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Surveillance data provide a vital source of information for assessing the spread of a health problem or
disease of interest and for planning for future health-care needs. However, the use of surveillance data
requires proper adjustments of the reported caseload due to underreporting caused by reporting delays
within a limited observation period. Although methods are available to address this classic statistical
problem, they are largely focused on inference for the reporting delay distribution, with inference about
caseload of disease incidence based on estimates for the delay distribution. This approach limits the com-
plexity of models for disease incidence to provide reliable estimates and projections of incidence. Also,
many of the available methods lack robustness since they require parametric distribution assumptions. We
propose a new approach to overcome such limitations by allowing for separate models for the incidence
and the reporting delay in a distribution-free fashion, but with joint inference for both modeling compo-
nents, based on functional response models. In addition, we discuss inference about projections of future
disease incidence to help identify significant shifts in temporal trends modeled based on the observed
data. This latter issue on detecting ‘change points’ is not sufficiently addressed in the literature, despite
the fact that such warning signs of potential outbreak are critically important for prevention purposes. We
illustrate the approach with both simulated and real data, with the latter involving data for suicide attempts
from the Veteran Healthcare Administration.

Keywords: functional response models; inverse probability weighting; prediction interval; truncation;
Veteran Healthcare Administration

1. Introduction

The US Department of Veteran Affairs has recently stepped up its effects to develop and imple-
ment diverse strategies to reduce deaths from suicide. One major component of the prevention
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efforts is to identify Veterans at elevated risk for self-harm to ensure that such Veterans immedi-
ately receive needed mental health services by collecting data every month for Veteran first-time
suicide attempters that had recent, prior Veteran Healthcare Administration (VHA) service uti-
lization. However, the use of surveillance data such as this monthly updated VHA database
requires adjustments of the underreported caseload caused by the delay in reporting within an
observation time frame. This ‘truncation’ issue is well known and the topic is widely researched,
especially in the late 1980s and early 1990s AIDS research [1–3,5,6,8,10,13,18]. Various meth-
ods have been developed to address this classic problem. However, these approaches mostly
focus on inference for the reporting delay distribution, with estimates of caseloads based on
some ad hoc methods. As a result, adjusted estimates of caseload for the observation period and
projections of future incidence are limited by the models used for the reporting delay. In addition,
many available methods assume parametric distributions such as the multinomial and Poisson,
further limiting their utility when applied real surveillance systems.

In this paper, we discuss a new approach to address such issues by allowing for separate mod-
els for the caseload and the reporting delay distributions. This new approach not only permits a
more complex model for the disease incidence, but also accommodates the situation when the
time of reporting is only available for a subsample, a common scenario in dealing with surveil-
lance data. Furthermore, this approach requires no parametric assumption for either modeling
component, enabling robust inference for a much wider class of data distributions in practice.

2. Models for suicide attempters

We discuss our approach within the context of US Veteran first-time suicide attempters. But the
same considerations apply to other disease surveillance systems as well.

There are 139 VHA Facilities, which are administratively grouped into 21 Veterans Integrated
Service Networks (VISN), based primarily on the geographic locations. Because of high levels
of security for data use within the VHA, only facility-level information is available for our study.
Thus, we focus on Veteran first-time suicide attempters within each facility, although the same
considerations apply to modeling such cases at the VISN-level as well.

Let i index the month, yi denote the number of Veteran first-time suicide attempters, mi the
size, and xi the facility-level covariates for a facility in the ith month. Since yi is the number of
new attempters and mi is much larger than yi, the yi’s may be viewed as independent observations
within each facility. Under this assumption, log-linear models for count responses may be used
to model yi. A major limitation of parametric methods such as the Poisson and negative binomial
(NB) log-linear models is the lack of robust inference when assumed mathematical distributions
such as the Poisson do not fit the data well [20]. For example, the Poisson model does not apply
to over-dispersed count data, while the NB, although addressing overdispersion, does not provide
valid inference if the over-dispersed data do not follow the NB model [20].

For robust inference, the most popular approach is to only specify the first moment, i.e.

μi = E(yi | xi), log(μi) = log mi + x�
i β, 1 ≤ i ≤ n, (1)

where log mi is the offset term. Indeed, the above is unaltered whether yi follows a Poisson, NB
or any other distribution, so long as the conditional mean μi of yi given xi satisfies Equation (1).
Thus, this distribution-free, or semi-parametric, model provides valid inference for a much wider
class of data distributions than their parametric counterparts [14,20].

It follows from Equation (1) that μi = mi exp(x�
i β), where ri = exp(x�

i β) is the ‘rate’ of
first-time suicide attempt per individual within the facility in the ith month (1 ≤ i ≤ n). Thus, by
controlling for facility size using the offset term, we can interpret β as the effect of xi on the rate
of incidence for the facility.
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One popular approach for inference for the model in Equation (1) is to solve for β the
following estimating equations (EE):

w(β) =
n∑

i=1

DiV
−1
i (xi)(yi − μi) =

n∑
i=1

DiV
−1
i (xi)Si = 0, (2)

where Di = (∂/∂β)μi, Si = yi − μi, and Vi(xi) is some function of xi only. If Vi(xi) = μi, the
EE above is actually identical to the score equations used by the ML, thereby yielding the same
estimate as the MLE [20]. However, unlike the MLE, β̂ remains consistent and asymptotically
normal, regardless of the distribution of yi [14,20].

3. Reporting delays and models for delay distributions

Like most surveillance systems, delay in reporting is also a serious issue for the VHA surveil-
lance database. Shown in Figure 1 are the percentages (y-axis) of Veteran first-time suicide
attempters reported by 2 (short dashed line), 3 (medium dashed line) and 4 (long dashed line)
months after the incident occurred, starting with the facility with most severe reporting delay to
the one with most efficient reporting (x-axis). The patterns show a high degree of heterogeneity
in reporting delays across the facilities; about 20 facilities reported less than 70% of the cases 2
months after the attempts took place. Among these facilities, about half reported even less than
80% of the cases 4 months after the attempt occurred.

Various approaches have been proposed for estimating the reporting delay distribution and
using the estimate to adjust for underreporting when modeling the incidence. Available methods

Figure 1. The percent of Veteran first-time suicide attempters reported in 2, 3 and 4 months after the attempt
occurred by the number of facilities across all VISNs.
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can be largely grouped into two major categories. One is to treat the reporting delay as the time
between the occurrence of the event and the reporting of the case and utilize survival methods to
estimate the delay distribution [3,6,10,13]. The other is to view the observed cases as a discrete
outcome and use models for discrete responses such as the Poisson and multinomial to model
the delay distribution [1,2,5,8,18]. The former typically focuses on inference about the reporting
delay distribution, while the latter on disease incidence. We give a brief review of each approach
below.

Within our context, let d denote the lag time in months between the occurrence of the suicide
attempt and reporting of the case. Thus, if the attempt in the ith month does not get reported until
d months later, the reporting time is the (i + d)th month (1 ≤ i ≤ n). The attempter is observed
only if i + d ≤ n, or equivalently 0 ≤ d ≤ n − i.

Let Fi(t | ui) = Pr(d ≤ t | ui) denote the cumulative probability function (CDF) of d, condi-
tional on some facility-level covariates ui. We assume that the maximum delay is n0 (< n − 1)

months, i.e. Fi(n0 | ui) = 1. Under this assumption, all attempts that occur prior to the (n − n0)th
month will have been reported by month n, while for those who attempt suicide between the
(n − n0)th and nth month, only a fraction of those with reporting delays ≤ n − i will have been
reported. The first approach treats d as a ‘survival time’ and models Fi(t | ui) using survival
methodology. We focus on one particular implementation of this approach to show how it works
and highlight its key differences from the second alternative. Note that ui is generally different
from xi used in Section 1 for modeling the incidence in the absence of reporting delay, although
they may share some variables in common.

To model Fi(t | ui), first note that it can be written as [3]

Fi(t | ui) =

⎧⎪⎪⎨
⎪⎪⎩

n0∏
l=t+1

(1 − pil(ui)) if n − n0 + 1 ≤ i ≤ n

1 if 1 ≤ i ≤ n − n0

, 0 ≤ t ≤ n0 − 1, (3)

where pil(ui) = Pr(d = l | d ≤ l, ui). To model pil(ui), let mil be the number of subjects whose
attempts occur in the ith month and get reported l months later and cil be the number of such
cases with a reporting delay equal to l (1 ≤ l ≤ n0). Then,

cil
i.d.∼ Bi(mil, pil(ui)), with

1 ≤ l ≤ n0 if 1 ≤ i ≤ n − n0,

1 ≤ l ≤ n − i if n − n0 + 1 ≤ i ≤ n − 1,
(4)

where Bi(n, p) denotes a binomial distribution with mean p and size n. Although the probability
pil(ui) may be modeled using any model for binary responses, a particularly popular choice
within the context of survival analysis is the complementary log–log link function [3,20]:

log[− log(1 − pil(ui))] = γ0l + u�
i γ 1, with

1 ≤ l ≤ n0 if 1 ≤ i ≤ n − n0,
1 ≤ l ≤ n − i if n − n0 + 1 ≤ i ≤ n − 1.

(5)
Under the assumptions in Equations (4) and (5), Fi(t | ui, γ ) has a particularly simple form:

Fi(t | ui, γ ) = F(t | γ )exp(u�
i γ ), F(t | γ ) =

n0∏
l=t+1

exp(− exp(γ0l)),

0 ≤ t ≤ n0 − 1, n − n0 ≤ i ≤ n, γ = (γ01, . . . , γ0n0 , γ �
1 )�. (6)

Inference about γ is readily made using either maximum likelihood and EE. Upon estimating γ ,
we can estimate Fi(t | ui) by F̂i(t | ui) = Fi(t | ui, γ̂ ).
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Since cil (mil) was quite small for most of the facilities within our context, we assumed a
homogenous pl to ensure stable estimates, in which case (6) reduces to

F(t | γ ) =
n0∏

l=t+1

exp(− exp(γ0l)) =
n0∏

l=t+1

(1 − pl), n − n0 ≤ i ≤ n, 0 ≤ t ≤ n0 − 1. (7)

In this special case, the ML estimates of pl are in closed form [3]:

p̂l = cl

rl
, 1 ≤ l ≤ n0, (8)

where rl is the number of suicide attempters reported by l months and cl is the number of
those with a delay equal to l (1 ≤ l ≤ n0). Note that although the cil’s are not stochastically
independent, the variance estimates from the ML are still valid [3,6].

The second approach treats reported cases as observed responses from a multinomial model,
applies models for such responses and estimates parameters using methods for missing data.
Let ai(d) denote the number of cases reported with a lag of d months and qi(t | ui) denote the
probability distribution function of the reporting delay, i.e.

qi(t | ui) = Fi(t | ui) − Fi(t − 1 | ui), 1 ≤ i ≤ n, 1 ≤ t ≤ n0,

where the CDF Fi(d | ui) is defined the same way as in the first approach. Let

ai = (ai(0), . . . , ai(n0 − 1))�, qi(ui, ζ ) = (qi(0 | ui, ζ ), . . . , qi(n − 1 | ui, ζ ))�,

qo
i (ui, ζ ) = (qo

i (0 | ui, ζ ), . . . , qo
i (n − i | ui, ζ ))�, qo

i (d | ui, ζ ) = qi(d | ui, ζ )∑n−i
j=0 qi(j | ui, ζ )

. (9)

Then ai is observed if 1 ≤ i ≤ n − n0. For n − n0 + 1 ≤ i ≤ n, only the first (n − i) components,
ai(0), . . . , ai(n − i), are observed. Let yo

i denote the observed number of attempters in the ith
month. Then,

yo
i =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

n−i∑
d=0

ai(d) if n − n0 + 1 ≤ i ≤ n,

n0∑
d=0

ai(d) if 1 ≤ i ≤ n − n0.

(10)

In other words, yo
i = yi for 1 ≤ i ≤ n − n0, but yo

i ≤ yi for n − n0 + 1 ≤ i ≤ n.
For each 1 ≤ i ≤ n − n0, ai ∼ MN(qi(ui, ζ ), yo

i ), where MN(q, m) denotes a multinomial with
mean q and sample size m. We can model the cell counts ai using a generalized linear model such
as the generalized logit or proportional odds model [17]. However, for n − n0 + 1 ≤ i ≤ n, ai has
missing components, but the observed components ao

i = (ai(0), . . . , ai(n − i − 1))� still follows
a multinomial MN(qo

i (ui, ζ ), yo
i ), albeit with a different mean qo

i (ui, ζ ) defined in Equation (9).
Thus, the observed likelihood is given by

l =
n−n0∏
i=1

n0∏
d=0

(qi(d | ui, ζ ))ai(d)

n∏
i=n−n0+1

n−i∏
d=0

(qo
i (d | ui, ζ ))ai(d), (11)
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1866 Y. Xia et al.

where

ai(n − i) = yo
i −

n−i−1∑
d=0

ai(d) if n − n0 + 1 ≤ i ≤ n,

ai(n0) = yo
i −

n0−1∑
d=0

ai(d) if 1 ≤ i ≤ n − n0.

Since this likelihood depends on the length of the observation period n and maximal delay n0, it is
unique to each application, which in particular precludes applications of standard fitting methods.
To avoid maximizing this application-specific likelihood, one may use the EM algorithm to take
advantage of available software for fitting (truncated) multinomial responses [2,18].

Both approaches focus primarily on inference for the reporting delay. For inference about
caseloads, ad hoc methods may be used such as the Delta method [2,18]. Also, the second
approach requires parametric assumptions, which may yield biased inference if data fail to meet
the posited distributional assumptions. Most important, inference about caseloads is based on the
model for the reporting delay, limiting the complexity of models for estimating and projecting
disease incidence. Next, we discuss a distribution-free approach to allow for separate models for
the delay distribution and disease incidence to provide flexibility for modeling disease incidence,
which is particularly important for our context.

4. A new approach for suicide attempters and reporting delays

4.1 Models for reported caseload under reporting delay

In the presence of reporting delay, only a subset of those who attempt suicide in the ith month are
observed in the limited time interval [0, n]. Thus, the observed cases yo

i generally underestimate
the true number of attempters. We can use the inverse probability weighting (IPW) technique to
correct the underreporting by yo

i before applying the methods in Section 2. The IPW has a long
history in the analysis of sample survey data [9]. Within our context, the basic idea is to treat
each reported suicide attempt as a representative of a group of all those who attempt suicide in
the same month and use the inverse of the selection probability to account for the unreported
cases.

To illustrate, suppose that the maximum delay in reporting suicide attempters is 12 months
and the reporting delay distribution is uniform over the 12-month period. Then, at the end of
12 months, all attempters that occur in the first month will have been reported. However, only
11
12 = 92% of those who attempt in the second month will have been reported by month 12; only
10
12 = 83% of the ones who attempt in the third month will have been reported and so on. Thus,
each reported suicide attempter in the second month actually represents ( 11

12 )−1 = 1.1 attempters,
and each reported case in the third month represents a total of ( 10

12 )−1 = 1.2 attempters, etc.
For each facility, let πi denote the probability that a suicide attempter in the ith month is

reported by the end of observation period (month n). Under the assumption of a maximum delay
n0, we have

πi(ui) =
{

Fi(n − i | ui) if n − n0 + 1 ≤ i ≤ n,
1 if 1 ≤ i ≤ n − n0,

(12)

where Fi(t | u) and ui have the same interpretation as in the preceding section. With πi, we can
statistically account for the ‘truncated’ attempters in observation period [0, n].

In the presence of reporting delay, we do not observe yi, but rather a smaller number yo
i ,

representing a subset of individuals whose suicide attempts get reported in the observation period
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[0, n]. We can estimate yi by yo
i /πi and substitute yo

i /πi in place of yi in Equation (1) to obtain

μi = E

(
yo

i

πi(ui)

∣∣∣∣ xi

)
= miri = mi exp(x�

i β). (13)

Inference about β is again based on the EE in Equation (2) by substituting yo
i /πi(ui) for yi. If the

πi’s are known, the above revised model is readily fit using the methods discussed in Section 2.
By Equation (12), we can readily estimate πi using the methods discussed in Section 3, and then
proceed with fitting the model in Equation (13). In most applications, the πi’s are unknown and
must be estimated. If πi is replaced by an estimate π̂i, the responses yo

i /π̂i are no longer inde-
pendent. Although the EE in Equation (2) still provides consistent estimates, variance estimates
generally underestimate the variability of the EE estimate [12,15,19]. Although the dependence
issue may be addressed by accounting for the sampling variability of π̂i [12,15,19], the result-
ing approach can be quite complex. A more convenient alternative is to use functional response
models (FRMs) to facilitate inference.

4.2 An FRM approach

Like all regression models, the distribution-free Poisson log-linear regression in Equation (1)
model the linear yi, or the conditional mean, or first moment, of yi given xi. Many relationships of
interest arising in practice also require additional moments or even between-subject interactions.
For example, to distinguish the Poisson and NB, we may model the second moment y2

i in addition
to the linear yi [12,23]. To model non-parametric statistics such as the Mann–Whitney–Wilcoxon
rank sum statistic, we need to model pairs of subject responses [4,22].

The FRM addresses the aforementioned limitations of traditional regression:

E[f (yi1 , . . . , yiq ; γ ) | xi1 , . . . , xiq ] = h(xi1 , . . . , xiq ; β), (i1, . . . , iq) ∈ Cn
q , (14)

where f (·) is some functional, h(·) some smooth functional (e.g. continuous second-order deriva-
tives), Cn

q denotes the set of
(n

q

)
combinations of q distinct elements (i1, . . . , iq) from the integer

set {1, . . . , n} and θ = (β�, γ �)� a vector of parameters. By generalizing the single-subject
based linear response in standard regression to complex functions of responses from multi-
ple subjects, Equation (14) is uniquely positioned to model higher order moments as well as
between-subject interactions [4,7,11,16,21–24].

To apply the FRM in integrating the reporting delay model in Equations (4) and (5) with
the incidence model in Equation (2), first consider a distribution-free alternative for estimating
Fi(t | ui, γ ). Following the notation in Section 3, we have

E[ai(d) | ui] = qi(d | ui, γ ), 0 ≤ d ≤ n0 − 1. (15)

In the presence of reporting delay, ai will have missing data in its last (n − i) components for
n − n0 + 1 ≤ i ≤ n. Define a set of indicators for missing data for each ai as follows:

rid =

⎧⎪⎨
⎪⎩

1 if 1 ≤ i ≤ n − n0,

1 if n − n0 + 1 ≤ i ≤ n and 0 ≤ d ≤ n − i,

0 if otherwise.

ζd = E(rid), ri = (ri1, . . . , rin0)
�, ζ = (ζ1, . . . , ζn0)

�.

Thus, rid = 1 if ai(d) is observed and 0 otherwise.

D
ow

nl
oa

de
d 

by
 [

Fl
or

id
a 

In
te

rn
at

io
na

l U
ni

ve
rs

ity
] 

at
 1

7:
06

 1
4 

M
ar

ch
 2

01
6 



1868 Y. Xia et al.

Since missing data in ai follow the missing at random condition, we can estimate γ in
Equation (15) by the following weighted estimating equations (WEE) [12,15,19,23].

w(γ , ζ ) =
n∑

i=1

DiV
−1
i �iSi = 0, (16)

where

Si = ai − qi, Di = ∂

∂γ
qi, Vi = Var(ai | ui), �i = diagd(�id), �id = rid

ζd
.

We can readily estimate ζd by ζ̂d = (1/n)
∑n

i=1 rid . By substituting ζ̂d in place of ζd in
Equation (16) and solving the resulting WEE for γ , we obtain the WEE estimate γ̂ . With such
an estimate, we can estimate πi(γ ) by

πi(γ̂ (ζ̂ )) =

⎧⎪⎨
⎪⎩

n−i∑
d=0

qi(d | ui, γ̂ ) if n − n0 + 1 ≤ i ≤ n,

1 if 1 ≤ i ≤ n − n0,

where γ̂ (ζ̂ ) denotes the dependence of γ̂ on ζ̂ . By substituting πi(γ̂ (ζ̂ )) for πi(γ ) in
Equation (13), we can estimate β using the EE discussed earlier in Section 3.

A major drawback of the above procedure is the need to adjust the asymptotic variance [23]
of the estimate β̂ from the EE for the sampling variability in the estimated γ̂ and ζ̂ from
Equation (16) [12,15,19,23]. Alternatively, we can integrate all these modeling steps into a single
FRM as follows:

fi = f(yo
i , ai, ri, πi(γ ), η) = (fi1, f�i2, f�i3)

�, hi = (hi1, h�
i2, h�

i3)
�

, k = 2, 3,

fik = (fik1, . . . , fikn0)
�, hik = (hik1, . . . , hikn0)

�, k = 2, 3,

fi1 = yo
i

πi(γ )
, hi1 = mi exp(x�

i β),

fi2l = ai(l − 1)

yo
i

, hi2l = qi(l − 1 | ui, γ ), fi3l = ri(l−1), hi3l = ζ(l−1), 1 ≤ l ≤ n0,

πi(γ ) =

⎧⎪⎨
⎪⎩

n−i∑
l=0

qi(l | ui, γ ) if n − n0 + 1 ≤ i ≤ n,

1 if 1 ≤ i ≤ n − n0,

(17)

where θ = (β�, γ �, ζ�)� denotes the collection of parameters. The above is not a generalized
linear or a nonlinear model, since the response fi is quite a complex function of outcomes yo

i , cil

and nl and the unknown quantity πi(γ ). It is an FRM, with one component consisting of E(fi1 |
xi, ui; θ) = hi1 for modeling the suicide attempter, a second component E(fi2 | xi, ui; θ) = hi2 for
modeling the reporting delay and a third one E(fi3 | xi, ui; θ) = hi3 for modeling the missing data
indicator. The model in Equation (17) is distribution free, as no parametric model is assumed for
any component of the FRM. We may model qi(l | ui, γ ) using either approach in Section 3.

Inference about θ is based on the following weighted generalized estimating equations
(WGEE) for FRM:

w(θ) =
n∑

i=1

DiV
−1
i �iSi = 0, Si = fi − hi, Di = ∂

∂θ
hi, Vi = A1/2

i R(α)A1/2
i ,
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Ai =
⎛
⎝ Var(fi1 | xi, ui) 0 0

Var(fi2 | xi, ui) 0
Var(fi3 | xi, ui)

⎞
⎠ ,

�i =
⎛
⎝ 1 0 0

�i 0
In0

⎞
⎠ , Ri =

⎛
⎝ 1 R12(α) R13(α)

In0 R23(α)

In0

⎞
⎠ , (18)

where R(α) denotes a choice of working correlation matrix parameterized by α. In the above, Di

and Ai are readily computed if we assume some parametric assumptions about the distribution of
fi. For example, if we assume a Poisson with the mean in Equation (1), Ai is given by

Var(fi1 | xi, ui) = hi1,

Var(fi2 | xi, ui) =

⎛
⎜⎜⎜⎜⎝

hi21(1 − hi21) −hi21hi22 · · · −hi21hi2n0

... hi22(1 − hi22)
... −hi22hi2n0

. . .
...

hi2n0(1 − hi2n0)

⎞
⎟⎟⎟⎟⎠ ,

Var(fi3 | xi, ui) =

⎛
⎜⎜⎜⎜⎝

hi31(1 − hi31) 0 · · · 0
... hi32(1 − hi32)

... 0
. . .

...
hi3n0 left(1 − hi3n0)

⎞
⎟⎟⎟⎟⎠ . (19)

However, the WGEE estimate θ̂ obtained by solving the equations in (18) remains consistent and
asymptotically normal, regardless of the parametric models assumed so long as the specification
in Equation (17) is correct (see below). For example, the choice of Ai in Equation (18) still yields
valid inference if the number of suicide attempters follows an NB.

As in the standard WGEE, we can choose R12(α), R13(α) and R23(α) in a variety of ways to
model correlations among the components of fi. The choice of R(α) and properties associated
with GEE estimates have been extensively discussed in the literature. In particular, the WGEE
estimate may not be consistent under working correlation structures other than the working inde-
pendence model. Thus, the working independence model may be used in general to ensure valid
inference, in which case (18) corresponds to Rkl(α) = 0 (1 ≤ k < l ≤ 3).

Let θ̂ denote the WGEE estimate of θ by solving the EEs in (18). Under mild regularity
conditions, θ̂ is consistent and asymptotically normal (see the appendix):

√
n(θ̂ − θ) → dN(0, �θ = B−1�U B−�),

B = E

[
DiV

−1
i �i

∂

∂θ
Si

]
, �U = E(DiV

−1
i �iSiS

�
i �iV

−1
i D�

i ), (20)

A consistent estimate of �θ is given by

�̂θ = B̂−1�̂U B̂−1, B̂ = 1

n

n∑
i=1

D̂iV̂
−1
i �̂i

∂

∂θ
Ŝi, �̂U = 1

n

n∑
i=1

D̂iV̂
−1
i �̂iŜiŜ

�
i �̂iV̂

−1
i D̂�

i , (21)

where Â denotes A with θ substituted by the GEE estimate θ̂ .
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5. Interval estimates for mean response and individual responses

One of the primary objectives of the VHA surveillance system is to identify facilities that show
a significant increase of number of suicide attempters so that such facilities can be notified in a
timely fashion. Interval estimates are required to detect such ‘change points’.

5.1 Confidence intervals for mean response

Once we have an estimate θ̂ for the FRM in Equation (17), we can obtain an estimate of the mean
response in any given month i by

μ̂i = exp(log mi + x�
i β̂) = mi exp(x�

i β̂), 1 ≤ i ≤ n. (22)

To find 100(1 − α)% confidence intervals for the mean μi, we first find 100(1 − α)% confidence
intervals for the linear predictor η̂i = x�

i β̂. Since

Var(η̂i) = Var(x�
i β̂) = x�

i �βxi, (23)

we can estimate Var(η̂i) by V̂ar(η̂i) = x�
i �̂βxi, where �̂β denotes a consistent estimate of �β

such as the robust sandwich variance estimate in Equation (21). A 100(1 − α)% confidence
interval for ηi is given by

(Lηi, Rηi) = (η̂i − q1−(1/2)α

√
V̂ar(η̂i), η̂i + q1−(1/2)α

√
V̂ar(η̂i)), (24)

where qα denotes the αth percentile of the standard normal. By changing the above intervals into
the scale of μi, we obtain a 100(1 − α)% confidence interval for μi:

(Lμi, Rμi) = (mi exp(Lηi), mi exp(Rηi)). (25)

The confidence interval captures the variability of μ̂i in estimating the (population) mean μi

of number of suicide attempters in the ith month. The interval in Equation (25) cannot be used
to predict the variability of new number of suicide attempters yi (i > n) beyond the observation
period [1, n]. To ascertain whether yi in a future month i (i > n) signals a significant departure
from the posited model, we need prediction intervals that also account for the variability of the
random yi.

5.2 Prediction intervals for a new individual observation

Given a statistical model such as the Poisson or a distribution-free version in Equation (1), we
can estimate a new observation yi by ŷi = mi exp(x�

i β̂), the same point estimate as for the mean
response μi in Equation (22). However, the variance estimate in Equation (23) generally under-
estimates the variability of ŷi, since it only accounts for the sampling variability of β̂. When
predicting yi in a future month i (i > n), we must also consider the variability of yi about the
mean μi. For this purpose, we must assume a distribution that governs the random behavior of
yi such as the Poisson or NB. The distribution-free version in Equation (1) does not provide
sufficient information for constructing prediction intervals for yi.

Suppose that yi follows a Poisson model with the mean given in Equation (1). If μi is known,
a 100(1 − α)% prediction interval for a future yi is: (Lyi(μi), Ryi(μi)), where Li (Ri) is the α/2th
((1 − α/2)th) percentile of the Poisson(μi). In practice, μi is unknown and estimated by μ̂i. This
sampling variability must be accounted for to provide more accurate prediction intervals.

Following the discussion in Section 5.1, μ̂i = mi exp(η̂i), where η̂i follows an approximate
normal, N(η̂i, Var(η̂i)). By treating ηi in as random, ηi follows approximately N(η̂i, Var(η̂i)).
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Thus, we can integrate out μ̂i in Fi(y | μ̂i), the CDF of Poisson(μ̂i), conditional on η̂i and Var(η̂i)

to obtain the following CDF:

Fi(y | η̂i, Var(η̂i)) =
y∑

t=0

∫ ∞

−∞

exp(−mi exp(η))(mi exp(η))t

t!
φ(η | η̂i, Var(η̂i)) dη. (26)

The above is not a Poisson, but incorporates the variability of μ̂i based on the estimate μ̂i and
associated sampling distribution. Although the CDF above is not in closed form, it is readily
evaluated numerically.

Let Lyi and Ryi be the (1/2)α and (1 − (1/2)α) percentiles of the distribution in Equation (26):

Lyi = max{y : Fi(y | η̂i, Var(η̂i)) ≤ 1
2α},

Ryi = min{y : Fi(y | η̂i, Var(η̂i)) ≥ 1 − 1
2α}. (27)

Then, a 100(1 − α)% prediction interval for yi is given by (Lyi, Ryi). Note that because of the
discrete nature of yi, the interval (Lyi, Ryi) may not have exact 100(1 − α)% coverage, but the
definition in Equation (27) ensures at least 100(1 − α)% coverage.

The above is readily modified to provide prediction intervals for NB and other models for
count responses. We again emphasize that although a specification of the mean response such
as Equation (1) suffices to estimate μi and associated confidence intervals, a fully specified
distribution model such as the Poisson is needed to predicate the variability of a new yi.

6. Application

We illustrate the methodology with both simulated and real study data. We start with a simulation
study.

6.1 A simulation study

We conducted a simulation study to examine the performance of the proposed FRM model in
Equation (17) for incidence of suicide attempt in the presence of reporting delay. Since asymp-
totic behaviors of estimates of Poisson models are determined by the mean of the Poisson
distribution, with larger means indicating larger sample sizes [20], we considered three scenarios
with the mean averaged to 5, 20 and 50 in our simulations.

For notational brevity, we considered a period of n = 14 months, assumed a maximum report-
ing delay of n0 = 12 months, and set xi = (1, i)� with no offset term (mi = 1). Thus, in the
absence of reporting delay, yi was simulated according to:

yi | xi
i.d.∼ Poisson(μi), μi = E(yi | xi), log(μi) = β0 + iβ1, 1 ≤ i ≤ n. (28)

We set β1 = 0.2. To ensure that μi average to 5, 20 and 50, we set μ̄· = (1/n)
∑n

i=1 μi to each
of the desired values and then solved for β0, yielding β0 = −0.18, 1.19 and 2.11.

To simulate observed counts ai(d) in the presence of reporting delay, we assumed a
multinomial MN(q(γ ), yi), where q(γ ) was independent of i given by

q(d | γ ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp((n0 − d)γ )

1 + ∑n0−1
j=0 exp((n0 − j)γ )

if 0 ≤ d ≤ n0 − 1,

1

1 + ∑n0−1
j=0 exp((n0 − j)γ )

if d = n0,
(29)
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Table 1. Comparison of estimates and standard errors from FRM and EE for modeling incidence and
reporting delay for the Simulation Study.

Estimates of Parameters and Standard
Errors (s.e.) for Simulation Study

Estimate β = (−0.18, 0.2) β = (1.19, 0.2) β = (2.11, 0.2)

EE
β0 − 0.2 1.18 2.11
s.e. 0.10 0.14 0.11
Empirical s.e. 0.12 0.17 0.13
β1 0.19 0.2 0.2
s.e. 0.046 0.021 0.012
Empirical s.e. 0.051 0.024 0.015
Type 1 error for β1 0.08 0.07 0.08
γ 0.49 0.5 0.5
s.e. 0.16 0.14 0.13

FRM
β0 − 0.19 1.19 2.11
s.e. 0.13 0.16 0.14
Empirical s.e. 0.14 0.17 0.15
β1 0.21 0.2 0.2
s.e. 0.053 0.025 0.016
Empirical s.e. 0.052 0.026 0.017
Type 1 error for β1 0.06 0.04 0.05
γ 0.48 0.5 0.5
s.e. 0.17 0.15 0.16

We set γ = 0.5 so that the proportion of cases reported over the 12 months after the occurrence
of the incident changed from 39% for cases reported within the same month to 0.1% for those
reported in the last month.

We fit the FRM in Equation (17) to the simulated yi and ai(d) from (28) and (29). As discussed
in Section 4, we used the working independence model for the correlations among fi, fi2 and
fi3. For comparison purposes, we also fit the data using an ad hoc approach by first estimating
qi(γ ) based on ai(d) and then fitting the observed yo

i using the model in Equation (13), with
yo

i and πi given by Equations (10) and (12), respectively. To be consistent with the FRM, we
estimated γ for the q(γ ) in Equation (29) using the EEs, rather than maximum likelihood as in
Equation (11) to provide robust inference about γ . As discussed in Section 4, the FRM addresses
non-independence among yo

i /π̂i with an estimated πi, thereby providing valid inference for θ =
(β�, γ , ζ�)�.

Shown in Table 1 are the estimates of β and γ and associated standard errors and p-values
averaged over 1000 Monte Carlo replications. Note that estimates of ζ are not shown in the table,
since our primary interest centers on β and γ . Both EE and FRM provided accurate estimates
even for the smallest μ̄· = 5. However, the standard errors were different, with FRM yielding
larger standard errors than the EE for the estimates of β. This is expected since the standard
errors by EE did not take into account the variability of the estimated γ , thereby underestimating
the variability of the EE estimate of β.

The standard errors of the estimates of θ also generally decreased as β0 increased from −0.18
to 1.19–2.11. This is also expected since increased β0 led to larger means, which in turn yielded
more efficient estimates. Also, as expected, the standard errors of the FRM estimates of β were
slightly larger than their EE counterparts, again reflecting the added sampling variability in the
estimate of γ .
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The simulation study shows that (1) without correcting for the sampling variability in the
estimate of γ , the EE underestimates the variability of estimates of β and (2) the approach works
well even for relatively small sample sizes.

6.2 A case study

We applied the approach to the VHA surveillance database discussed in Section 1. The data
used for the Case Study was first-time, non-fatal suicide attempters who also had recent VHA
service utilization prior to the date of the suicide attempt, with a total of 14,182 across the 139
VHA facilities. We first modeled number of such suicide attempters over a period of time and
then used the modeled incidence to project further incidence beyond the observation period. The
first analysis was based on the attempts that occurred and were reported between August 2010
and November 2011, while the second was based on those that occurred in the next 3 months,
December 2011, January and February 2012, but reported by March 2013. The longer reporting
time in the second analysis (14 months) was to ensure that the observed incidence in the projected
3 months was not influenced by reporting delays, since the first analysis showed that a very small
percent of cases was reported beyond this maximal delay.

For the first analysis, we set i = 1 for August 2010 and thus i = 14 designates the last month
of the period, November 2011. Since the facility size was the only covariate available, we just
included month i in the model for yo

i in Equation (13), i.e. xi = (1, i)�. For ai(d), we set ui = 1
for the model in Equation (15), since as noted earlier, most of the facilities had relatively small
ai(d) and a homogeneous reporting distribution, i.e. a constant q(d | γ ), would provide a more
stable estimate of the reporting delay distribution. For setting the maximum length n0 of reporting
delay for each facility, we inspected the distribution of observed ai(d) for beginning months of
the period and found that except for a few facilities, ai(14) = 0, for such months. For such
facilities, n0 (< 14) was set equal to the largest d for which ai(d) = 0. Even for the few facilities
for which ai(14) �= 0, ai(d) accounted for quite a small proportion of reported cases over the
period for month i = 1 or 2. Thus, we set n0 = 14 for these remaining facilities. Although it is
possible that the maximal delay for such facilities may exceed 14 months, the percent of cases
reported beyond this maximal delay should be quite small with no major effect on the estimated
and projected incidence.

Although more complex temporal trends could be entertained, such as piecewise linear or
higher order polynomials, an examination of the observed and model-estimated (corrected for
reporting delays) incidence seemed to indicate that the linear function (in the log rate log(ri))
modeled the trend reasonably well. Furthermore, for i near the end of the study period n, yo

i /πi

becomes more dependent on πi and more complex patterns such as higher order polynomials may
over-extrapolate the observed data. By applying the model above to each of the 139 facilities,
21 (15%) showed a significant increase, 32 (23%) exhibited a significant decrease, while the
remaining 86 (62%) had no change over the 14-month period monitored. Also, 3 (14%) VISNs
showed a significant difference in incidence rate across the facilities.

The fitted model also provides a basis for projecting incidence of first-time suicide attempters
for each facility beyond the end of the study period. As noted in Section 5.2, distribution assump-
tions are needed to model the variability of incidence beyond the end of the study. For the second
analysis, we considered both Poisson and NB models, with the latter to accommodate potential
overdispersion. To determine which model to use for a facility, we refit the data from each facil-
ity and compared the two using the goodness-of-fit statistics associated with the Poisson and NB
[20]. To increase robustness, however, the estimate of β for constructing the prediction interval
was still based on the proposed FRM approach.

Shown in Figure 2 are the projected incidence and 90% prediction intervals over 3 months
beyond the end of the study, that is, Months 15, 16 and 17, along with the estimated mean
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Figure 2. Observed (dots) and projected incidence (solid line), along with 90% confidence (Months 1–14)
and prediction (Months 15–17) intervals, for two VHA Facilities based on NB model; only the first 14 dots
(Months 1–14) were used for model fitting.

incidence and associated 90% confidence intervals (Months 1–14), for 2 of the 139 facilities
based on the NB. The model-based mean incidence seemed to fit the observed incidence well.
The projected incidence was the same as the mean incidence, but extrapolated to the last 3
months. The left plot shows that the observed incidence (the last three dots) in the projected
Month 16 and 17 exceeded the upper bound of the prediction interval, indicating that the num-
bers of first-time suicide attempters observed were significantly higher than expected based on
the trend modeled over the past 14 months for this facility. Facilities with a significant shift in
incidence like this one may need more careful monitoring in the future for potential outbreak or
intervention. Note that we selected three months for the projection time frame because the VHA
surveillance system was updated every 3 months. Note also that we used the NB for both facilities
because it provided improved fit over its Poisson counterpart for these 2 particular facilities.

As expected, the prediction intervals are much wider than the confidence intervals, since the
latter describe the variability of incidence in each month, rather than just the sampling variability
of the estimate of mean incidence. If the model for the mean in Equation (1) and the models
selected for predicting incidence (Poisson or NB) were both correct, each monthly incidence
observed in the projection period would have about 90% chance of falling inside the prediction
interval. Given only three incidence observations in the projected period from each facility, it
is not possible to evaluate the quality of prediction intervals for each facility. We assessed the
accuracy of prediction intervals by pooling results across all facilities. Out of the 417 (139 × 3)

incidence observations in the projected 3-month period, about 12% fell outside the interval. Thus,
the prediction intervals seemed to capture the variability of incidence in the projected time period
well.

7. Discussion

Unlike available methods, the approach developed allows one to model disease incidence sepa-
rately from the reporting delay to take advantage of the often larger amount of data for the former
model. This approach enables one to entertain more complex models for disease incidence to
improve precision and reliability of estimates and projections of disease incidence. Furthermore,
by framing all such considerations within the framework of FRM, we are able to integrate the
separate modeling components under a single unified model to provide joint inference about all
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parameters of interest. In addition, we also addressed projections of future disease incidence, a
problem understudied in the current literature, despite its important research and clinical implica-
tions. Thus, the novelties of our approach include (1) modeling disease incidence and reporting
delay separately to allow for accommodation of a subsample of data for modeling the report-
ing delay; (2) use of the FRMs to frame the two modeling components (disease incidence and
reporting delay) within the context of a single model; (3) use of a set of weighted generalized
EEs adapted to the FRM to provide consistent parameter estimates and valid inference and (4)
new methods for projecting disease incidence.

We examined the performance of the proposed approach through simulated data. The simula-
tion results indicate good performance, even for relatively small sample sizes (small mean). Since
incidence of first-time suicide attempters was small for some of the facilities, this robustness
feature ensures reliable estimates of incidence for such facilities.

We also illustrated the approach with a real VHA surveillance database for US Veteran first-
time suicide attempters. Because of high levels of security for data use within the VHA, we only
had information about facility sizes. Despite the limited information, we still obtained useful
information about the variability of incidence of first-time suicide attempters over time across
the facilities. The estimated reporting delay distribution also helps identify the facilities with
long reporting delays to improve incidence reporting in these facilities.

In the real study application, we also assessed the performance of fitted models for incidence
of first-time suicide attempters beyond the end of the study period. The fitted model seems
to work well, with the observed type I error rates (percent of incidence exceeding the pre-
diction bands) well approximating the nominal type I error level based on the fitted model.
Unlike modeling incidence, distribution assumptions such as the Poisson or NB are needed
to model the variability of projected incidence. The prediction intervals provide short-term
incidence projections useful for warning signs of potential outbreak of such incidence in a
facility.

We developed an SAS macro to implement the proposed FRM in SAS. The macro not only
fits the proposed FRM to data, but also selects appropriate models for projections and plots point
and interval estimates as discussed in Section 6.2. The software is available from the authors
upon request.
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Appendix

The FRM in Equation (17) differs from conventional distribution-free (semi-parametric) models in that the response
function fi also involves parameters such as πi(γ ). Below we justify the asymptotic normality of the WGEE estimate θ̂

stated in Equation (20).
Consider the normalized (1/n)w(θ), but for notational brevity, we continue to denote this normalized quantity as wn.

By applying a Taylor expansion of w(θ) [12], we have

√
nwn = −

(
∂

∂θ
wn

)� √
n(θ̂ − θ) + op(1), (A1)

where op(·) denotes the stochastic version o(·) [12]. It follows from the (weak) law of large numbers that(
∂

∂θ
wn

)�
= E

[
∂

∂θ
(DiV

−1
i �iSi)

]�
→p E

[
DiV

−1
i �i

∂

∂θ
Si

]
= B, (A2)

where →p denotes convergence in probability. It follows from Equations (30) and (31) that
√

n(θ̂ − θ) = −B−1√nwn + op(1) →d N(0, �θ), (A3)

where �θ is given in Equation (20).
Note that if fi is free of any parameter, then (∂/∂θ)Si = −Di and B in Equation (32) simplifies to B =

−E(DiV
−1
i �iD�

i ) as in standard WGEE [12,15,19].
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