, the system cost would rise up along with
increasing GHG-emission reduction. Without GHG emissions reduc-
tion, the system cost would be [50259.73, 83197.44] � 106 dollar,
while the system cost would be [62693.13, 95957.44] � 106,
[71018.65, 110392.9] � 106, [80483.35, 122754.21] � 106, [92833.15,
140124.20]� 106 dollar under 20%, 40%, 60%, and 80% GHG-emission
reduction, respectively. The main reason is that considering restric-
tions on GHG emission, the traditional power generation technolo-
gies (coal-fired power and gas-fired power) would gradually be
replaced by hydropower, wind power, solar power, and nuclear
power,more andmore importedpowerwouldbepurchased tofill the
power shortage. Besides, the increasing electricity demand leads to
various power generating facilities to be expanded, bringing about
a high capital cost.

The cost of GHG mitigation (per kiloton) would increase, being
$[0.066, 0.107] � 106, $[0.056, 0.114] � 106, $[0.054, 0.116] � 106, and
$[0.057, 0.119] � 106 under 20%, 40%, 60%, and 80% GHG-emission
reduction, respectively. The energy resource supply (including
imported electricity) cost would be $[36669.57, 65222.88] � 106,
Fig. 12. Costs under different GHG reduction scenarios.
$[50663.04, 81307.01]� 106, $[52771.09, 96377.59]� 106, $[69158.11,
110652.29] � 106, and $[83752.66, 128644.36] � 106 under 0%, 20%,
40%, 60%, and 80% GHG-emission reduction, respectively. This indi-
cates that the strict environmental policieswould lead to an increased
energy resources supply cost.

Without ILP, the GHG-emission management and planning
problem can also be solved through fixed-mix stochastic
programming approach by replacing the interval parameters by
their mid-point values. Although further sensitivity analysis could
be undertaken, themodel still cannot effectively reflect interactions
among various uncertainties since each solution of the energy
system can only provide a single response to variations of the
uncertain inputs (as shown in Tables 2 and 3). Similarly, if best/
worst case submodels are solved, only solutions under two extreme
scenarios (i.e. best and worst conditions) are obtained. They are
useful for judging the system’s capability to realize the desired goal
but will not necessarily construct a set of stable intervals for deci-
sion variables. Therefore, the best/worst case analysis is not directly
useful for generating decision alternatives. It is, in fact, a special
type of sensitivity analysis for extreme cases [40].

From the above analyses, it is indicated that the solutions
obtained from the IFSP model are able to supporting decisions of
energy resources allocation, capacity expansion of electricity
generations, and GHG-emission management. The interval solu-
tions are effective to generate decision alternatives which represent
various options reflecting environmental-economic tradeoffs.
Through planning GHG-emission management in energy systems,
cost-effective options can be obtained based on a least-cost
strategy. However, if GHG emissions reduction is considered, the
pre-regulated targets of energy resources (e.g., coal, nature gas)
supply and power generations from various technologies tend to be
reallocated, the prearranged capacity-expansion options of elec-
tricity generation technologies could be reselected.
Table 3
Imported power under different scenarios from model A without ILP.

Period GHG-emission reduction level (103GWh)

0% 20% 40% 60% 80%

t¼ 1 0 0 10.4 23.5 39.3
t¼ 2 1.8 9.2 22.4 44.7 64.4
t¼ 3 7.3 19.2 40.3 54.8 77.2
t¼ 4 1.8 26.1 44.4 59.2 84.2
t¼ 5 4.6 30.7 48.8 67.1 94.9
t¼ 6 1.7 41.6 58.6 79.7 108.5
t¼ 7 9.6 37.5 79.1 97.0 122.0
t¼ 8 21.6 57.5 76.6 100.8 128.1
t¼ 9 31.6 51.2 74.2 96.6 129.1
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5. Conclusions

An interval fixed-mix stochastic programming (IFSP) model has
been developed for planning GHG-emission management and
energy systems under uncertainty. This method is based on an
integration of interval-parameter programming (IPP), fixed-mix
stochastic programming (FSP), and 0e1 integer programming
techniques. It allows uncertainties presented as both probability
distributions and interval values to be incorporated within
a general optimization framework. Moreover, IFSP can address
dynamics of capacity expansion issues and emission-reduction
scenarios associated with different levels of economic implications.
Probabilistic distributions of electricity demand can be integrated
into the optimization process under a series of fixed levels through
the introduction of FSP, which has advantages in reflecting uncer-
tainties for large-scale problems with a long planning period. Then,
the developed method has been applied to a case of long-term
GHG-emission management planning. The results of the case study
suggest that the methodology is applicable to reflecting complex-
ities of large-scale energy management systems, and addressing
GHG emissions reduction issue with a long planning period.

The proposed method could help energy managers identify
desired management policies under various environmental and
economic considerations. However, there is still much space for
improvement of the proposed model. Compared with other
approaches, especially two-stage stochastic programming (TSP)
methods, FSP can reflect the dynamic variations of system condi-
tions, especially for sequential structure of large-scale problems,
and simplify a large amount of the design scenarios that will nor-
mally lead to the problem of “dimension disaster”. This study is
attempted to integrate FSP and IPP methods into a general frame-
work, and apply the IFSP for GHG-emission management under
uncertainty. The optimization algorithm is also applicable to many
other environmental problems where complex uncertainties exist
in a long planning period. It is also possible that other programming
techniques (such as fuzzy programming and dynamic program-
ming) be integrated with FSP for handling more complicated cases.
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Appendix

Table 1
Electricity targets for users.

Electricity demand (103 GWh)

Level Low Medium High

Probability 0.2 0.6 0.2

t¼ 1 [60, 70] [71, 80] [81, 90]
t¼ 2 [65, 80] [81, 100] [101, 120]
t¼ 3 [75, 95] [96, 116] [117, 137]
t¼ 4 [85, 100] [105, 120] [125, 140]
t¼ 5 [105, 115] [125, 135] [140, 155]
t¼ 6 [120, 130] [140, 150] [155, 160]
t¼ 7 [125, 135] [145, 155] [160, 175]
t¼ 8 [130, 140] [150, 160] [165, 180]
t¼ 9 [135, 145] [155, 165] [170, 185]
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Table 3
GHG emission intensity.

Period GHG emission intensity (kilotonnes/GWh) GHG emission intensity (kilotonnes/PJ)

Coal-fired power Gas-fired power Agricultural Transportation Industrial Municipal Commercial

t¼ 1 [0.93,0.98] [0.60,0.75] [28.6, 31.5] [25.3,29.6] [18.9,23.2] [17.4,21.9] [15.4,17.6]
t¼ 2 [0.92,0.97] [0.59,0.74] [28.4, 31.3] [25.1,29.4] [18.7,23.0] [17.3,21.7] [15.2,17.5]
t¼ 3 [0.91,0.96] [0.58,0.73] [28.2,31.1] [24.8,29.2] [18.6,22.8] [17.1,21.5] [14.0,17.2]
t¼ 4 [0.90,0.95] [0.57,0.72] [28.0,30.8] [24.6,29.0] [18.4,22.6] [16.9,21.3] [13.8,17.0]
t¼ 5 [0.89,0.94] [0.56,0.71] [27.8,30.60] [24.4,28.8] [18.2,22.4] [16.7,21.2] [13.7,16.8]
t¼ 6 [0.88,0.93] [0.55,0.70] [27.6,30.4] [24.2,28.6] [18.0,22.2] [16.5,21.0] [13.5,16.6]
t¼ 7 [0.87,0.92] [0.54,0.69] [27.4,30.2] [24.0,28.4] [17.8,22.0] [16.3,20.8] [13.3,16.4]
t¼ 8 [0.86,0.91] [0.53,0.68] [27.2,30.0] [23.8,28.2] [17.6,21.8] [16.2,20.6] [13.2,16.2]
t¼ 9 [0.85,0.90] [0.52,0.67 [27.0,29.8] [23.6,28.0] [17.4,21.6] [16.0,20.4] [13.0,16.0]
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