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a b s t r a c t

This study presents a novel technique called the recursive composite multiple reciprocity method (RC-

MRM), to develop a truly boundary-only meshfree boundary particle method (BPM) for general

inhomogeneous problems. It does not require any inner nodes to evaluate the particular solution, and

thus it is a truly boundary-only numerical method. ‘‘Composite’’ in the RC-MRM implies that the RC-

MRM employs a high-order composite differential operator rather than a high-order Laplacian operator

in the standard MRM to annihilate inhomogeneous term of various types and enables the present BPM

to handle a much wider variety of inhomogeneous problems, while the ‘‘recursive’’ algorithm in the RC-

MRM significantly reduces CPU time and storage requirements of the original MRM. In addition, we also

find high-order harmonic solutions of the Laplacian operator. Numerical illustrations reveals that the

present BPM has rapid convergence, high accuracy and efficiency, and mathematical simplicity, through

various two- and three-dimensional benchmark problems.

& 2009 Published by Elsevier Ltd.

1. Introduction

Recent decades have witnessed a research boom on meshfree
numerical partial differential equation (PDE) techniques since
mesh generation in the standard finite element method (FEM) and
boundary element method (BEM) is not trivial, especially for high-
dimensional moving boundary problems. This study focuses on
the boundary-type meshfree numerical techniques relative to the
mesh-based BEM. Among the representative methods of this type
are boundary node method (BNM) [1], local boundary integral
equation method (LBIEM) [2], boundary cloud method (BCM) [3],
boundary point method [4], method of fundamental solutions
(MFS) [5,6], and boundary knot method (BKM) [7,8]. The essence
of all these techniques, except MFS and BKM, is basically a
combination of the moving least square (MLS) technique with
various boundary element schemes. These MLS-based boundary
meshfree methods involve singular integration and require
shadow background meshes for numerical integrations. Hence
they are mathematically complicated and computationally very
expensive.

In contrast, the MFS and the BKM possess integration-free,
spectral convergence, easy-to-use and inherently meshfree, and
are thus very efficient and accurate. However, the MFS [5] requires

a fictitious boundary outside the physical domain to avoid
singularities of the fundamental solution. This fictitious boundary
can be arbitrary and makes the method less feasible for complex-
shaped and multiply connected domain problems. On the other
hand, the BKM uses the nonsingular general solution instead of
the singular fundamental solution and thus circumvents the
controversial artificial boundary in the MFS. But not all differential
equations have nonsingular general solutions, for instance, La-
place equation. Hon and Wu [9] applied the translation-invariant
two dimensional (2D) Laplacian nonsingular harmonic function
for solving Laplace problems. In this study, we extend
the application of the Laplacian harmonic function to three-
dimensional (3D) problems and introduce high-order harmonic
functions in the BPM.

In the past decade, the dual reciprocity method (DRM) [10,11]
and multiple reciprocity method (MRM) [11,12] have been
emerging as the two most promising techniques to handle
inhomogeneous term in conjunction with the boundary-type
methods [13–15]. For instance, the so-called DR-BEM and MR-
BEM are very popular in the BEM community. The DRM has
become de facto the method of choice in the boundary-type
methods to evaluate the particular solution, since it is easier to
use, more efficient, and more flexible to handle a variety of
problems. However, the DRM demands inner nodes to guarantee
convergence and stability in the calculation of the particular
solution. Therefore, these methods are not truly boundary-only as
their names may imply.
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It is claimed that the MRM has the striking advantage over
the DRM in that it does not require inner nodes at all for
inhomogeneous problems. To take advantage of the MRM
truly boundary-only merit, Chen [16] recently developed the
MRM-based meshfree boundary particle method (BPM). How-
ever, the MRM also has some disadvantages compared with the
DRM in that the standard MRM is computationally much more
expensive in the construction of different interpolation matrices
and has limited feasibility for general inhomogeneous problems
due to its conventional use of high-order Laplacian operators in
the annihilation process.

This study proposes a recursive composite multiple recipro-
city (RC-MRM) technique to tackle these drawbacks of the MRM
in the BPM. ‘‘Composite’’ implies that the RC-MRM employs a
high-order composite differential operator rather than a high-
order Laplacian operator in the standard MRM to annihilate
inhomogeneous term of various types, which enables the present
BPM to handle a much wider variety of inhomogeneous
problems, while the ‘‘recursive’’ algorithm in the RC-MRM
significantly reduces CPU time and storage requirements of the
original MRM. The BPM based on the RC-MRM is thus a truly
boundary-only numerical technique for inhomogeneous pro-
blems. Section 2 introduces the recursive composite multiple
reciprocity method, followed by numerical validations of its
efficiency in terms of some 2D and 3D Poisson- and Helmholtz-
type problems in Section 3. Section 4 concludes this paper with
discussions of the potential applicability and opening issues of
the present method.

2. Recursive composite multiple reciprocity technique

When the boundary-type numerical method is applied to
inhomogeneous problems, the solution is usually split into
homogeneous and particular solutions. To clearly illustrate the
approach, consider the following example without loss of
generality:

Rfug ¼ f ðxÞ; xAO ð1Þ

uðxÞ ¼ RðxÞ; x�GD ð2aÞ

@uðxÞ

@n
¼NðxÞ; x�GN ð2bÞ

where R is a differential operator, x means a multi-dimensional
independent variable, GD and GN are the Dirichlet and Neumann
boundary parts, respectively, and n the unit outward normal. The
solution of Eq. (1) can be expressed as

u¼ uhþup ð3Þ

where uh and up are the homogeneous and the particular
solutions, respectively. The particular solution up satisfies

Rfupg ¼ f ðxÞ ð4Þ

but does not necessarily satisfy boundary conditions. In contrast,
the homogeneous solution has to satisfy not only the correspond-
ing homogeneous equation

Rfuhg ¼ 0 ð5Þ

but also boundary conditions

uhðxÞ ¼ RðxÞ � upðxÞ; xAGD ð6aÞ

quhðxÞ

qn
¼NðxÞ �

qupðxÞ

qn
; xAGN ð6bÞ

The homogeneous solution uh from Eqs. (5) and (6) can
be efficiently calculated by the boundary-type numerical techni-
ques with the fundamental solution [17,18], general solution

[16,18], Trefftz function [19,20], and de-singular fundamental
solution [21].

To evaluate the particular solution up, we use a novel
technique, the recursive composite multiple reciprocity method,
to cure these perplexing problems while keeping the merits of the
MRM being truly boundary-only, and overcome the major draw-
backs about limited applicability and high computational cost in
the MRM.

‘‘Composite’’ in the RC-MRM implies that the annihilating
differential operator in the MRM is not necessary R{ } in the
governing equation (1). Instead, a composite differential operator
can be chosen to realize the basic assumption of the MRM,
vanishing the inhomogeneous term f(x) in Eq. (1) by iterative
differentiations

lim
m-1

Lm . . . L2L1ff ðxÞg-0 ð7Þ

where L1, L2,y, Lm are differential operators of the same kind or
different kinds. Unlike the original MRM, the iterative annihilat-
ing differential operator in (7) is not restricted to the same one
of the governing equation, i.e. Laplacian operators. Comparing
the above composite MRM (7) with the original MRM we can see
that (7) has greater flexibility and wider applicability to
embrace the features of inhomogeneous function f(x). Under
the assumption that the annihilation (7) is finite order or is
truncated at certain order M, we have the composite MRM
equation

LM � � � L2L1Rfugffi0; xAO ð8Þ

This is a high-order homogeneous equation underlying the
original inhomogeneous governing equation (1). The solution
procedure of the composite MRM is similar to the one in the
original MRM. Thus, Eq. (1) is transformed into a higher-order
homogeneous equation as given by Eq. (8). In order that Eq. (8)
has a unique solution, M+1 boundary conditions must be
supplied. We consider the following boundary conditions apart
from that given by Eq. (2):

RuðxÞ ¼ f ðxÞ; xA@O
L1RuðxÞ ¼ L1f ðxÞ; xA@O

^

LM�1 � � � L2L1RuðxÞ ¼ LM�1 � � � L1f ðxÞ; xA@O

8>>>><
>>>>:

ð9Þ

Therefore the inhomogeneous problem (1) and (2) is reduced
to a homogeneous higher-order elliptic partial differential pro-
blem (8) subjected to the boundary conditions given by Eqs. (2)
and (9). Thus, the present BPM can also use the fundamental
solution, general solution, T-function, and de-singular fundamen-
tal solution as the approximate basis functions, to evaluate the
homogeneous solution of the above transformed equation via only
boundary discretization.

In this section we choose the singular fundamental solution
to illustrate the present BPM solution procedure. The BPM
approximates the solution by a linear combination of singular
fundamental solutions, i.e., the approximate solution u(x) given
by [14]

uðxÞ ¼
XM
i ¼ 0

Xns

j ¼ 1

aiju
�
i ðx� yjÞ ¼

XM
i ¼ 0

ûi ð10Þ

where aij are unknown coefficients to be determined, and yj are
source points located on a fictitious boundary outside the
solution domain. The function u�j (x) is the fundamental solution
of the composite operator Lj, and a higher-order fundamental
solution is employed if it occurs repetitively. Homogeneous
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solutions ûi are defined as follows:

ûi ¼
Xns

j ¼ 1

aiju
�
i ðx� yjÞ; i¼ 0;1;2; � � �M ð11Þ

In order to solve the higher-order homogeneous problem
efficiently, we derive a recursive procedure in the following. First
recall the following important property of the fundamental
solutions:

Ru0ðxÞ ¼ dðxÞ; ð12aÞ

LiuiðxÞ ¼ dðxÞ; i¼ 1;2; � � � ;M ð12bÞ

where d(x) is the Dirac delta function. Therefore we have

Ru0ðx� yjÞ ¼ dðx� yjÞ; j¼ 1;2; � � � ;ns ð13aÞ

Liuiðx� yjÞ ¼ dðx� yjÞ; j¼ 1;2; � � � ;ns ð13bÞ

since the source points yj are placed on a fictitious boundary
outside the solution domain, Liui(x) vanishes identically on the
physical boundary O. Inserting Eq. (10) into Eqs. (2) and (9) and
taking into consideration Eq. (8), we have

XM
i ¼ 0

ûiðxÞ ¼ RðxÞ; xAGD

@

@n

XM
i ¼ 0

ûiðxÞ ¼NðxÞ; xAGN

R
XM
i ¼ 1

ûiðxÞ ¼ f ðxÞ; xA@O

L1R
XM
i ¼ 2

ûiðxÞ ¼ L1f ðxÞ; xA@O

^

LM�1 � � � L2L1RûMðxÞ ¼ LM�1 � � � L1f ðxÞ; xA@O

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð14Þ

Let xk be L collocation points chosen along the boundary. By
collocating Eq. (14) at these boundary collocation points xk, we
arrive at the following system of linear equations:

A00a0þA01a1þ � � � þA1MaM ¼ b0

A11a1þ � � � þA1MaM ¼ b1

^

AMMaM ¼ bM

8>>>><
>>>>:

ð15aÞ

where ai are unknown coefficient vectors to be determined:

ai ¼ ðai1; ai2; � � � ; ains
Þ
T ; i¼ 0;1; 2; . . . ; M ð15bÞ

bi are the known data vector defined as

b0 ¼

�
Rðx1Þ;Rðx2Þ; � � � ;Rðxn1

Þ;Nðxn1þ1Þ; � � � ;NðxLÞ

�T

bi ¼

�
fiðx1Þ; fiðx2Þ; � � � ; fiðxLÞ

�T
; i¼ 1; 2; � � � ; M

8>><
>>: ð15cÞ

where

fiðxÞ ¼ Li�1 � � � L2L1f ðxÞ ð15dÞ

and Aij are interpolation matrices:

A0j ¼

ujðxl � ymÞ; l¼ 1; 2; � � � ; n1; m¼ 1; 2; � � � ; ns

@

@n
ujðxl � ymÞ; l¼ n1þ1; � � � ; L; m¼ 1; 2; � � � ; ns

; j¼ 0;1;2;� � � � ; M

8<
:

ð15eÞ

Aij ¼ Li�1 � � � L2L1ujðxl � ymÞ; l¼ 1;2; � � � ;n1; m¼ 1;2; � � � ;ns;

i¼ 1;2; � � � ;M; j¼ 1;2; � � � ;M ð15fÞ

‘‘Recursive’’ in the RC-MRM implies that the system (15a) can
be conveniently solved using a recursively procedure

aM-aM�1- � � �-a1-a0 ð16Þ

Therefore, the computational effort does not generally grow much
with respect to the increasing number of the differential operators
to annihilate the forcing term.

There are a few properties that can be utilized to reduce the
computational effort in generating the interpolation matrix. For
example, when a differential operator occurs repetitively, their
respective interpolation matrices are the same if the higher-order
fundamental are chosen appropriately. In the case of that the
operator R¼ L1 ¼ L2, the fundamental solutions u0

* (x), u1
* (x) and

u2
* (x) such that Lu1

* (x)= u0
* (x) and Lu2

* (x)= u1
* (x) hold; then we have

the useful property A11=A22 irrespective of the boundary
conditions. For the Dirichlet boundary condition, we have
A00=A11=A22, and A01=A12.

It is stressed that throughout the solution procedure of the
present recursive composite multiple reciprocity method, we do
not use any inner nodes. In particular, the algorithm is novel in
using a composite high-order differential operator to smooth out the
inhomogeneous term without increasing computing efforts. The
essential differences between the present RC-MRM and the standard
MRM can be summarized by two aspects: (1) differential operators
different from the governing differential operator may also be
employed to annihilate the inhomogeneous term and (2) the
recursive algorithm is used to reduce computing cost dramatically.

3. Numerical results and discussion

In this section we present several numerical examples to
illustrate the efficiency and stability of the proposed method for
several inhomogeneous boundary value problems, and they are
compared with results reported in the literature. Numerical
results for 2D and 3D Poisson- and Helmholtz-type problems
are presented.

The average relative error rerr(u), average absolute error aerr(u)
and maximum error merr(u) defined as follows are used to
measure the accuracy of the numerical results:

rerrðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k ¼ 1ðuk � ~ukÞ

2PN
k ¼ 1ðukÞ

2

vuut ð17aÞ

aerrðuÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN

k ¼ 1

ðuk � ~ukÞ
2

vuut ð17bÞ

merrðuÞ ¼maxkjuk � ~ukj ð17cÞ

where uk and ~uk are the analytical and numerical solutions
evaluated at xk, respectively, and N is the total number of
evaluated points. Unless otherwise specified, N is taken to be
10,000 for 2D problems and 27,000 for 3D problems for the
numerical results presented below, which are evenly distributed
in the domain and on the boundary. In all numerical computa-
tions, the number of source points is taken to be equal to that of
boundary collocation points.

3.1. BPM with singular formulation

Example 1. (Polynomial forcing term) First we consider the
Poisson’s equation with a polynomial forcing term

Du¼ � x2
1; ðx1; x2ÞAO

u¼ 0; ðx1; x2ÞA@O

(
ð18aÞ

W. Chen et al. / Engineering Analysis with Boundary Elements 34 (2010) 196–205198
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where O is an ellipse with a semi-major axis of length 2 and semi-
minor axis of length 1. The exact solution is given by [10]

uðxÞ ¼ �
1

246
ð50x2

1 � 8x2
2þ33:6Þ

x2
1

4
þx2

2 � 1

� �
ð18bÞ

For this example, the proposed method solves the following
homogeneous problem:

D3u¼ 0; ðx1; x2ÞAO
u¼ 0; ðx1; x2ÞA@O
Du¼ � x2

1; ðx1; x2ÞA@O

D2u¼ � 2; ðx1; x2ÞA@O

8>>>><
>>>>:

ð18cÞ

The fundamental solutions u1
* (x), u2

* (x), and u3
* (x) to the

differential operators R, L1 and L2 are given by [17]

u�1ðxÞ ¼ �
1

2p
lnr; u�2ðxÞ ¼ �

1

8p
r2lnr;

u�3ðxÞ ¼ �
1

128p
r4lnr ð18dÞ

Note that u1
* and u2

* are taken to be higher-order fundamental
solutions to the 2D Laplacian, since the differential operators
R¼ L1 ¼ L2.

To implement the BPM with singular formulation, Fig. 1 shows
the source points located on an ellipse with a semi-major axis
length of 10 and semi-minor axis length of 5 centered at the

origin. The accuracy variation of numerical results with respect to
increasing number of collocation points, i.e. L, is shown in Fig. 2a.
Roughly speaking, the accuracy of the numerical results first
enhances with an increase of L, and then further increase of L

would not gain much improvement in accuracy. It is observed that
tens of collocation points (e.g. 24) suffice extreme accuracy.
However, there are many oscillations, due to ill-conditioning of
the interpolation matrix. The condition number Cond of the
interpolation matrix A00 and A=(Aij) is shown in Fig. 2b, where
Cond is defined as the ratio of the largest to the smallest singular
value. This is also observed in other boundary-type techniques,
such as the BKM and Trefftz method. There are several ways to
mitigate the effect of bad conditioning, including the domain
decomposition method [22], preconditioning technique based on
approximate cardinal basis function, and the fast multiple method
[23] and regularization methods such as the truncated singular
value decomposition (TSVD) [24]. It is noted that in some cases
presented below, the TSVD is necessary to obtain accurate results,
and the truncation level is determined by the distinct gap in the
singular value spectrum of the interpolation matrix A.

The example is a standard benchmark problem in the BEM
community, and it has previously been solved using the DR-BEM
[10] and MR-BEM [12]. A comparison with the numerical results
presented in these works [10,12] shows that the proposed method
gives more accurate numerical solution with less computational
effort.

In practical situations, the given data can always be approxi-
mated by piecewise polynomials, which will vanish after the
operation of Laplace operator a few times. Therefore, the proposed
method is expected to work for a wide range of practical
problems.

Example 2. (Trigonometric forcing term) Now we consider a
Poisson equation with trigonometric heat source subjected to
mixed-type boundary conditions:

Du¼ 0:8p2cosðpx1Þ; ðx1; x2ÞAO
@u

@n
¼ 0; ðx1; x2ÞAG1

u¼ 1� 0:8cosðpx1Þ; ðx1; x2ÞAG2

8>>><
>>>:

ð19aÞ

where the domain O={(x1,x2)|0ox1o1,0ox2o0.2}, and the two
parts of the boundary G1={(x1,x2)| 0ox1o1, x2=0 or 0.2} and
G2={(x1,x2)| x1=0 or 1, 0rx2r0.2}. This example is taken from
Ref. [12], and there is an error in the expression for the forcing
term in Ref. [12].

Fig. 1. Schematic illustration of boundary collocation points (o) on an ellipse

domain (—) and source points (*) on the fictitious boundary (—).

Fig. 2. (a) Numerical accuracy variation with respect to L and (b) the condition number of interpolation matrices.

W. Chen et al. / Engineering Analysis with Boundary Elements 34 (2010) 196–205 199
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The exact solution u(x) is given by

uðxÞ ¼ 1� 0:8cosðpx1Þ ð19bÞ

For this example, the proposed method solves the following
problem:

ðDþl2
ÞDu¼ 0; ðx1; x2ÞAO

@u

@n
¼ 0; ðx1; x2ÞAG1

u¼ 1� 0:8cosðpx1Þ; ðx1; x2ÞAG2

Du¼ 0:8p2cosðpx1Þ; ðx1; x2ÞA@O

8>>>>><
>>>>>:

ð19cÞ

where the wave number l is taken to be l=p.
In the BPM with singular formulation, the source points are

distributed evenly on a circle centered at the barycenter and with
radius 10. The profile of the exact solution and error surfaces of
the numerical solutions are displayed in Fig. 3. The accuracy of
numerical results improves as the number of collocation points
increases and tens of (e.g. 16) collocation points are sufficient for
obtaining extremely accurate numerical results. When 12 and 16
boundary collocation points are used, the error surfaces are quite
regular, and the maximum error appears to occur on the boundary
adjacent to the corners. However, when 32 nodes are used, the
error surface becomes quite irregular, and the errors seem to be
quite uniform through the domain and its boundary. This also
shows that the proposed method could work well with mixed-
type boundary conditions. The observations from numerical
results of Examples 1 and 2 seem still valid. It is to be noted
that the problem has previously been solved using the MR-BEM
[12], and the results presented here are far more accurate with the
same number of collocation points.

Example 3. (Irregular geometry) We now consider the Helmholtz
equation over an irregular domain, whose configuration is shown
in Fig. 4.

Duþl2u¼ x1; ðx1; x2ÞAO
u¼ sinðx1Þþsinðx2Þþx1; ðx1; x2ÞA@O

(
ð20aÞ

where the wave number l is taken to be 1. The analytical solution
is given by

u¼ sinðx1Þþsinðx2Þþx1 ð20bÞ

Fig. 3. Solution profile (a) of Example 2 and its error surfaces for the numerical results obtained using (b) 12, (c) 16, and (d) 32 collocation points.

Fig. 4. Schematic illustration of the configuration of irregular domain for Example 3

and boundary collocation points (o).

W. Chen et al. / Engineering Analysis with Boundary Elements 34 (2010) 196–205200
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For the present example, we have to solve the following elliptic
partial differential equations

DðDþl2
Þu¼ 0; ðx1; x2ÞAO

u¼ sinðx1Þþsinðx2Þþx1; ðx1; x2ÞA@O

ðDþl2
Þu¼ x1; ðx1; x2ÞA@O

8>><
>>: ð20cÞ

In the BPM with singular formulation, the source points are
distributed on a circle centered at (0.5, 0.5) and with radius 10.
The solution profile of the exact solution and error surfaces of the
numerical solutions are shown in Fig. 5. It is observed that the
results are comparable with that of foregoing examples,
which shows that the proposed method works equally well
over irregular geometries. The maximum error occurs at the
boundary.

It is to be noted that the irregularity of the geometry does not
entail singular solution. For problems involving singularities,
special treatment is required, and it is deferred to future works.

From the numerical results for Examples 1–3 it can be
observed that the proposed method can be very efficient for
certain Poisson and Helmholtz problems, and it can give extreme
accuracy that is rarely achievable for other methods without
entailing very expensive computations.

In addition, three-dimensional problems are usually not easy
to deal with by traditional numerical techniques partly because
the computational complexity increases exponentially with
dimensionality d. This effect has been dubbed the curse of
dimensionality, and is one of the greatest barriers in higher-
dimension computing. The following examples are intended to
verify numerically the accuracy and efficiency of the present
method for 3D problems. The 3D domain O is taken to be a cube

with all sides of equal length 2, i.e., O=[�1,1]3, and the source
points are distributed evenly on a sphere centered at the origin
and with radius 5.

Example 4. (3D Poisson equation) Consider the following
equation in the 3D case:

DuðxÞ ¼ � 2; ðx1; x2; x3ÞAO

uðxÞ ¼ �
1

3
ðx2

1þx2
2þx2

3Þ; ðx1; x2; x3ÞA@O

8<
: ð21aÞ

This example is taken from Ref. [10], where it is solved using the
DR-BEM. The analytical solution is given by

uðx; y; zÞ ¼ �
1

3
ðx2

1þx2
2þx2

3Þ ð21bÞ

For this example, we have to solve the following problem

D2uðxÞ ¼ 0; ðx1; x2; x3ÞAO

uðxÞ ¼ �
1

3
ðx2

1þx2
2þx2

3Þ; ðx1; x2; x3ÞA@O

DuðxÞ ¼ � 2; ðx1; x2; x3ÞA@O

8>>><
>>>:

ð21cÞ

Numerical results for Example 4 obtained using various
numbers of collocation points are shown in Table 1. The pro-
posed method is found to work equally well for this 3D problem
as in the previous 2D cases. The accuracy of the numerical results
obtained using 54 nodes is comparable to that using DR-BEM with
48 BEM nodes and 27 internal nodes for the DRM [10]. This
indicates that the proposed method may be a competitive
numerical technique for higher-dimensional problems.

Fig. 5. Solution profile (a) of Example 3 and its error surfaces for the numerical results obtained using (b) 12, (c) 24, and (d) 32 collocation points.
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Example 5. (3D modified Helmholtz problem) Now we consider
the following modified Helmholtz problem:

Du� l2u¼
ð3� l2

Þ

l2
ex1þ x2þx3 ; ðx1; x2; x3ÞAO

u¼
1

l2
ex1þ x2þx3 ; ðx1; x2; x3ÞA@O

8>>><
>>>:

ð22aÞ

where l is the wave number, and in the present study, it is taken
to be l=20. This example is taken from Ref. [25]. The exact
solution to the problem is given by

u¼
1

l2
ex1þx2þx3 ð22bÞ

For this problem, the proposed method solves the following problem:

ðD� k2ÞðD� l2
Þu¼ 0; ðx1; x2; x3ÞAO

u¼
1

l2
ex1þ x2þx3 ; ðx1; x2; x3ÞA@O

Du� l2u¼
ð3� l2

Þ

l2
ex1þ x2þx3 ; ðx1; x2; x3ÞA@O

8>>>>>><
>>>>>>:

ð22cÞ

where k is another wave number and equals
ffiffiffi
3
p

for this example.

The numerical results for Example 5 obtained using various
numbers of collocation points are presented in Table 2. This
problem has been solved previously using the MFS in conjunction
with DRM and compactly supported radial basis functions [25].
The comparison shows that the results presented here seem far
more accurate. Also note that the accuracy of the numerical
results for Example 5 is comparable to that of Example 4, as
clearly shown in Tables 1 and 2.

It is stressed that compared with 2D problems, no extra coding
effort is required for 3D cases except a single line for the definition
of the distance variable. The proposed method demands neither
mesh generation nor domain discretization, which is a consider-
able saving compared with mesh-based methods, and it does not
require internal points in comparison with the popular DRM.

3.2. The BPM with nonsingular formulation

Till now, we consider only singular formulations using the
BPM. In this section, we present numerical results obtained using
the nonsingular formulation. For the convenience of comparison
of the pros and cons of singular and nonsingular formulations, this
subsection gives numerical results of several foregoing bench-
mark problems using the nonsingular formulation.

Example 6. Consider the Poisson’s equation with a polynomial
forcing term in Example 1. The basis functions u1

* (x), u2
* (x) and

u3
* (x) to the differential operators L1=D, L2=D and L3=D in R2 are,

respectively, taken to be

u�0ðxÞ ¼ expð�cðx2
1 � x2

2ÞÞcosð2cx1x2Þ

u�1ðxÞ ¼ r2expð�cðx2
1 � x2

2ÞÞcosð2cx1x2Þ

u�2ðxÞ ¼ r4expð�cðx2
1 � x2

2ÞÞcosð2cx1x2Þ

8><
>: ð23Þ

where c is a shape parameter. The function u0
* (x) is taken from Hon

and Wu [9], and it is easy to verify that u1
* (x) and u2

* (x) satisfy the
biharmonic operator and tri-harmonic operators, respectively.
Therefore, u1

* (x) and u2
* (x) are nonsingular analogues to higher-

order fundamental solutions. The collocation points are distrib-
uted uniformly along the boundary, and the locations of source
points coincide with those of collocation points.

The numerical results for Example 6 using various numbers of
collocation points are shown in Fig. 6(a). The shape parameter c

has a significant effect on accuracy of the numerical results, as in
the case of multi-quadric and Gaussian, and it is taken to be 0.1 for
this example. The accuracy of numerical results improves with an
increase of L; however, further increase of L deteriorates the

Table 2
Numerical results for Example 5 using various numbers of boundary collocation

points.

L rerr(u) aerr(u) merr(u)

24 8.8254e�2 3.1180e�3 7.6422e�3

54 2.0374e�2 7.1980e�4 1.6365e�3

96 4.4942e�4 1.5878e�5 4.7064e�5

150 1.7055e�5 6.0256e�7 2.1875e�6

216 9.1986e�7 3.2498e�8 1.9908e�7

294 3.6936e�7 1.3049e�8 1.0112e�7

384 7.1847e�9 2.5383e�10 1.2833e�9

Table 1
Numerical results for Example 4 with various numbers of boundary collocation

points.

L rerr(u) aerr(u) merr(u)

24 4.2255e�3 9.2781e�3 1.0030e�2

54 6.6860e�4 1.4681e�3 2.1330e�3

96 3.4425e�6 7.5589e�6 1.7371e�5

150 2.4556e�7 5.3919e�7 1.8652e�6

216 1.8528e�8 4.0684e�8 1.2647e�7

294 1.2308e�8 2.7026e�8 1.7015e�7

384 9.3166e�10 2.0457e�9 8.7876e�9

Fig. 6. (a) Numerical accuracy variation with respect to L and (b) the condition number of interpolation matrices.
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accuracy slightly when it exceeds 28. The condition numbers of
the interpolation matrices A and A11 are displayed in Fig. 6(b). It
increases steadily with an increase of L, and then tends to level off.
It is concluded that the nonsingular formulation also suffers from
ill-conditioning.

Example 7. Consider the Poisson’s equation with a trigonometric
forcing term in Example 2. Profile of the solution and error
surfaces of the numerical solution for Example 7 are shown in
Fig. 7, where the shape parameter c is taken to be 0.05. Accuracy of
the numerical results first improves as L increases and then it does
not gain much on increasing the boundary node number L. It is
observed that the error surface for small numbers of collocation
points is very smooth (e.g. L=12); however, it becomes highly
oscillatory with more than 20 collocation points.

Example 8. Consider the 3D Poisson equation in Example 4. For
3D cases, we use the harmonic function of the 3D Laplacian
equation, which can be intuitionally obtained as follows

H0
3ðxik; yik; zikÞ ¼ expð�cðx2

ik � y2
ikÞÞcosð2cxikyikÞþexpð�cðy2

ik

� z2
ikÞÞcosð2cyikzikÞþexpð�cðz2

ik � x2
ikÞÞcosð2czikxikÞ ð24Þ

Similarly, we can derive the harmonic function of m-order 3D
Laplacian equation

Hm
3 ðxik; yik; zikÞ ¼ r2mfexpð�cðx2

ik � y2
ikÞÞcosð2cxikyikÞ

þexpð�cðy2
ik � z2

ikÞÞcosð2cyikzikÞ

þexpð�cðz2
ik � x2

ikÞÞcosð2czikxikÞg ð25Þ

Numerical results for Example 8 using various numbers of
collocation points are given in Table 3, where the shape parameter

c is taken to be 0.1. The accuracy of the numerical results improves
at the beginning with increasing boundary node number, then
reaches a plateau, and starts oscillating with a further increase of
boundary nodes.

From Table 3 and Figs. 5 and 6, it can be observed that the
nonsingular formulation can also give accurate results for tested
inhomogeneous problems.

4. Concluding remarks

In this paper, we elaborate on the numerical algorithm of
boundary particle method in conjunction with recursive compo-
site multiple reciprocity technique, which is a truly boundary-
only, meshfree, and integration-free technique for inhomogeneous
problems. Section 3 validates the efficacy, accuracy, and efficiency
of the novel BPM and RC-MRM through various numerical
experiments.

Table 3
Numerical results for Example 8 with various numbers of boundary collocation

points.

L rerr(u) aerr(u) merr(u)

24 3.2484e�4 1.6895e�4 1.2136e�3

54 6.6860e�4 1.4681e�3 2.1330e�3

96 3.2484e�4 1.6895e�4 1.2136e�3

150 8.3461e�6 4.5497e�6 4.5950e�5

216 1.1365e�5 1.9788e�6 1.9125e�5

294 1.1694e�4 9.5855e�6 5.1803e�5

384 1.5480e�4 1.0625e�5 4.8512e�5

486 4.7847e�5 2.7641e�6 1.0930e�5

Fig. 7. Solution profile (a) of Example 7 and its error surfaces for the numerical results obtained using (b) 12, (c) 20, and (d) 28 collocation points.
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Ref. [16] shows that the present BPM in conjunction with
recursive composite multiple reciprocity approach can be truly
boundary-only for inhomogeneous PDE problems and appears
promising to remedy singular integrations and costly domain
integrals in the BEM and can be very efficient if the proper
composite PDE is found. The boundary-only merit makes the
present method far more attractive than the other existing
numerical methods in handling some problems, for instance,
inverse problems, where the boundary data in most cases are
dominant in determining the systematic behavior and much more
easily accessible than the inside-domain data.

It is stressed that for the general inhomogeneous term f(x), we
may find a suitable composite operator to reduce it to zero. If it is
not workable in special cases, we can express it by a sum of
polynomial or trigonometric function series, and then the present
BPM can be simply implemented to solve these problems with the
boundary-only discretization.
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Appendix A. Singular fundamental solutions and
nonsingular general solutions

The basis functions employed in the iterative MRM satisfy the
governing differential equation on the solution domain. They can
be either singular fundamental solutions or nonsingular general
solutions. Thus its practical applicability relies heavily on the
availability of explicit expressions for fundamental, general, or
harmonic solutions. For the convenience of the reader, we
tabulate fundamental and general solutions to commonly used
differential operators.

The fundamental solutions to commonly used differential
operators are listed in Table A1 [17]. In the table, D denotes
Laplacian, r the gradient operator, l a real number known as the
wave number, v and r are the velocity vector and distance vector,
respectively and r is the Euclidean norm between the point x and
the origin. Furthermore, Y0 and K0 are the Bessel and modified
Bessel functions of the second kind of order zero, respectively.
Note that the fundamental solution to a differential operator is not
unique. For the Laplacian, a constant may be included. However, it
is often omitted as it does not have a significant effect on the
accuracy of numerical results.

The nonsingular general or harmonic solutions to commonly
used differential operators are listed in Table A2. In the table, I0

and J0 are the Bessel and modified Bessel functions of the first
kind of order zero, respectively. The general solution for the 2D
Laplace equation is taken from [9], where c is a shape parameter.

In the application of iterative MRM, higher-order fundamental
and general solutions may be employed, which can be found in
the MRM references. In the following, we will use higher-order

fundamental and general solutions to the Laplacian. The higher-
order fundamental solution to the Laplacian is given by [12]

u�ðxÞ ¼

r2klnr

p
; xAR2

r2k�1

p
; xAR3

8>>><
>>>:

and its kth higher-order general solution is given by

u�ðxÞ ¼ r2kexp ð�cðx2
1 � x2

2ÞÞcos ð2cx1x2Þ; xAR2:

Fundamental and general solutions to other differential
operators can be found in Refs. [12,17,18]. In the present study,
we confine our attention to the Laplacian- and Helmholtz-type
operators. However, it is to be noted that their application to other
differential operators commutative with the Laplacian, such as the
convection–diffusion operator, would not pose any further
difficulty.
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