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Abstract The nonlinear Ramsey interferometry of Fermi superfluid gases in a double-well potential is investigated

in this paper. We found that the frequency of the Ramsey fringes exactly reflects the strength of nonlinearity, or the

scattering length of the Fermi superfluid gases. The cases of sudden limit, the adiabatic limit and the general case are

studied. The analytical result is in good agreement with the numerical ones. The adiabatic condition is proposed. In

general situation, the zero-frequency point emerge. Finally the possible applications of the theory are discussed.
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Key words: Fermi superfluid gases, deep BEC regime, Ramsey interferometry

1 Introduction

The Bose–Einstein condensates (BECs) in double-

well potential have been studied extensively in the

past years to demonstrate quantum tunneling phenom-

ena, such as Josephson oscillation and junction,[1−2]

brag diffraction,[3] self-trapping,[4−8] interferometry,[9−15]

phase transition,[16−17] Rosen–Zener transition,[18−19] as

well as Landau-Zener transition[20−21] for both single

species and multi-species systems.[22]

More recently, the Fermi superfluid gases in a double-

well potential which provide the unique opportunity

to study the Bardeen–Cooper–Schrieffer (BCS) to BEC

crossover have been studied.[23−27] However, many ques-

tions remain unsolved.[24] One of the unsolved questions

is the nonlinear Ramsey interferometry.

The technique of Ramsey interferometry is one of

the most powerful tools in high-precision measurement

and has versatile applications. For instance, Ramsey

fringes between atoms and molecules in time domain

have been observed by using trapped BEC of 85Rb

atoms,[28−29] which provides the basis of atomic foun-

tain clocks that now serve as time standards[30−31] and

stimulates the rapid advancement in the field of pre-

cision measurements in atomic physics. The atom in-

terferometers with cold atoms have been used to mea-

sure rotation,[32] gravitational acceleration,[14,33] atomic

fine-structure constant,[34] atomic recoil frequency,[35]

and atomic scattering properties.[36] Moreover, nonlin-

ear Ramsey interferometry and adiabatic Rosen–Zener

(RZ) interferometry for the BECs have also been studied
recently.[37−38]

In the present manuscript, we construct a Rosen–Zener
interferometer to the superfluid Fermi gases in double well
potential in deep BEC regime, We find that the frequency
of the nonlinear Ramsey fringes reflects the strength of
nonlinearity, or the scattering length asc.

Our paper is organized as follows. In Sec. 2, basic
equation and two-mode approximation for Fermi super-
fluid are developed. In Secs. 3 and 4, the Nonlinear Ram-
sey interferometry of superfluid Fermi gases in three lim-
ited cases were thoroughly investigated. In Sec. 5, the
summary and the possible application are discussed.

2 Basic Equation
At zero temperature, for a large number of atoms,

the statistical and dynamical collective properties of a
one-dimensional (1D) trapped superfluid Fermi gases are
expected to be properly described by DF GP equation
including beyond mean-field corrections.[39−40] In deep
BEC regime (0 < asc ≪ 1, where asc is the scatter-
ing length of the fermions), the chemical potential for
this case has been studied by many researchers[24,41−42]

which can be approximated by µ = C0n(1+C1n
1/2) where

(C0, C1) = ((4π~
2asc/m), (α0 − γ0)a

3/2
sc ), α0 = 32ν/3

√
π,

γ0 = 32(ν − 1)/3
√
π, ν = 1.05, 1.1, 1.15, n is particle den-

sity and m is the mass of the dimer.
For a two-mode approximation, the order parameter

of the system Ψ(x, t) can be expressed as the superposi-
tion of individual wave functions in each well,[26,43−45] i.e.,
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Ψ(x, t) = ψ1(t)φ1(x)+ψ2(t)φ2(x), where φ1(x) and φ2(x)

are the spatial mode functions, ψ1(t) and ψ2(t) are the

probability amplitude in two wells respectively. In gen-

eral the functions ψ1,2(t) are complex and satisfy the con-

dition: |ψ1,2(t)|2 = N1,2(t), then the total particle number

is given by |ψ1(t)|2 + |ψ2(t)|2 = N1(t) +N2(t) = N . Then

the following two-mode equations should be satisfied[46]

iψ̇1 =
γ

2
ψ1 + (U1N1 + V1N

3/2
1 )ψ1 − kψ2 , (1)

iψ̇2 = −γ
2
ψ2 + (U2N2 + V2N

3/2
2 )ψ2 − kψ1 , (2)

where

γ =

∫

φj(x)
[

−1

2

d2

dx2
+ V (x)

]

φj(x)dx

is the energy bias between two wells,

Uj =
4π

kf

1

y

∫

Φ3
j dx ,

Vj =
4π(α0 − γ0)

k
5/2
f

1

y5/2

∫

φ
7/2
j dx, (j = 1, 2)

are proportional to the atomic self-interaction energies

which are related to the corresponding scattering length

asc, or the dimensionless interaction parameter y =

1/(kfasc), where kf = (3π2n)1/3 and

k =

∫

φ1(x)
[

−1

2

d2

dx2
+ V (x)

]

φ2(x)dx

describes the tunneling amplitude between two wells.

3 Nonlinear Ramsey Interference Patterns

Fig. 1 Ramsey fringe patterns vs. different nonlinear
parameter y, (a) y = 4.0, (b) y = 8.0, (c) y = 30.0, and
(d) y = 100.0 where T = 55.

We now study the nonlinear Ramsey interferometer of

Fermi superfluid gases. In order to realize it, we let k(t)

changes with time t as follows[19]

k(t)=



































0, t < 0 ,

k0 sin2(πt/T ), t ∈ [0, T ] ,

0, t ∈ [T, T + τ ] ,

k0sin
2[π(t−T −τ)/T ], t ∈ [T+τ, 2T+τ ] ,

0, t > 2T + τ ,

(3)

where k0 is the maximum strength of the coupling, T is the
scanning period of Rosen–Zener pulse, and τ is a holding
time between two pulses.

Fig. 2 Ramsey fringe patterns vs. different scanning
period T , (a) T = 0.5, (b) T = 20, and (c) T = 1700
where y = 4.0.

Fig. 3 Ramsey fringe patterns vs. different scanning
period T , (a) T = 20, (b) T = 1000, (c) T = 2000, and
(d) T = 5000 where y = 100.
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Equations (1) and (2) have been solved numerically.
We assume that the quantum state is initially prepared
on one mode |ψ1(t = 0)|2 = 1, |ψ2(t = 0)|2 = 0 and
observe the dependence of the final transition probability
|ψ2(2T+τ)|2 on the holding time τ . The numerical results
have been displayed in Figs. 1, 2, and 3.

We find from Figs. 1, 2, and 3 that nonlinearity (y)
and scanning period (T ) can affect the pattern and the
frequency of Ramsey fringes significantly. Moreover, we
note that the Ramsey patterns include perfect sinusoidal
oscillation, trigonometric oscillation with multiple period,
and rectangular oscillation. Furthermore, the sinusoidal
Ramsey pattern only exists in the cases of the smaller val-
ues of y and T . The rectangular oscillation only emerges
in the slow scanning case or large value of T , for instance,
(T = 1700). The rectangular oscillation pattern does not
exist in the large values of y. In the following text we will
explain these phenomena in two limited cases: one is the
sudden limit case, the other is the adiabatic case.

4 Theoretical Analysis of the Angular Fre-
quency

4.1 Sudden Limit Case (T ≪ 2π/k0)

The sudden limited case is the case that the scanning
period of the pulse T is much smaller than the intrinsic
period of the system 2π/k0. We choose T = 0.5 as an ex-
ample which is shown in Fig. 4(a). The angular frequency
ω of Ramsey patterns vs. the parameter y is shown in
it. We find that as parameter y increases, the angular
frequency ω decreases. When the y tends to infinite, the
angular frequency ω tends to zero.

If the transition probability is small, an explicit an-
alytic expression can be obtained by using perturbation
technique. Defining U1 = U2 = U , V1 = V2 = V and
following the procedure of Li,[19] we obtain the transition
probability as follows

|ψ2(t)|2 =
2π4k2

0{1 − cos[(γ + U + V )T ]}
(γ + U + V )2[4π2 − (γ + U + V )2T 2]2

, (4)

and the angular frequency of Ramsey patterns in the form

w =
∣

∣

∣

4(U + V )k0
2π4[1 − cos((γ + U + V )T )]

(γ + U + V )2[4π2 − ((γ + U + V )T )2]2

− (γ + U + V )
∣

∣

∣
. (5)

The above analytical predictions are in good agree-
ment with our numerical results (show in Fig. 4(a)).

4.2 Adiabatic Limit Case (T ≫ 2π/k0)

In the adiabatic limited case, the scanning period is
large enough. Figure 4(b) shows the dependence of the
angular frequency ω of Ramsey patterns on the nonlinear
parameter y, in which we take T = 1700. We observe
from Fig. 4(b) that there is a small amplitude oscillation
in the region of 20 < y < 80. The adiabatic condition
in this region is violated. To confirm this conclusion, the

dependence of s on y after the first RZ pulse are presented
in Fig. 5.

Fig. 4 Angular frequency ω of Ramsey fringes vs. the
nonlinear parameter y with different T . (a) for sudden
limit case; (b) for adiabatic limit case; and (c) for gen-
eral situation. We can see the numerical results are good
agreement with the analytical results.

Fig. 5 The population imbalance s vs. the nonlinear
parameter y with T = 1700.

We find that s jump between two points +1 and −1
as the parameter y increases from 4.0 to 20. However, ir-
regular oscillation is observed in the region 20 < y < 80.
Furthermore, when the parameter y > 100 the oscillation
does not appear. In this case, the frequency of oscillation
is zero.

In order to explain the above phenomena, we write
ψ1,2 =

√

N1,2 e iθ1,2 , and define s = (N2 −N1)/N , θ =
θ2 − θ1, where s denotes the population imbalance be-
tween the two wells and θ is the relative phase, we obtain
the following equations

ds

dt
= −2k

√

1 − s2 sin θ , (6)
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dθ

dt
= γ +

d0

y
[(1 + s) − (1 − s)] +

d1

y5/2
[(1 + s)3/2

− (1 − s)3/2] +
2ks√
1 − s2

cos θ , (7)

where d0 = (2πN/kF )
∫

φ3
1(x)dx,

d1 =
4π(α0 − γ0)

k
5/2
F

(N

2

)3/2
∫

φ
7/2
1 (x)dx .

The above two-mode equations can be cast into the
canonical form:

ds

dt
= −∂H

∂θ
,

dθ

dt
=
∂H

∂s

with the classical Hamiltonian defined as

H = γs+
d0

2y
[(1 + s)2 + (1 − s)2]

+
2d1

5y5/2
[(1 + s)5/2 + (1 − s)5/2]

− 2k
√

1 − s2 cos θ . (8)

Fig. 6 The dynamical evolution contrasted with the
adiabatic evolution of fixed points with different T , for
(a) T = 1700, (b) T = 50 000. Thin (y = 100) and thick
(y = 10) solid line refer to the dynamical evolution re-
spectively, thin (y = 100) and thick (y = 10) dash line
refer to the adiabatic evolution respectively.

The classical Hamiltonian can describe completely the
dynamic properties of system.[47] The adiabatic evolution
of the quantum eigenstates can be evaluated by tracing the
shift of the classical fixed points in phase space when the
parameter k varies in time slowly.[48] Figure 6 shows the
evolution of fixed point. Three fixed points are character-
ized by P1, P2, and P3 respectively. In Figs. 6(a) and 6(b),
we take the scanning period T = 1700 and T = 50000
respectively. It is shown a good agreement between dy-
namical evolution and adiabatic trajectory for the case of

y = 10. However, for y = 100, the difference between the

evolution of fixed point P1 and dynamical evolution can

be observed. In the case of T = 1700, it shows a clear

deviation between two fixed points [see Fig. 6(a)], while

it can follow the adiabatic evolution at T = 50 000 [see

Fig. 6(b)]. Therefore, we give the adiabatic condition as

follows[18]

T ≫ Max
[ 2π

U + V
,
2π

k0

]

. (9)

4.3 General Situation

For the general case, the scanning period of RZ pulse

have the same order with 2π/k0, in this case, we take

T = 55 as an example. We find that the population differ-

ence s can greatly affect the frequency of Ramsey fringes.

The fundamental frequency of Ramsey patterns is shown

in Fig. 4(c). The comparison between numerical results

and theoretical prediction show a good agreement. There

also have two zero-frequency points.

5 Discussions and Applications

In the present work, we have investigated nonlinear

Ramsey interferometry of superfluid Fermi gases in a

double-well potential in deep BEC regime. Three cases

of the sudden limits, the adiabatic limits and the general

situation have been studied respectively. We find that

the frequency of the nonlinear Ramsey patterns exactly

reflects the strength of nonlinearity. The adiabatic condi-

tion is given.

In the sudden limit, the approximate transition prob-

abilities are obtained analytically and in good agreement

with the numerical ones. In the adiabatic limit, the equiv-

alent classical Hamiltonian, the fixed points are investi-

gated and the adiabatic condition is obtained analytically.

The analytical results are in good agreement with the

numerical ones. In general situation, the zero-frequency

point emerges.

In such a system, the wave function can be described

by a superposition of two states that localize in each well

separately. The double-well can be created, for exam-

ple, by superimposing a blue-detuned laser beam upon

the center of the magnetic trap.[49] In this case, γ denotes

the difference of the zero-point energy between two wells.

The scattering length asc can be adjusted flexibly by Fes-

hbach resonance. The barrier height (k) can be effectively

controlled by adjusting the intensity of the blue-detuned

laser beam. Initially, we upload superfluid fermions pairs

into one well, then ramp up and down the barrier slowly,

the Nonlinear Ramsey fringes should be observed.

The results tell us that the scattering length asc or the

dimensionless interaction parameter y plays an important

role on the quantum interferometry probabilities. It sug-

gests that quantum interferometry of the superfluid Fermi

gases from one well to the other can be controlled by Fes-

hbach resonance.
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