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1. Introduction

Smoothing-type algorithms have been successfully applied to solve various optimization problems, including linear
programs, complementarity and variational inequality problems, mathematical programming with equilibrium problems,
optimization problems over symmetric cones, and so on. Recently, a smoothing-type algorithm was developed for solving
the system of inequalities [1]. The preliminary numerical results given in [1] show that this class of algorithms is effective for
solving the system of inequalities. Some other iterationmethods for solving the system of inequalities can be found in [2–5].
Most existing smoothing-type algorithmswere designed on the basis of amonotone line search. In order to achieve better

computational results, however, the nonmonotone line search technique was adopted in the numerical computations of
smoothing-type algorithms (see, for example, [6,7]). Recently, the theoretical analysis of some nonmonotone smoothing-
type algorithms was given in [8,9]. It is well known that the nonmonotone line search scheme can improve the likelihood
of finding a global optimal solution and convergence speed in cases where the function involved is highly nonconvex and
has a valley in a small neighborhood of some point. Various nonmonotone line search schemes have been proposed in the
many iteration methods (see, for example, [10–12]).
In this paper, we consider the following system of equalities and inequalities:{

fI(x) ≤ 0,
fE (x) = 0,

(1.1)
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where I = {1, . . . ,m} and E = {m+ 1, . . . , n}. Define f (x) := [f1(x), . . . , fn(x)]T with fi : Rn → R for any i ∈ {1, . . . , n}.
Throughout this paper, we assume that f is continuously differentiable. Wewill extend the smoothing-type algorithm given
in [1] to solve (1.1). There are twomain differences between [1] and this paper. One is that the problem thatwe are concerned
with is more general than the one discussed in [1] since E = ∅ in [1]. Another is that, instead of the monotone linear search
used in [1], we use a nonmonotone line search in the algorithm of this paper. Under suitable assumptions, we show that the
nonmonotone smoothing-type algorithm is globally and locally superlinearly convergent. We also report some preliminary
numerical results, which demonstrate that the algorithm is effective for solving (1.1).
The rest of this paper is organized as follows. In Section 2, we reformulate (1.1) as a system of smooth equations.

In Section 3, a smoothing-type algorithm is presented for solving (1.1); and some basic properties of the algorithm are
discussed. In Sections 4 and 5, we investigate the global and local convergence of the algorithm, respectively. Section 6 gives
some further discussions on applications of the algorithm and some preliminary numerical results. The final remarks are
given in Section 7.
Throughout this paper, we use the following notation. The nonnegative (resp., positive) orthant inRn will be denoted by

Rn
+
(resp., Rn

++
). In denotes the n × n identity matrix. For x ∈ Rn, ‖x‖ denotes the 2-norm of x. For any vectors u, v ∈ Rn,

we write (uT, vT)T as (u, v) for simplicity. We use J to denote the set of all nonnegative integers, i.e., J := {0, 1, 2, . . .}.
For any (µ, x, s), (µk, xk, sk) ∈ R+ × Rn × Rm, we always use the following notation throughout this paper unless stated
otherwise: z := (µ, x, s) and zk := (µk, xk, sk). For any ξ, ρ ∈ R+, ξ = O(ρ) (ξ = o(ρ)) means lim supρ→0

ξ

ρ
< +∞

(lim supρ→0
ξ

ρ
= 0).

2. Smooth reformulation of (1.1)

In this section, we reformulate (1.1) as a system of smoothing equations in a similar way to that described in [1].
For any x ∈ Rl, we define

x+ := (max{0, x1}, . . . ,max{0, xl})T .

Then, (1.1) is equivalent to the following system of equations:{
fI(x)+ = 0,
fE (x) = 0.

(2.1)

Since the function in (2.1) is nonsmooth, the classical Newton methods cannot be directly applied to solve (2.1). In order to
make (2.1) solvable by the classical Newton-type methods, we will use the similar smoothing technique investigated in [1].
The following function was discussed in [1]:

φ(µ, a) :=


a if a ≥ µ,
(µ+ a)2

4µ
if − µ < a < µ,

0 if a ≤ −µ;

(2.2)

and the following results were given in [1, Proposition 1.1]:

Proposition 2.1. For any (µ, a) ∈ R2, we have the following results.

(i) φ(·, ·) is continuously differentiable at any (µ, a) ∈ R2 with µ > 0;
(ii) φ(0, a) = a+;
(iii) ∂φ(µ,a)

∂a ≥ 0 at any (µ, a) ∈ R2 with µ ≥ 0.

Define

F(z) :=

[fI(x)− s
fE (x)
Φ(µ, s)

]
withΦ(µ, s) :=

φ(µ, s1)...
φ(µ, sm)

 . (2.3)

Then, by Proposition 2.1 (ii) we have

F(z) = 0 and µ = 0 ⇐⇒ s = fI(x), s+ = 0, fE (x) = 0.

This, together with Proposition 2.1(i), indicates that one can solve (1.1) by applying Newton-typemethods to solve F(z) = 0
and make µ ↓ 0. Furthermore, we define a function H : R1+n+m → R1+n+m by

H(z) :=

 µ
fI(x)− s+ µxI
fE (x)+ µxE
Φ(µ, s)+ µs

 , (2.4)
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where xI = (x1, x2, . . . , xm)T, xE = (xm+1, xm+2, . . . , xn)T, s ∈ Rm, x := (xI, xE ) ∈ Rn, and functions φ and Φ are defined
by (2.2) and (2.3), respectively. Thereby, it is obvious that if H(z) = 0, then µ = 0 and x solves (1.1). It is not difficult to see
that, for any z ∈ R++ × Rn × Rm, the function H is continuously differentiable. Let H ′ denote the Jacobian of the function
H; then for any z ∈ R++ ×Rn ×Rm,

H ′(z) =


1 0n 0m
xI f ′I(x)+ µU −Im
xE f ′E (x)+ µV 0(n−m)×m

s+ Φ ′µ(µ, s) 0m×n Φ ′s(µ, s)+ µIm

 , (2.5)

where U := [Im 0m×(n−m)] and V := [0(n−m)×m In−m]. Here, we use 0l to denote the l-dimensional zero vector and 0l×q to
denote the l× q zero matrix for any positive integers l and q. Thus, wemight apply some Newton-type methods to solve the
system of smooth equations H(z) = 0 at each iteration and make µ > 0 and H(z) → 0 so that a solution of (1.1) can be
found.

3. A smoothing-type algorithm

In this section,we propose a smoothing-type algorithmwith a nonmonotone line search. Some basic properties are given.
In particular, we show that the algorithm is well defined. We will use the following function: Ψ (z) := ‖H(z)‖2.

Algorithm 3.1 (A Nonmonotone Smoothing-Type Algorithm).

Step 0 Choose δ ∈ (0, 1), σ ∈ (0, 1/2), β > 0. Take τ ∈ (0, 1) such that τβ < 1. Let µ0 = β and (x0, s0) ∈ Rn+m be an
arbitrary vector. Set z0 := (µ0, x0, s0). Take e0 := (1, 0, . . . , 0) ∈ R1+n+m, R0 := ‖H(z0)‖2 = Ψ (z0) and Q0 := 1.
Choose ηmin and ηmax such that 0 ≤ ηmin ≤ ηmax < 1. Set θ(z0) := τ min{1,Ψ (z0)} and k := 0.

Step 1 If ‖H(zk)‖ = 0, stop.
Step 2 Compute1zk := (1µk,1xk,1sk) ∈ R×Rn ×Rm by using

H ′(zk)1zk = −H(zk)+ βθ(zk)e0. (3.1)

Step 3 Let αk be the maximum of the values 1, δ, δ2, . . . such that

Ψ (zk + αk1zk) ≤ [1− 2σ(1− τβ)αk]Rk. (3.2)

Step 4 Set zk+1 := zk + αk1zk. If ‖H(zk+1)‖ = 0, stop.
Step 5 Choose ηk ∈ [ηmin, ηmax]. Set

Qk+1 := ηkQk + 1,
θ(zk+1) := min{τ , τΨ (zk), θ(zk)},
Rk+1 := (ηkQkRk + Ψ (zk+1))/Qk+1,

(3.3)

and k := k+ 1. Go to Step 2.

In Algorithm 3.1, a nonmonotone line search technique, introduced in [11], is adopted. It is easy to see that Rk+1 is a
convex combination of Rk and Ψ (zk+1). Since R0 = Ψ (z0), it follows that Rk is a convex combination of the function values
Ψ (z0),Ψ (z1), . . . ,Ψ (zk). The choice of ηk controls the degree of nonmonotonicity. If ηk = 0 for every k, then the line search
is the usual monotone Armijo line search.
Define f ′(x) := [f ′I(x)

T, f ′E (x)
T
]
T. We will use the following assumption.

Assumption 3.1. f ′(x)+ µIn is invertible for any x ∈ Rn and µ ∈ R++.

Some basic results involving Algorithm 3.1 are included in the following remark.

Remark 3.1. Let the sequence {Rk} and {zk} be generated by Algorithm 3.1.

(i) We have that the sequence {Rk} is monotonically decreasing.
In fact, by using (3.2) and the definition of Rk in (3.3), it follows that for any k ∈ J,

Rk+1 ≤
ηkQkRk + Rk − 2σ(1− τβ)αkRk

Qk+1
= Rk −

2σ(1− τβ)αkRk
Qk+1

≤ Rk, (3.4)

which implies that {Rk} is monotonically decreasing.
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(ii) We have that Ψ (zk) ≤ Rk for all k ∈ J.
In fact, this can be obtained by an inductive method. Firstly, it is evident from the choice ofR0 that the result holds

when k = 0. Secondly, if we assume that the result holds when k = l, then we only need to show that the result holds
when k = l+ 1. Note that

Ψ (z l+1) = Ql+1Rl+1 − ηlQlRl ≤ Ql+1Rl+1 − ηlQlRl+1
= (Ql+1 − ηlQl)Rl+1 = Rl+1,

where the first equality follows from the definition of Rl+1 in (3.3); the first inequality from the above result (i); and the
last equality from the definition of Ql+1 in (3.3).

(iii) We have that the sequence {θ(zk)} is monotonically decreasing.
In fact, this result holds directly from the above results (i) and (ii).

(iv) We have that βθ(zk) ≤ µk for all k ∈ J.
In fact, from the choice of the starting point it follows that βθ(z0) ≤ µ0. Next, we assume that βθ(zl) ≤ µl for some

index l ∈ J. Then

µl+1 − βθ(z l+1) = µl + αl1µl − βθ(z l+1)
= (1− αl)µl + βαlθ(z l)− βθ(z l+1)
≥ β(θ(z l)− θ(z l+1)) ≥ 0,

where the second equality follows from the first equation of (3.1) and µl+1 = µl + αl1µl; the first inequality holds
from βθ(z l) ≤ µl; and the second inequality from the above result (iii). Thus, by using the inductive method we obtain
the desired result.

(v) We have that µk > 0 for all k ∈ J and the sequence {µk} is monotonically decreasing.
In fact, from the first equation of (3.1) it follows that

µk+1 = µk + αk∆µk = (1− αk)µk + βαkθ(zk) > 0, (3.5)

which indicates that µk > 0 for all k ∈ J. Combining (3.5) and the above result (iv), we have that for any k ∈ J,

µk+1 = (1− αk)µk + βαkθ(zk) ≤ (1− αk)µk + αkµk = µk,

which implies that the sequence {µk} is monotonically decreasing.

Theorem 3.1. Suppose that f is a continuously differentiable function and Assumption 3.1 is satisfied. Then Algorithm 3.1 is well
defined.

Proof. Firstly, we show that the line search (3.2) is well defined. Let Lk(α) := Ψ (zk + α1zk)− Ψ (zk)− αΨ ′(zk)1zk; then
by (3.1),

Ψ (zk + α1zk) = Lk(α)+ Ψ (zk)+ αΨ ′(zk)1zk

= Lk(α)+ Ψ (zk)+ 2αH(zk)T(−H(zk)+ βθ(zk))e0

≤ Lk(α)+ (1− 2α)Ψ (zk)+ 2αβθ(zk)‖H(zk)‖.

On one hand, if Ψ (zk) ≤ 1, then ‖H(zk)‖ ≤ 1. So we can obtain that θ(zk)‖H(zk)‖ ≤ τΨ (zk)‖H(zk)‖ ≤ τΨ (zk). On the
other hand, if Ψ (zk) > 1, then Ψ (zk) = ‖H(zk)‖2 ≥ H(zk). So we can obtain that θ(zk)‖H(zk)‖ ≤ τ‖H(zk)‖ ≤ τΨ (zk).
Thus,

Ψ (zk + α1zk) ≤ Lk(α)+ (1− 2α)Ψ (zk)+ 2αβτΨ (zk)
= Lk(α)+ [1− 2(1− τβ)α]Ψ (zk)

≤ Lk(α)+ [1− 2(1− τβ)α]Rk. (3.6)

Since the function H is continuously differentiable for any z ∈ R× Rn × Rm with µ > 0, it follows from (3.6) and (v) that
Lk(α) = o(α) for all k ∈ J. Thus, the desired result holds by Ψ (zk) ≤ Rk for all k ∈ J.
Secondly, we show that Step 2 is well defined. For any square matrix A, we use det(A) to denote the determinant of A. It

is easy to see from (2.5) that det(H ′(z)) = det(f ′(x)+µIn) · det(Φ ′s(µ, s)+µIm) for any z ∈ R++×Rn×Rm. Furthermore,
we know from Proposition 2.1(iii) that Φ ′s(µ, s) is positive semi-definite. Thus, by Assumption 3.1 we obtain that H

′(z) is
nonsingular for any z ∈ R1+n+m with µ > 0. This, together with the result (v), implies that the system of equations (3.1) is
solvable, i.e. Step 2 is well defined.
Therefore, Algorithm 3.1 is well defined. �
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4. Global convergence of Algorithm 3.1

The following assumption was introduced in [1].

Assumption 4.1. For an arbitrary sequence {(µk, xk)} with limk→∞ ‖ xk ‖= +∞ and the sequence {µk} ⊂ R+ bounded,
then either:
(i) there is at least an index i0 such that lim supk→∞{fi0(x

k)+ µkxki0} = +∞; or
(ii) there is at least an index i0 such that lim supk→∞{µk(fi0(x

k)+ µkxki0)} = −∞.

It can be seen from [1] that many functions satisfy Assumption 4.1.
The global convergence of Algorithm 3.1 is stated as follows.

Theorem 4.1. Suppose that f is a continuously differentiable function and Assumptions 3.1 and 4.1 are satisfied. Then the infinite
sequence {zk} generated by Algorithm 3.1 is bounded; and any accumulation point of {xk} is a solution of (1.1).
Proof. We divide the proof into the following two parts.
Part 1. We show that the sequence {zk} is bounded. By Remark 3.1(v) we know that the sequence {µk} is bounded, and
hence, we only need to show that {(xk, sk)} is bounded. In the following, by assuming that {xk} is unbounded, we will derive
a contradiction. By (2.4) and the definition of Ψ it follows that

Ψ (zk) = µ2k+ ‖ fI(x
k)− sk + µkxkI ‖

2
+ ‖ fE (xk)+ µkxkE ‖

2
+ ‖ Φ(µk, sk)+ µksk ‖2 . (4.1)

Since the sequence {Rk} is monotonically decreasing and Rk > 0, it follows that the sequence {Rk} is bounded. Then, by
Remark 3.1(ii) we get that {Ψ (zk)} is bounded. Thus, from (4.1) we obtain that

{fI(xk)− sk + µkxkI}, {fE (x
k)+ µkxkE }, {Φ(µk, s

k)+ µksk} are bounded. (4.2)

For any k ∈ J, let h(zk) := sk − fI(xk)− µkxkI; then {h(z
k)} is bounded and

sk = h(zk)+ fI(xk)+ µkxkI. (4.3)

Since {fE (xk)+ µkxkE } is bounded by (4.2), it follows from Assumption 4.1 that either:

(I) there is at least an index i0 ∈ I such that lim supk→∞{fi0(x
k)+ µkxki0} = +∞; or

(II) there is at least an index i0 ∈ I such that lim supk→∞{µk(fi0(x
k)+ µkxki0)} = −∞.

In the following, we consider these two cases, separately.
• If the above result (I) holds, then by (4.3) we have

lim sup
k→∞

ski0 = lim supk→∞
{hi0(z

k)+ fi0(x
k)+ µkxki0} = +∞.

Furthermore, by using definitions of φ andΦ we have

lim sup
k→∞

{Φi0(µk, s
k)+ µkski0} = lim supk→∞

{ski0 + µks
k
i0} = +∞,

which indicates that {Φ(zk)+ µksk} is unbounded. This contradicts (4.2).
• If the above result (II) holds, then lim supk→∞{fi0(x

k)+µkxki0} = −∞ since {µk} is a nonnegative and bounded sequence.
Thus, by (4.3) we have lim supk→∞ ski0 = −∞. Furthermore,

lim sup
k→∞

{Φi0(µk, s
k)+ µkski0} = lim supk→∞

{µkski0} = −∞,

which implies that {Φ(zk)+ µksk} is unbounded. This contradicts (4.2).
Therefore, the sequence {xk} is bounded.
Since sequences {µk}, {xk}, and {h(zk)} are bounded and the function f is continuous, by (4.3) we further obtain that the

sequence {sk} is bounded. Therefore, the sequence {zk} is bounded.
Part 2. We prove that any accumulation point of {xk} generated by Algorithm 3.1 is a solution of (1.1). By Remark 3.1(i), we
know that the sequence {Rk} is nonnegative and monotone decreasing, and hence, it is convergent. From Remark 3.1(i) and
(ii) we have

0 ≤ ‖H(zk)‖2 = Ψ (zk) ≤ Rk ≤ Rk−1 ≤ R0, (4.4)

so the sequence {Rk} converges and both sequences {Ψ (zk)} and {‖H(zk)‖} are bounded. In addition, by the first result of
this theorem, we obtain that the sequence {zk} is bounded, and hence, it has at least a subsequence which is convergent. We
denote this subsequence by {zk}where k ∈ J̄ ⊆ J. Thus, there exists a point z∗ = (µ∗, x∗, s∗) ∈ R++×Rn×Rm such that
limJ̄3k→∞ zk = z∗, and by continuity of the function H , we get limJ̄3k→∞ ‖H(zk)‖ = ‖H(z∗)‖. Define R∗ := limJ̄3k→∞ Rk. If
R∗ = 0, then ‖H(z∗)‖ = 0, and hence, x∗ is a solution of (1.1). In the following, we assume that R∗ > 0 and ‖H(z∗)‖ > 0,
and then derive a contradiction.
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• Suppose that αk ≥ α∗ > 0 for all k ∈ J̄, where α∗ is a fixed constant. On one hand, from (3.4) it follows that
Rk+1 ≤ Rk −

2σ(1−τβ)α∗
Qk+1

Rk for any k ∈ J̄. Since {Rk} is bounded, we further obtain that

∞∑
k=0

2σ(1− τβ)α∗
Qk+1

Rk <∞. (4.5)

On the other hand, by the definition of Qk and the fact that ηmax ∈ [0, 1) given in the algorithm, we have

Qk+1 = 1+
k∑
i=0

i∏
j=0

ηk−j ≤ 1+
k∑
i=0

ηi+1max ≤

∞∑
i=0

ηimax =
1

1− ηmax

for any k ∈ J̄. This, together with (4.5), implies that limJ̄3k→∞ Rk = 0, which contradicts R∗ > 0.
• Suppose that limJ̄3k→∞ αk = 0. Then, the step size α̂k := αk/δ does not satisfy the line search criterion (3.2) for any
sufficiently large k ∈ J̄, i.e.,

‖H(zk + α̂k1zk)‖2 = Ψ (zk + α̂k1zk) > [1− 2σ(1− τβ)α̂k]Rk (4.6)

holds for any sufficiently large k ∈ J̄. It is easy to see that the following results hold.
(a) µ∗ > 0. This can be easily obtained by Remark 3.1(v).
(b) {1zk}k∈J̄ is convergent. In fact, since µ∗ > 0, it follows that H ′(zk) is an invertible continuously linear operator for
any k ∈ J̄. Thus, by using (3.1) we may obtain the desired result. Define1z∗ := limJ̄3k→∞1zk.

(c) R∗ = Ψ (z∗). In fact, from (4.4) it follows that R∗ ≥ Ψ (z∗); and from (4.6) it follows that R∗ ≤ Ψ (z∗).
By (4.6), we have that Ψ (zk + α̂k1zk) > [1− 2σ(1− τβ)α̂k]Rk. Since Rk ≥ Ψ (zk), the above inequality becomes that

{Ψ (zk + α̂k1zk)− Ψ (zk)}/α̂k > −2σ(1− τβ)Rk. (4.7)

By the above result (a) we know that ‖H(·)‖ is continuously differentiable at z∗, and so isΨ (·). Hence, by taking the limit
for (4.7) and using the above result (b), we have

2H(z∗)TH ′(z∗)1z∗ ≥ −2σ(1− τβ)R∗. (4.8)

In addition, by (3.1) and the above results (b) and (c), we have

2H(z∗)TH ′(z∗)1z∗ = 2H(z∗)T(−H(z∗)+ βθ(z∗)e0)
≤ −2Ψ (z∗)+ 2βθ(z∗)‖H(z∗)‖
= −2R∗ + 2βθ(z∗)‖H(z∗)‖.

By the definition of θ(·) in (3.3), it is obvious that θ(z∗) ≤ τ if ‖H(z∗)‖ ≥ 1. Hence we can obtain that θ(z∗)‖H(z∗)‖ ≤
τΨ (z∗) = τR∗. In addition, θ(z∗) ≤ Ψ (z∗) ≤ τR∗ if ‖H(z∗)‖ < 1, and hence, θ(z∗)‖H(z∗)‖ ≤ ‖H(z∗)‖τR∗ ≤ τR∗. Thus,
we get

2H(z∗)TH ′(z∗)1z∗ ≤ −2R∗ + 2βτR∗ = −2(1− τβ)R∗. (4.9)

Furthermore, from (4.8), (4.9), and C∗ > 0, it is easy to see that 1 − τβ ≤ σ(1 − τβ), which contradicts the fact that
σ ∈ (0, 12 ) and τβ < 1.

This proof is complete. �

5. Local superlinear convergence of Algorithm 3.1

In this section, we analyse the rate of convergence for Algorithm 3.1. A locally Lipschitz function F : Rn → Rm, which
has the generalized Jacobian ∂F(x) in the sense of Clarke [13], is said to be semismooth (or strongly semismooth) at x ∈ Rn

if F is directionally differentiable at x and F(x+ h)− F(x)− Vh = o(‖h‖)(or = O(‖h‖2)) holds for any V ∈ ∂F(x+ h).
It is well known that convex functions, smooth functions, and piecewise linear functions are examples of semismooth

functions; and the composition of (strongly) semismooth functions is still a (strongly) semismooth function [14]. It is
easy to show that the function φ defined by (2.2) is strongly semismooth on R2. Thus, on noticing that f is continuously
differentiable, we obtain that the function H defined by (2.4) is semismooth (or strongly semismooth if f ′ is Lipschitz
continuous onRn).
Now, we show the local superlinear convergence of Algorithm 3.1.

Theorem 5.1. Suppose that the conditions given in Theorem 4.1 are satisfied and z∗ = (µ∗, x∗, s∗) is an accumulation point of
{zk} generated by Algorithm 3.1. If all V ∈ ∂H(z∗) are nonsingular, then:

(i) αk ≡ 1 for all zk sufficiently close to z∗;
(ii) the whole sequence {zk} converges to z∗;
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(iii) ‖zk+1 − z∗‖ = o(‖zk − z∗‖) (or ‖zk+1 − z∗‖ = O(‖zk − z∗‖2) if f ′ is Lipschitz continuous onRn); and
(iv) µk+1 = o(µk) (or µk+1 = O(µ2k) if f

′ is Lipschitz continuous onRn).

Proof. It holds by the proof of Theorem 4.1 thatH(z∗) = 0 and z∗ is a solution ofH(z) = 0. Note that all V ∈ ∂H(z∗) are sin-
gular, in
[15, Proposition 3.1] we have that ‖H ′(zk)−1‖ = O(1) holds for all zk sufficiently close to z∗. Since the function H is semis-
mooth (or strongly semismooth if f ′ is Lipschitz continuous onRn), it follows that for all zk sufficiently close to z∗,

‖H(zk)− H(z∗)− H ′(zk)(zk − z∗)‖ = o(‖zk − z∗‖) (or = O(‖zk − z∗‖2)).

Notice that the function H is locally Lipschitz continuous near z∗. Therefore, for all zk sufficiently close to z∗, ‖H(zk)‖ =
O(‖zk − z∗‖), which implies that Ψ (zk) = o(‖zk − z∗‖). Thus, for all zk sufficiently close to z∗,

‖zk +1zk − z∗‖ = ‖zk + H ′(zk)−1(−H(zk)+ βθ(zk)e0)− z∗‖
≤ ‖H ′(zk)−1‖(‖H(zk)− H(z∗)− H ′(zk)(zk − z∗)‖ + βθ(zk))
≤ ‖H ′(zk)−1‖(‖H(zk)− H(z∗)− H ′(zk)(zk − z∗)‖ + βτΨ (zk))

= o(‖zk − z∗‖) (or = O(‖zk − z∗‖2)). (5.1)

By following the proof of [16, Theorem 3.1], we have that ‖zk − z∗‖ = O(‖H(zk)−H(z∗)‖) holds for all zk sufficiently close
to z∗. Hence, for all zk sufficiently close to z∗,

‖H(zk +1zk)‖ = O(‖zk +1zk − z∗‖)
= o(‖zk − z∗‖) (or = O(‖zk − z∗‖2))
= o(‖H(zk)− H(z∗)‖) (or = O(‖H(zk)− H(z∗)‖2))

= o(‖H(zk)‖) (or = O(‖H(zk)‖2)). (5.2)

By the proof of Theorem 4.1 it follows that limk→∞ ‖H(zk)‖ = 0. Hence, (5.2) implies that αk = 1 holds for all zk which
is sufficiently close to z∗. This proves the result (i). Therefore, for all zk sufficiently close to z∗, we have zk+1 = zk + 1zk,
which, together with (5.1), indicates that the results (ii) and (iii) hold.
In addition, since µk+1 = µk +1µk = βθ(zk) ≤ βτΨ (zk) for all sufficiently large k, by using (5.2) we have that

µk+1 = O(Ψ (zk)) = o(Ψ (zk−1)) (or = O(Ψ (zk−1)2))
= o(µk) (or = O(µ2k)),

i.e., the result (iv) holds. This completes the proof. �

6. Further discussions and numerical results

Consider the following system of equalities and inequalities:{
fi(x) ≤ 0, i ∈ {1, . . . ,m},
fi(x) = 0, i ∈ {m+ 1, . . . , p}, (6.1)

where x ∈ Rn and f (x) := (f1(x), . . . , fp(x))T with every fi : Rn → R being a continuously differentiable function.
Now, we assume that p 6= n. In this case, Algorithm 3.1 cannot be directly applied to solve (6.1). In a similar way to

those given in [1, Section 4], however, (6.1) can be transformed as a new problem and wemay solve the new problem using
Algorithm 3.1, so a solution of the original problem can be found.

• Suppose that p < n. In this case, we assume that n = p + 1 without loss of generality. Then, we may add a trivial
inequality, such as

∑n
i=1 x

2
i ≤ M whereM is a sufficiently large number, into (6.1) so that Algorithm 3.1 can be applied

to solve the new problem. Since the added inequality holds trivially, we may obtain a solution of (6.1).
• Suppose that p > n. In this case, we assume that p = n + 1 without loss of generality. If m ≥ 1, we may add a variable
xn+1 into the inequalities, for example fi(x) ≤ 0 becomes fi(x) + x2n+1 ≤ 0; and if m = 0, then we may add a trivial
inequality, such as

∑n+2
i=1 x

2
i ≤ M where M is a sufficiently large number, into (6.1). Note that we have added two new

variables xn+1 and xn+2 in the new inequality. In the transformed problem, the number of variables is equal to the sum
of the numbers of equalities and inequalities, and hence, we may solve the transformed problem, so a solution of the
original problem can be found.

In the following, we implement Algorithm 3.1 for solving systems of equalities and inequalities in Matlab in order to see
the behavior of Algorithm 3.1. In our implementation, the function H defined by (2.4) is replaced by

H(z) :=

 µ
fI(x)− s+ cµxI
fE (x)+ cµxE
Φ(µ, s)+ cµs

 , (6.2)
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where c is a given constant. It is easy to see that such a change does not destroy any theoretical results obtained in this paper.
In order to obtain an interior solution of (1.1) (i.e., a solution x∗ of (1.1) with fI(x∗) < 0), we solve the following system of
equalities and inequalities:{

fI(x)+ εe ≤ 0,
fE (x) = 0,

where ε is a sufficiently small number and e is a vector of all ones. Throughout our computational experiments, the
parameters used in the algorithm are chosen as

δ := 0.3, σ := 0.0001, ε := 0.00001, β := 1.0, µ = 1.0, Q0 = 1.0,

and the parameters c , τ , η0 and the starting point x0 are chosen according to those listed in Table 1. Set s0 := fI(x0),
z0 := (µ0, x0, s0), and ηk = η0 for all k ∈ J. We use ‖H(zk)‖ ≤ 10−3 as the stopping rule.
We consider the following seven examples.

Example 6.1. Consider (1.1), where f := (f1, f2)T with x ∈ R2 and

f1(x) := x21 + x
2
2 − 1 ≤ 0; f2(x) := −x21 − x

2
2 + (0.999)

2
≤ 0.

Example 6.2. Consider (1.1), where f := (f1, f2, f3, f4, f5, f6)T with x ∈ R2 and

f1(x) := sin(x1) ≤ 0; f2(x) := − cos(x2) ≤ 0; f3(x) := x1 − 3π ≤ 0;
f4(x) := x2 − π/2− 2 ≤ 0; f5(x) := −x1 − π ≤ 0; f6(x) := −x2 − π/2 ≤ 0.

Example 6.3. Consider (1.1), where f := (f1, f2)T with x ∈ R2 and

f1(x) := sin(x1) ≤ 0; f2(x) := − cos(x2) ≤ 0.

Example 6.4. Consider (1.1), where f := (f1, f2, f3, f4, f5)T with x ∈ R5 and

f1(x) := x1 + x3 − 1.6 ≤ 0; f2(x) := 1.333x2 + x4 − 3 ≤ 0;
f3(x) := −x3 − x4 + x5 ≤ 0; f4(x) := x21 + x

2
3 − 1.25 = 0;

f5(x) := x1.52 + 1.5x4 − 3 = 0.

Example 6.5. Consider (1.1), where f := (f1, f2, f3)T with x ∈ R3 and

f1(x) := x1 + x2e0.8x3 + e1.6 ≤ 0; f2(x) := x21 + x
2
2 + x

2
3 − 5.2675 = 0;

f3(x) := x1 + x2 + x3 − 0.2605 = 0.

Example 6.6. Consider (1.1), where f := (f1, f2, f3)T with x ∈ R2 and

f1(x) := 0.8− ex1+x2 ≤ 0; f2(x) := 1.21ex1 + ex2 − 2.2 = 0;
f3(x) := x21 + x

2
2 + x2 − 0.1135 = 0.

Example 6.7. Consider (1.1), where f := (f1, f2)T with x ∈ R2 and

f1(x) := x1 − 0.7 sin(x1)− 0.2 cos(x2) = 0; f2(x) := x2 − 0.7 cos(x1)+ 0.2 sin(x2) = 0.

The first three examples only contain inequalities, which were tested in [1]. The other examples contain equalities and
inequalities. Instead of these seven examples, we use Algorithm 3.1 to solve the following problems.

Example 1′. Consider (1.1), where f := (f1, f2)T with x ∈ R2 and

f1(x) := x21 + x
2
2 − 1+ ε ≤ 0; f2(x) := −x21 − x

2
2 + (0.999)

2
+ ε ≤ 0.

Example 2′. Consider (1.1), where f := (f1, f2, f3, f4, f5, f6)T with x ∈ R6 and

f1(x) := sin(x1)+ ε ≤ 0; f2(x) := − cos(x2)+ ε ≤ 0;
f3(x) := x1 − 3π + x23 + ε ≤ 0; f4(x) := x2 − π/2− 2+ x24 + ε ≤ 0;
f5(x) := −x1 − π + x25 + ε ≤ 0; f6(x) := −x2 − π/2+ x26 + ε ≤ 0.

Example 3′. Consider (1.1), where f := (f1, f2)T with x ∈ R2 and

f1(x) := sin(x1)+ ε ≤ 0; f2(x) := − cos(x2)+ ε ≤ 0.
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Table 1
The numerical results of Examples 1′–7′ .

Exam ST C Tau Eta0 NI NF SOL

1′ (0, 5)T 100 0.006 0.01 8 9 (−0.6188, 0.7853)T

2′ (0, 0, 0, 0, 0, 0)T 0.5 0.2 0.01 6 8 (−0.0097, 1.4281, 2.8461, 1.2795, 1.6392, 1.6662)T

3′ (0, 0)T 0.5 0.2 0.01 3 3 (−0.0152, 0.7207)T

4′ (0.5, 2, 1, 0, 0)T 5 0.02 0.8 4 4 (0.5557, 1.3243, 0.9703, 0.9840, 1.1561)T

5′ (−1,−1, 1)T 0.5 0.2 0.8 5 5 (−0.8301,−0.8662, 1.9566)T

6′ (0, 0, 0)T 0.5 0.02 0.8 4 4 (−0.0953, 0.0953, 0.3259)T

7′ (0, 1, 0)T 0.5 0.006 0.8 9 14 (0.5268, 0.5084,−99.9973)T

Example 4′. Consider (1.1), where f := (f1, f2, f3, f4, f5)T with x ∈ R5 and

f1(x) := x1 + x3 − 1.6+ ε ≤ 0; f2(x) := 1.333x2 + x4 − 3+ ε ≤ 0;
f3(x) := −x3 − x4 + x5 + ε ≤ 0; f4(x) := x21 + x

2
3 − 1.25 = 0;

f5(x) := x1.52 + 1.5x4 − 3 = 0.

Example 5′. Consider (1.1), where f := (f1, f2, f3)T with x ∈ R3 and

f1(x) := x1 + x2e0.8x3 + e1.6 + ε ≤ 0; f2(x) := x21 + x
2
2 + x

2
3 − 5.2675 = 0;

f3(x) := x1 + x2 + x3 − 0.2605 = 0.

Example 6′. Consider (1.1), where f := (f1, f2, f3)T with x ∈ R3 and

f1(x) := 0.8− ex1+x2 + x23 + ε ≤ 0; f2(x) := 1.21ex1 + ex2 − 2.2 = 0;
f3(x) := x21 + x

2
2 + x2 − 0.1135 = 0.

Example 7′. Consider (1.1), where f := (f1, f2, f3)T with x ∈ R3 and

f1(x) := x21 + x
2
2 + x

2
3 − 10000+ ε ≤ 0; f2(x) := x1 − 0.7 sin(x1)− 0.2 cos(x2) = 0;

f3(x) := x2 − 0.7 cos(x1)+ 0.2 sin(x2) = 0.

The numerical results are listed in Table 1, where Exam denotes the tested examples; ST denotes the starting point x0; C
denotes the value of the parameter c given in (6.2); Tau denotes the value of the parameter τ given in Algorithm 3.1; Eta0
denotes the value of the parameter η0 given in Algorithm 3.1; NI denotes the total number of iterations; NF denotes the
number of function evaluations for the function H(zk); and SOL denotes the solution obtained by Algorithm 3.1.
From Table 1 we obtain:

• a solution of Example 6.1, (−0.6188, 0.7853)T, in eight iterations;
• a solution of Example 6.2, (−0.0294, 1.5416)T, in six iterations;
• a solution of Example 6.3, (−0.0152, 0.7207)T, in three iterations;
• a solution of Example 6.4, (0.5557, 1.3243, 0.9703, 0.9840, 1.1561)T, in four iterations;
• a solution of Example 6.5, (−0.8301,−0.8662, 1.9566)T, in five iterations;
• a solution of Example 6.6, (−0.0953, 0.0953)T, in four iterations;
• a solution of Example 6.7, (0.5268, 0.5084)T, in nine iterations.

From Table 1, it is easy to see that all problems that we tested have been solved with a small number of iterations and a
small number of function evaluations.

• Wehave also tested these problems by using Algorithm3.1with the stopping rule ‖H(zk)‖ ≤ 10−6. The numerical results
are listed in Table 2, where F denotes that the algorithm fails. From Table 2, it is easy to see that most numerical results
are similar to those given in Table 1, but the algorithm fails to find a solution to Example 1′.
• We have also tested these problems by using the algorithm with the monotone line search (i.e., take ηk = 0 for all k in
Algorithm 3.1), and the numerical results are listed in Table 3. It is easy to see from Tables 2 and 3 (or Table 1 and the
numerical results in [1]) that the algorithm with the nonmonotone line search has some advantages over the one with
the monotone line search.

We have also tested some other problems, and the computation effect is similar.
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Table 2
The numerical results of Examples 1′–7′ using Algorithm 3.1 with accuracy 10−6 .

Exam ST C Tau Eta0 NI NF SOL

1′ (0, 5)T 100 0.006 0.01 F F F
2′ (0, 0, 0, 0, 0, 0)T 0.5 0.2 0.01 7 9 (−0.0093, 1.4289, 2.8462, 1.2794, 1.6395, 1.6666)T

3′ (0, 0)T 0.5 0.2 0.01 4 4 (−0.0152, 0.7206)T

4′ (0.5, 2, 1, 0, 0)T 5 0.02 0.8 5 5 (0.5563, 1.3259, 0.9698, 0.9822, 1.1545)T

5′ (−1,−1, 1)T 0.5 0.2 0.8 6 6 (−0.8299,−0.8663, 1.9566)T

6′ (0, 0, 0)T 0.5 0.02 0.8 4 4 (−0.0953, 0.0953, 0.3259)T

7′ (0, 1, 0)T 0.5 0.006 0.8 10 15 (0.5265, 0.5079,−99.9973)T

Table 3
The numerical results of Examples 1′–7′ using Algorithm 3.1 with the monotone line search and accuracy 10−6 .

Exam ST C Tau Eta0 NI NF SOL

1′ (0, 5)T 100 0.006 0 F F F
2′ (0, 0, 0, 0, 0, 0)T 0.5 0.2 0 7 9 (−0.0093, 1.4289, 2.8462, 1.2794, 1.6395, 1.6666)T

3′ (0, 0)T 0.5 0.2 0 4 4 (−0.0152, 0.7206)T

4′ (0.5, 2, 1, 0, 0)T 5 0.02 0 5 5 (0.5563, 1.3259, 0.9698, 0.9822, 1.1545)T

5′ (−1,−1, 1)T 0.5 0.2 0 6 6 (−0.8299,−0.8663, 1.9566)T

6′ (0, 0, 0)T 0.5 0.02 0 4 4 (−0.0953, 0.0953, 0.3259)T

7′ (0, 1, 0)T 0.5 0.006 0 50 207 (0.5265, 0.5079,−99.9973)T

7. Some final remarks

In this paper, we investigated a smoothing-type algorithm with a nonmonotone line search for solving the system of
equalities and inequalities. Under suitable assumptions, we proved that the algorithm is globally and locally quadratically
convergent. The preliminary numerical results demonstrate that the nonmonotone smoothing-type algorithm discussed in
this paper is effective for solving this class of problems.
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