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ABSTRACT

In the present paper, we introduce the generic extension graph G of a Dynkin or cyclic quiver Q and
then compare this graph with the crystal graph C for the quantized enveloping algebra associated to Q
via two maps g, kg : 2 — A induced by generic extensions and Kashiwara operators, respectively,
where A is the set of isoclasses of nilpotent representations of Q, and €2 is the set of all words on
the alphabet 1, the vertex set of Q. We prove that, if Q is a (finite or infinite) linear quiver, then the
intersection of the fibres pé (1) and Kél (1) is non-empty for every A € A . We will also show that this
non-emptyness property fails for cyclic quivers.

1. INTRODUCTION

Let @ be a Dynkin or cyclic quiver with vertex set I = {1,2,...,n}, and let Q
be the set of all words on the alphabet 1. Let Ay denote the set of isoclasses of
(finite-dimensional) nilpotent representations of Q. In [2,3], the first two authors
introduced a map, the generic extension map,

P =p0:2—> Ap.

The fibre of pg is described as those words w = i1 ---i, in Q which define the
same generic extension S; * --- * §;, of simple modules S;,,...,§;,. Also, the
MSC: 17B37, 16G20
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map g gives a strong monomial basis property for the £-part U* of the associated
quantized enveloping algebra U = U, (Q).

In [11], M. Kashiwara introduced certain operators E; € End(U%) (i € I) in the
construction of his crystal bases for UT. Kashiwara proved that, if

L= Ao(E, 1)U,

weR
where E,, = E;, -+ E;,, forw =1y -+-in and
A ={f(v) €Q) | f(v') is regular at v = 0},

then the set B = {E,, - 1 + v~'«£ | w € 2} forms a basis for .£/v~! £ which in turn
determines the canonical basis B = {b; | A € A} C £ of UT. Here the index set A
can be identified as A o. Thus, one obtains a map

Kk=kKkg:Q—> Ag

defined by E, - 1 = b,y (modv~'£). The description of « is a hard problem. In
particular, the fibres of « are not known.

In this paper, we investigate the relations between the two maps g and po. We
shall see that in general, k¢ as a map is not equal! to . However, it is always true
that ko (w) < pp(w) for all w € @ and given Q. Here < is the partial ordering on
A . Further relations will be discussed when Q is one of the following quivers:

L : O PP s r ————— 38
" 1 2 3 n—1 n

Loo: e — seenen. . . e — veeiin..
—n —1 0 1 n

1 2 3 n—2 n-—1
Figure 1. Linear and cyclic quivers.

In particular, we prove that, if Q is a finite linear or infinite linear quiver, then
5@51 NN /cél (A) # @ forall A € Ap, and show by counter-example that this fails if
Q is a cyclic quiver.

We may interpret these relations in terms of graphs. There are two graphs with
the same vertex set A g — the crystal graph C and the generic extension graph G —
associated to x and g, respectively. For w € Q, k(w) = A (resp. g (w) = 1) means
that there is a path from vertex 0 to the vertex A in C (resp. G) and every such a path
is given by an element in ; so x # g% means that the two graphs are not identical

! This is contrary to an earlier incorrect computation in the type A case announced in [6].
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(i.e., they have different edge sets). However, for linear quivers, there is at least one
path in common among all paths from 0 to any given vertex A € Ap.

We organize the paper as follows. We present the basics for quiver representations
and the generic extension map in Section 2, and Ringel-Hall algebras and quantum
groups in Section 3. In Section 4, we introduce the map « and discuss its properties,
built on a work by Reineke in [16]. The last two sections are devoted to proving the
main results mentioned above for linear quivers.

2. QUIVER REPRESENTATIONS AND THE GENERIC EXTENSION MAP

Let Q = (1, Q1) be a quiver, i.e., a finite directed graph, where I = Qy is the set of
vertices {1,2,...,n} and Q; 1s the set of arrows. If p € Q; is an arrow from tail ;
to head j, we write h(p) for j and 7(p) fori.

A (finite-dimensional) representation V = (V;, V,) of Q, consisting of a set of
finite-dimensional vector spaces V; for each i € I and a set of linear transformations
Vo i Vigp) = V(e for each p € 01, is identified with a (left) module over the path
algebra kQ of Q. We call dimV := (dimy V1, ..., dimy V,) the dimension vector of
Vand d(V):=Y_7_,dimV; the dimension of V. The representation V = (V;, Vy)
is called nilpotent if for each oriented cycle p,, ... p; at a vertex i, the k-linear
map V,,, ---V, 1 V; = V; is nilpotent. Obviously, each vertex i € Qg gives rise to
a one-dimensional nilpotent representation S;. Note that if Q contains no oriented
cycles, then every representation is nilpotent.

Example 2.1. Let Q be a Dynkin quiver, that is, its underlying graph is a (simply
laced) Dynkin graph of type ADE. By Gabriel’s theorem [7], there is a bijection be-
tween the set of isoclasses of indecomposable representations of Q and the positive
system & = &+ (Q) of the root system ®(Q) associated with Q. Forany o € &,
let M(«) = My () denote the corresponding indecomposable representation of Q
over k. By the Krull-Remak-Schmidt theorem, every representation M of Q is
isomorphic to

M) = My () = P Ma)My(@),

aedt

for some function A:®* — N. Thus, the isoclasses of representations of Q are
indexed by the set

A=Ap={r:d" > N} =N*".
We embed &+ into A ¢ naturally.

Example 2.2. Let Q be the cyclic quiver A, (n > 2). For each integer [ > 1,
there is a unique (up to isomorphism) indecomposable nilpotent representation
Sill] of length ! with top S;. It is well known that S;[{] (i € I,/ > 1) yield all
isoclasses of indecomposable nilpotent representations of Q, and this classification
is independent of the field k. Thus, one way to describe the isoclasses of nilpotent



representations of Q is to use n-tuples of partitions. Namely, for each n-tuple
7= @D, a®, . 7™y of partitions 7@ = (x") > Jrz(') >, 1<i <n, we
define a nilpotent representation? of Q

Mm@ =Mm)= P Si[=]].

iel,j>1
If we write the partition 7 as
2D = (14 b2 ),

Then 7 is uniquely determined by A = (%;;). Thus, we obtain a bijection between
the set of n-tuples of partitions and the set

Ag={Ar:1 x Z; — N|supp(h) is finite},

where Z, denotes the set of all positive integers, and supp(A) = {(i,1) | A(i, 1) #0}.
We may also rewrite M () as

M) =MQ):= @ ruSil.

iellz1

We now assume for the rest of the section that k is algebraically closed. Fix
d = (d;); € N" and define the affine space

R(d)=R(Q,d):= [ Homy (k% k@)= [T koo,
peEQ] reQ)

Thus, a point.x = (x,), of R(d) determines a representation V(x) of Q. The
algebraic group GL(d) = [];_; GLg, (k) acts on R(d) by conjugation

-1
(8)i - (xp)p = (gh(P)xpgt(p))p’

and the GL(d)-orbits O, in R(d) correspond bijectively to the isoclasses {V (x)] of
representations of Q with dimension vector d.

The stabilizer GL(d), = {g € GL(d) | gx = x} of x is the group of automorphisms
of M := V(x) which is Zariski-open in Endyo(M) and has dimension equal to
dim End; o (M). It follows that the orbit Oy := O, of M has dimension

dim Oy = dim GL(d) — dimEnd; o (M).

For two representations M, N of Q, define [N] < [M] (or simply N < M)if Oy C
O, the closure of Oy This gives rise to a partial order on A o by

A = MW < Mi().

2 The module M(x) defined here is indeed the module M(7) defined in [20], where 7 =
@, .. ﬁ(”)) and 7 denotes the dual partition of e iel.



From now on, we assume that Q is a Dynkin or cyclic quiver. Given nilpotent
representations M, N of Q, consider the extensions

00— N—F—>M-—0

of M by N. Note that E is again nilpotent. By [1,17,2], there is a unique (up
to isomorphism) such extension G with dim O maximal (or equivalently, with
dim End; ¢ (G) minimal). We call G the generic extension of M by N, denoted by
MxN.

Let Q be the set of all words on the alphabet / = {1,2,...,n}. For w =
i1iz- iy € S, let p (w) € Ag be the element defined by

(221) S,’l *Siz*"'*Sim %M(p(w))
Thus, we obtain a map
P=90:2— Ag, wr— pw).
Moreover, if Q is a Dynkin quiver, then g is surjective; if Q is a cyclic quiver, then
& is not surjective with Imgp = A%, the set of all aperiodic n-tuples of partitions,
that is, those 7 = (# (D, 7@, ..., 7)) satisfying that for each > I, there is some
i € I such that 1 is not a part in 7).
For each i € I, there is a map
(222) U,‘ZAQ—>AQ; )»t—)O’i)\
defined by
M (o) = S; % M(A).
It is clear that for each w = i(i7...in, it holds

(223) &O(w) =0} 0iy -+~ Oj, (O)!

where 0 is the element in Ao corresponding to the isoclass of zero module.
We end this section with the definition of the generic extension graph.

Definition 2.3. Let Q be a Dynkin or cyclic quiver. The generic extension graph

associated to Q is the directed graph G with vertices A € Ao and arrows A - u,
where A, 4 € Ag and o;A = p for some i € I. Indeed, it is an /-colored graph.

Thus, by (2.2.3), every word w € 2 defines a path from 0 to 1 = p (w). Clearly,
' (1) consists of all such paths, and the map g sends every such a path to the
other endpoint A.



3. RINGEL-HALL ALGEBRAS AND QUANTUM GROUPS

Let O be a Dynkin or cyclic quiver. By [19,20,9], for A, u,v in Ag, there is a
polynomial (pﬁ‘u(T) € Z[T}, called a Hall polynomial, such that for any finite field
k of g elements, (pﬁ,u(qk) is the number of submodules X of M;(A) satisfying
X = My(v) and My (L)/ X = Mi(w).

Let Z = Z[v,v™'] be the Laurent polynomial ring over Z in indeterminate v.
The (twisted generic) Ringel-Hall algebra H,(Q) of Q is by definition the free
Z-module having basis {u; = uimuy | A € Ag} and satisfying the multiplication
rules

R A 2
Uy =o'V Z golw(v Yus,
)\EAQ

where (i, v) = dimy Homyg o (M (1), N (v)) — dimy Ext,'cQ(M(u), N(v)) is the Euler
form associated to the quiver Q. For each i € I, we simply write u; = ujs,).

On the other hand, every quiver Q determines uniquely a symmetric (generalized)
Cartan matrix C(Q). Let U = U,(Q) be the quantized enveloping algebra associ-
ated to C(Q). Note that U is a deformation of the universal enveloping algebra
of the semisimple Lie algebra g(Q) (resp. ;I,,) with Cartan matrix C(Q) if Q is a
Dynkin (resp. cyclic) quiver. Let Ut = U (Q) be the positive part of U, that is,
the Q(v)-subalgebra of U generated by E;, i € I, with quantum Serre relations.
Further, for each m > 1, let

m —m

and [m]' =[1112]---[m].

v
(m] = -

The Lusztig integral form Ut = U (Q) is the Z-subalgebra of U generated by

.. EM .
divided powers Ei('") = [—W:—]!, wherei el and m > 1.

Theorem 3.1 [19,20]. Let Q be a Dynkin or cyclic quiver and U} (Q) be the
Lusztig integral form of Ut (Q).

(1) If Q is a Dynkin quiver, then H,(Q) is generated by ul(.'") = % iel and
m 2 1, and there is a Z-algebra isomorphism

ViUNQ) > HW(Q) EM ™ (elm>1).

i
(2) If Q is a cyclic quiver, then there is a Z-algebra isomorphism

V:UHQ) > (@) EM v ul™ elm>1),

i

where C,(Q) is the Z-subalgebra of H,(Q) generated by all ugm), called the
composition algebra of Q.

In the sequel, we shall identify U, (Q) with H,(Q) (resp. C,(Q)) in case Q is
a Dynkin (resp. cyclic) quiver. We finally note that the generic extension map
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can be applied to obtain a strong monomial basis property for the corresponding
quantized enveloping algebra U = U,(Q) in [2,3].

4. CANONICAL BASES, GLOBAL CRYSTAL BASES AND THE MAP Kk

In this section we review the canonical and global crystal bases for UT = U7 (Q)
defined by Lusztig and Kashiwara, respectively. The map «:§2 — Ay will be
defined in terms of Kashiwara operators.

Again, let Q be a Dynkin or cyclic quiver. For each A € A, define

iy, = v—dimM(A)+dimEnd(M(,\))u)\ e Hy(0).
Note that u; = u;.
By [13,15] (see also [22,18,3,5]), for each A € A, there is a unique element

(4.0.1) by=ir+ Y payily € Ho(Q),
H<h

where p; , € v 'Z[v']. All the elements b, are invariant under the Z-algebra
involution

Ut —>UT; Ei(m) —> Ei('"), vi—s v

If Q is a Dynkin quiver, then By = {b, | A € Ag} is a Z-basis of H,(Q) =U"; if
Q is a cyclic quiver, then By = {b; |7 € A“Q} is a Z-basis of C,(Q) = U ™. In both
cases, B = By is called the canonical basis of U} (Q). Lusztig [13] shows that this
basis has many remarkable properties.

Independently, Kashiwara [10,11] introduces the global crystal basis for a
quantized enveloping algebra, which is shown in [14,8] to coincide with Lusztig’s
canonical basis. We follow [11, 2.2] to define the global crystal basis® of Ut. For
eachi €I, let E; : Ut — Ut be the Kashiwara operator. Let A4, be the subring of
Q(v) consisting of all rational functions f(v) such that f(v™!) is regular at v =0
and define £ to be the Ay -submodule of Ut generated by the elements

(402) E,E,---E; -1

im
for all words w = iyi---i, € €, where 1 is the identity element of Ut. By B
we denote the subset of £/v~!L consisting of the images of all elements of the
form (4.0.2) under the canonical projection £ — £/v~'.L. Kashiwara shows the
following facts:

(1) The set B is a Q-basis of £/v~' L, called the global crystal basis of U*.

(2) For each b € B, there is a unique element b € U™ such that b € £ N £ and that
the image of b under canonical map £ — £/v™' L is b.

(3) Theset B :={b|be B} isa Z-basisof U™.

3 Note that Kashiwara defines the crystal basis of U™ at v = 0. By using the isomorphism U -
U, Ei— Fi. F;— E;, Ki— K;, vi> v~ this can be reformulated as a basis of U™ at v = 0o,



Following [14, Theorem 2.3], we have B = B’. Thus, for each word w =
itiy...im, there is a unique k (w) = A € A such that

EilEiz - -~E,’m -1=b; (mod v—|£).
This gives rise to a map

k=Kkp:Q—> Ag; wr— A=k(w).

Clearly, if Q is a cyclic quiver, then Imx = A%.
Further, for each i € 1, there is a map

(403) ©:Ag—Ag; Ar—>TA

define by
E;(by) = by, (mod v™'L).

In case Q is a Dynkin quiver, by (4.0.1), this is equivalent to
Ei(@i;) =iy (mod v™'.L).

Note that in this case all #, lie in L.
From the definition, for each w = iyi>...i,, € , we have

4.04) kw)y=1,1t, - 1,(0).

Now the crystal graph C (see [10,11]) is the directed graph with vertices A € Ag

and arrows A —> p, where A, u € Ag and ;A = u for some i € I. It is also an
I-colored graph. Like the generic extension graph G, (4.0.4) can be used to identify
the word set Q with the set of all paths starting at 0.

It is interesting to compare the crystal graph C with the generic extension graph
G. By definition, it suffices to compare the maps 7;,0;,: Ag > Ag. We will see
shortly that 7; and o; are not equal in general. However, by [14, Corollary 2.5] and
the definition of o;, we have the following.

Proposition 4.1. Let Q be a Dynkin quiver and i be a sink of Q, i.e., there is no
arrow p with t(p) =i. Then tv; = o; and, for each 1 € Ag, 1A = 0;) is defined by
MM ES; & M),

Based on this fact, Reineke [16] obtains the following characterization of each t;
if Q is a Dynkin quiver. Given a Laurent polynomial f(v) € Z[v, v™'], the degree
of f(v) is defined to be the smallest integer d such that v e4f(w)eZlv "|.Foriel
and A € A, define

a; () :=mﬁlxdeg firius
where IZ,'IZ)L = ZM fi,k;uﬁu-
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The following result is a combination of [16, 3.2] and [16, 6.1, 7.1], from which
the cyclic quiver case also follows (see the discussion in [12, 4.4] or the comments
after Proposition 7.2).

Theorem 4.2. Let Q be a Dynkin quiver of type other than Eg or a cyclic quiver.
Then, fori €l and ), pue Ag, Ei(iy) =1, (modv~'.L) (i.e, ;A = ) if and only
if fion #0and deg fisp = ai(h) 2 ai(p) — L.

The theorem together with the fact that f; 5., # 0 implies 4 < 0;(A), i.e., M (1) <
Si * M(L) = M(o; 1) gives the following nice relation.

Corollary 4.3. Let Q be a Dynkin quiver of type other than Eg or a cyclic quiver.
Then for each w € Q, we have

ko(w) < pol(w).

Proof. Letw=1iy...i, € Q. If m=0or 1, then p (w) =« (w). Let m > 1 and set
wi=1iy...lm, A =k(w) and u = x(w). By Theorem 4.2, we have

k(w) =1 k(W) < o k(wr).

Using an inductive argument, we may suppose that « (w;) < g (w;). This together
with [17, Proposition 2] and [2, Proposition 3.4] implies

k(w) < ojk(wy) <op e (w)) =p(w),
asrequired. O

However, the two maps «p and gg are not equal in general as seen from the
following example.

Example 4.4. Let Q be the quiver Q = Ly : e———>s. Let o] and ay denote
the simple roots. Then ®*(Q) = {oy, o1 + a2, a2}. Hence, each X € Ag can be
identified with a triple (a, b, c) of non-negative integers, where a = A(e)), b =
Aoy +az), and ¢ = A(ap). For each A = (a, b, ¢) € Ay, we have by [3, 7.1]

N (a_‘_l’b’c) ifC:()g
Ul(a’b7‘)_{(a,b+l,c—l) ifc>1
and by [16, 3.2]

(a+1,b,0) ifa >c,

Tl(a’b’c)z{(a,b-i'lqc_]) ifa <c.

Thus, o1 # 1. On the other hand, we have by Proposition 4.1 o, = 1,. This shows
that the edge sets of the generic extension graph and the crystal graph are different.

11
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// \\\ // \‘\
(2,0,0) (1,0,1) (0,1, ) (0,0,2)
//// \ 1\\\\\\l\\\ /\\\
\ | .
(300 (01 102  @LL0) L) (003

(4,0,0) (3,0,1) (2,0,2) (1,0,3) (2,1,0) (1,1,1) (0,2,0) a),l,Z) (0,0,4)

Figure 2. The graph G(A3).
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Figure 3. The graph C(A>).
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The generic extension graph G of Q consisting of all A with dimM(}) < 4 is
illustrated in Figure 2. Whereas, the crystal graph C of Q is given in Figure 3.

Here, in both cases, the color 1 is represented by a dark arrow, while the color 2
is represented by a gray arrow. Note that the two graphs have the same gray arrows
since o> = 17.

For &, u € Ag, we set
hy,u =dimHomgg(M(L), M()) and dy =dimM(Q).

In particular, we set hy = hy 5 = dimEndio(M(1)). We need the following result
[16, Section 5] in the next section.

Propesition 4.5. Let Q be a Dynkin quiver. Let )., u € Ag and i € I be such that
M ().) is an extension of S; by M (). Then

degg} , (T)=hyus—hy.
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5. THE FINITE LINEAR QUIVER CASE

In this section, we assume that Q is the finite linear quiver L, given in Figure 1.
Then the set T (Q) of positive roots can be identified with {(i, j) | 1 <i < j <n}.
Let M; ; be the indecomposable representation of Q associated to the pair (i, ). Its
top and socle are isomorphic to §; and §;, respectively. For each A € Ag, we set
A=A, ) forall 1 <i<j<n.

Lemma5.1. Leti < jbeinl=1{1,2,...,n}and k € Ag be such that

n
MO =@ risMis @ hivr jMip1 ;O N,
s=j

where N satisfies that its top contains no summands isomorphic to S; or S; ;1. Then

n
a,-()»):ZM_S and oih=T1\.
s=j

Moreover, if Xiyyj =0, then o;k = 1;k = v is defined by M(v) = §; @ M(X); if
Xiy1,; >0, then o;h = 1;h = . is defined by

)\Y,t+1 l_f(S,t)Z(l,]),
Use =1 Ase— 1 if(s,0)=0+1,)),
As.t otherwise.

Proof. Let A be given in the lemma. Since Ext}cQ(S,',@";:j ArisM; ) =0 and
Ext}(Q(Si, N) =0, we have

Six M(3) = <€BA,;SM,-,X ® N) @ (Si % hiy1,jMig1 ).

s=j
It is easy to see that

Si if A4 =0,

~ 1
Six Givr Mivr ) = [ M ;@i ;— DM ifdy;>0.

Hence, S; x M(1) = M(v) (resp. M(p)) if A;11 ; =0 (resp. > 0), that is, ;A = v

(resp. p).
If A;41,; =0, then Ext!(S;, M(})) = 0, that is, M(v) is the unique extension of
M(X) by §;, and so

iy, =Y finully = fiuily.
I

On the other hand, by definition, we have

aiﬁk — v“_d*uiu;» — th'd*H"A)go;’)‘(vz)uu.
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Thus, f; s, = v~ GFEA=htdvgr. (32) By Proposition 4.5, we get
ai{d) =deg firw=hy —di +{i, ) —hy, +dy +2(hy v — hy)
= h.i =dimHomy g (M(X), 5;) Z)»m
Replacing X by v in the above yields a; (v) = Z;’:j Ais +1=a;(A) + 1. Hence, by

Theorem 4.2, we get E;(@1;) = it, (mod v, de, A =v.
Suppose now A; 1 ; > 0. Again, by definition, we have

IZ,‘I;)L = vh**d*u,'uk = Uh)‘ A ((P, A( )uli + (p;j)\(vz)uv)

= fi.k;uﬁu + fi,A;vﬁv,
where
_fi,)»;;L - vh)\—d,\+(i,}»)—hu+du¢lfj-k(v2) and finw = vh)‘_d)‘+<i‘)“)_h"+d"(p;)’)\(Uz).
Then, by Proposition 4.5, we get

degﬁyx;“ =2h)»,lt —h, _hl/« + 14+, A) and
deg fi v = 2hpp—hy —hy + 14+, 0).

Set

n
M =P Mis® iy j— DMy j®N.
s=Jj
Then
MO)=M&M,,; and Mu)=Me&M,,.

Hence, we get

deg fi ., = dimHomgo (M, M;;) — dimHomy o (M, M, ;) — dimHoka(M,-j, M)
+ dimHomy g (M; 41 j, M) + (dimS;, dimM (1)) + 1.

An easy calculation shows that

n
dimHoka(M, Mij) = dimHoka(M, My )+ ZA-[,S,
s=j
dim Homg g (M;;, M) — dimHom, o (S;, M)
= dimHoka(MiH,j, M) =i +1,
{dimS;, dimM (1)) = dim Homy o (S;, M) — Ait1, .
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This gives deg fi ;. = Y_i_; 4is- Similarly, we have deg fi »;» = > e hiis =i,
Thus, a;(A) = Y1 Ais.
Repeating all the arguments above for p replaced by X, we obtain that

ai(W) = his+l=a()+1.

s=j

This together with Theorem 4.2 implies 7;A = p.
We conclude that o; A = 1;A in both cases. O

Remark 5.2. Although one may use the explicit formula 7; A (for the linear quiver
case only) given in [17, Section 1] to prove the lemma, we provided a proof which
directly uses Theorem 4.2.

Let e Ag and definefor 1 <i < j<n

w,-,j:wi,j(}»)zi...ii—kl...i—‘r1...j.‘.j,

Aij Aij Agj
and
w=w)= Wy nWn—1,n-1Wn—1,n ... W IW[2... W] p.

We now show that the paths corresponding to w in the generic extension graph and
the crystal graph have the same endpoints.

Theorem 5.3. Let A € Ag and w = w(A) be defined as above. Then
p(w) =i =r(w).

In particular, = ' (W) Nk~ (L) #0.

Proof. Since Exty,(M; ;, M; ;) =0, we get
M (g (wi ) = ki jMi ;.

Further, from the fact Ext} oM j, My ) =0 fori > s it follows

M(@(w)) = )\n.nMn.n @}\nfl,n~an—l,nfl ® )\n—l,nMn~l,n D---
BIMAMI 1B B A My = MO,

1e., p(w)=2x.
For 1 <i < j <n, wedefine A/ € Ay by

500 sy fs<iors=it2],
st 0 otherwise.
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We use induction on the length /(}) := Zi,j A;j to show k(w) =1 . IfI(A) =0or
1, it is clear. Let now /(1) > 1. Then there are 1 <i < j < n such that A; ; # 0, but
Asy=0foralls >iors=i,t < j, hence, A = A“)). For simplicity, we set m = 1, ;
and w =A%/t Then I() < I(1) and

w=wA)=i...i...j...j w(r).

m m

By induction hypothesis, we may suppose « (w(w)) = 7. Then

m
j— T.

k(wy=1¢"---t 7

J

Since

n
Mmy= P risMis® P oM,

S=j+1 s<i
s<t€n

we have by repeatedly applying Lemma 5.1 that M (rj’."n) =mS; ® M(rw). By
further applying Lemma 5.1 to t;"n, we get M(tj'."_lr]’.”yt) =mM;_; ® M(m).
Inductively, we finally deduce

M(t -t ) EmM; ;@ M(m) = M),

that is, x(w) = A.

Example 5.4. We use Figure 2 and Figure 3 to compute the intersection o' (1) N
«~1(x) for all A with dim M (1) = 4 in the following table:

A el ne 1) A el nk T A e lne oy

4,0,0) I8 (1,0.3) 231 (0,2,0) 1212, 1222
(3,01 213 (2,1,0) 132 0.,1,2) 2212,2122, 123
(2,0,2) 2212 (1,1,1) 1221,2122 (0,0,9) 24

6. THE INFINITE LINEAR QUIVER CASE

The consideration for linear quivers L, can be easily transferred to the infinite
linear quiver L. As in the finite case, for all i, j € Z with i < j, there is an
indecomposable representation M; ; of L, with top S; and socle S, where §; and
S; are simple representations corresponding to vertices i and j, respectively. Thus,
the set of isoclasses of (finite-dimensional) indecomposable representations of L
is identified with

oL ={G, )i, jeZ i<},
and the isoclasses of representations of Lo, are indexed by the set
Ao = {A: ®% —> N|supp(}) is finite},

where supp(A) = {(i, j) € ®E, | A(i, j) #0).
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The existence of Hall polynomials allows us to define the Ringel-Hall algebra
Hy(Loo) of Lo, which can be identified with the Lusztig integral form U,/ (sl) of
the positive part U} (slo) of the quantized enveloping algebra of sl (see [12]).

As in the L, case, for each i € Z, the generic extension of S; by a representation
and the Kashiwara operator E 22, respectively, induce maps

07,177 Ao — Ao

i

Let Q4 denote the set of all words on the alphabet I = Z. We further define maps
£, k% 1 Qo0 —> Ao

by respectively
PP (w) = oi‘l’oai‘;" . ~ai"’f(0) and «®(w)= tﬁorgo - T(0),

where w =1i}iz...i;y € Q. Theorem 5.3 implies the following

Proposition 6.1. For each A € As, we have p™(w) = «®(w) = A for some
W E Qoo

7. THE CYCLIC QUIVER CASE

In this section, we assume that Q is the cyclic quiver A = A, (n > 2) with vertex
set I ={1,2,...,n}. We first compare maps o; and 7; (1 <i < n) for A, with those
for L.

Forall 1 <i <n—1, we define

V=vYi:Ar —> Aoos A=y Dirertez, V> ¥ (A)

by

()\) @@)"s] §,5+j—1-
s=1 j=1

In other words, for (s, 1) € &%, we have

)‘-.v,j lfj=l—§‘+l,
0 otherwise.

Y(A)(s, )= [
Further, we define
Yo Ap —> Ao; A Y, (1)

by

M(yn(3)) GBEBA”MH] i P rn M.

s=1 j2lI izl
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Propeosition 7.1.

(1) We have the following commutative squares

Ap Vs Ao AV AL
oll lo,-"" and Unl laf"
Aa TAOQ Aa TAOO

where 1 <i<n—1.
(2) For u,A€ Ap and 1 <i < n, we have

Iz VA
i (1) =@y 0y ey (-

Proof. (1) This follows from [2, Proposition 3.7] and [3, Proposition 7.3].
(2) If there exists an exact sequence

(7.1.1) 0— S — M) — MQR) — 0,

then there is an ! > 1 such that

Wi —1 if (s, 1) = (i, 1),
Asp=1q Mitri—1+1 if(s,)=3G+1,1-1),
s ¢ otherwise.

Let

a= Z“"J (resp. b = Zﬂi,j)o

j>l Jj=I
An easy calculation shows (see the proof of [2, Proposition 9.1])

W) =iy oy M =T+ T 4+ T,

If there is no exact sequence of the form (7.1.1), then <pffA(T) =0= ‘pd/:ég?\ln ™ (T).o
The following result has been given in [12, 4.4].4

Proposition 7.2. The following squares commute

Vi Yn

U Froen L F

Ap—>Ax Ap——>Ax
n

Vi

d<i<n-1,

4 1t was not pointed out in [12, 4.4] that the case for i = n is slightly different from the cases for
i=1,2,..., n — 1. We separate this through the second commutative diagram.
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We remark that Theorem 4.2 for the cyclic quiver case can be easily obtained
form 7.1(2), 7.2 and the Dynkin case. Moreover, based on Proposition 7.2, Leclerc
et al. [12, Theorem 4.1] have explicitly worked out t; A which we now describe.

For each A € A, let

Siom = Z(M,l = Xig1.1),

1Zzm

where X; 17 = Xj; in case i = n. Let mg be the minimal positive integer such that
Simy = max{s; , {m > 1}.

By definition, if mq > 1, then A; ;1 my,—1 = 1. In this case, we define ;1 € Ay by

)"i.mo + 1 lf (Sv t) = (l, mO)’
st =1 Aixtmg—t — 1 i (s,) =@ +1,mg—1),
As.t otherwise.

In other words, M () is obtained from M (1) by replacing a summand S;11[mg — 1]
with a summand S;{mg]. If mg =1, w is defined by M(u) = S; & M(%).

In contrast, for the given i and A, if A; 11 ; =0 forall j > 1, we define v € A, by
M) = §; @ M(X). Otherwise, let m; be the maximal number j suchthat X, ; #0
and define v by

A'i,mr}vl"i_l lf(S,t)Z(l,m|+1),

Vs = )”i+1,m1 —1 if(s,t) =+ 1,my),
As.t otherwise.

Theorem 7.3. Let k€ Ap, i €1 and let u, v be defined as above. Then

(1) ([12, Thm 4.1]) t:A = w;
) ([2,3.7]) oik = v.

We now apply the theorem to show that there exists A € A 5 satisfying =1 (1) N
—1
k(A =0.

Example 7.4. Let n =3 and Q be the cyclic quiver Asz. Let A € A be such that
M) =81 S51[2] D S1[3]1® $22] @ S3131.
Let N be a maximal submodule with M/N = §; for 1 <i < 3.Ifi =1, then
S1 @ 51121 @ $202] @ $12(2] @ S3[31=: Ny or
N=1 851051319 520 2021 S3(3] =V or
SI219 S$1[31® S202] @ S3[3] =: Ns.

By Theorem 7.3(2), we have
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S1x NI =80 51[2]® 51319 $20218 S3[31 =M (1),
S1*x N2 = 81 @ S1[319 S1[3]1 8 52 @ S513],
S1+ N3 = 81[2] @ S1{31 @ Si1[319 S3[3].

In a similar way, for i =2 or 3, we can show S; * N & M(X). Let u € A satisfy
M () = Ny. Then o1 () = A and

Pl ={lwlwep W)}
Repeating the arguments above, we finally obtain
') = {y = 1322173222}
But, by Theorem 7.3(1), we have
M(k(») ZS1 @ S1 @ Si[2]1 D $202]1 D S2[21 @ S3[31 E MD).

This means that o~ '(A) N «~'(4) = @. In fact, by applying Theorem 7.3(1)
repeatedly, we get

k) = (17231213232, 12231213722, 12231231232, 17231231322,

17232173232, 17232173222, 12232131232, 1223213132?,
17321213232, 12321213222, 12321231232, 1732123132%}.

Remark 7.5. Although Theorem 5.3 fails for cyclic quivers, it is natural to expect
that the same result holds for all Dynkin quivers. Furthermore, with the techniques
of Frobenius morphisms on quiver representations developed in [4], the truth for
the simply-laced case would imply that for the non-simply laced case.
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