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ABSTRACT 

in the present paper, we introduce the generic extension graph G of a Dynkin or cyclic quiver Q and 
then compare this graph with the crystal graph C for the quantized enveloping algebra associated to Q 
via two maps ~)Q, gQ : ~2 ~ AQ induced by generic extensions and Kashiwara operators, respectively, 
where AQ is the set of isoclasses of  nilpotent representations of Q, and ~2 is the set of all words on 
the alphabet 1, the vertex set of Q. We prove that, if Q is a (finite or infinite) linear quiver, then the 
intersection of the fibres ~VQ 1 (~_) and KQ J ()~) is non-empty for every )~ c A Q. We will also show that this 
non-emptyness property fails for cyclic quivers. 

1. INTRODUCTION 

Let Q be a Dynkin or cyclic quiver with vertex set I = {1,2 . . . . .  n}, and let f2 
be the set o f  all words on the alphabet I. Let AQ denote the set o f  isoclasses o f  
(finite-dimensional) nilpotent representations o f  Q. In [2,3], the first two authors 
introduced a map, the generic extension map, 

~ ~ ~ Q  : ~ ---+ A Q .  

The fibre of  ~Q is described as those words w = i l  . . .  im in ~ which define the 

same generic extension Si~ * . . .  * Sire of  simple modules S i j  . . . . .  S i re .  Also, the 
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map ~a gives a strong monomial basis property for the +-part U + of the associated 
quantized enveloping algebra U = Uv (Q). 

In [11], M. Kashiwara introduced certain operators /~i • End(U +) (i • I) in the 
construction of his crystal bases for U +. Kashiwara proved that, if  

= ~ dgoo(/~w - l) c U +, 
wE~ 

where/~w = / ~ i l  ' ' "  Eim for w = il "" im and 

Am = {f(v)  • Q(v) l f ( v - ' )  is regular at v = 0}, 

then the set B = {/~u, • 1 + v- la :  [ w • ~2} forms a basis for Z / v - l ~ ,  which in turn 
determines the canonical basis B = {bx I Z • A} c a: of U +. Here the index set A 
can be identified as A Q. Thus, one obtains a map 

K =liQ :~----> AQ 

defined b y / ~  • 1 = b,(w) (modv-la¢). The description o f x  is a hard problem. In 
particular, the fibres of x are not known. 

In this paper, we investigate the relations between the two maps XQ and ~aQ. We 
shall see that in general, RQ as a map is not equal 1 to gaQ. However, it is always true 
that XQ(W) <~ 8aQ(W) for all w • ~ and given Q. Here ~< is the partial ordering on 
A Q. Further relations will be discussed when Q is one of  the following quivers: 

L n  : ~ 2 3 n - -1  n 

L O O  : . . . . . . .  = 
- -n  ~1  0 1 n 

n 

An : 

1 2 3 n - 2  n - 1  

Figure I. Linear and cyclic quivers. 

In particular, we prove that, if  Q is a finite linear or infinite linear quiver, then 
gaa I (X) Cq XO 1 (X) ¢ 0 for all ~ E AQ, and show by counter-example that this fails if 
Q is a cyclic quiver. 

We may interpret these relations in terms of graphs. There are two graphs with 
the same vertex set AQ -- the crystal graph C and the generic extension graph G - 
associated to x and ~a, respectively. For w ¢ ga, x(w) = X (resp. ga(w) = X) means 
that there is a path from vertex 0 to the vertex X in C (resp. G) and every such a path 
is given by an element in ~2; so x ¢ ~a means that the two graphs are not identical 

1 This is contrary to an earlier incorrect computation in the type A case announced in [6]. 
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(i.e., they have different edge sets). However, for linear quivers, there is at least one 
path in common among all paths from 0 to any given vertex )~ E A Q. 

We organize the paper as follows. We present the basics for quiver representations 
and the generic extension map in Section 2, and Ringel-Hall algebras and quantum 
groups in Section 3. In Section 4, we introduce the map x and discuss its properties, 
built on a work by Reineke in [16]. The last two sections are devoted to proving the 
main results mentioned above for linear quivers. 

2. QUIVER REPRESENTATIONS AND THE GENERIC EXTENSION MAP 

Let Q = (1, Q1) be a quiver, i.e., a finite directed graph, where 1 = Q0 is the set of 
vertices {1,2 . . . . .  n} and QI is the set of arrows. I f p  E QI is an arrow from tail i 
to head j ,  we write h(p)  for j and t (p)  for i. 

A (finite-dimensional) representation V = (Vi, Vp) of  Q, consisting of a set of 
finite-dimensional vector spaces Vi for each i E I and a set of  linear transformations 
Vp : Vt~p) --+ Vh~p) for each p E Qj, is identified with a (left) module over the path 
algebra kQ of  Q. We call dimV := (dimk V1 . . . . .  dimk Vn) the dimension vector of 
V and d ( V )  := Y~7=I dim Vi the dimension of  V. The representation V = (Vi, Vp) 
is called nilpotent if  for each oriented cycle Pro... Pl at a vertex i, the k-linear 
map Vp,, . . .  Vpl :Vi --+ Vi is nilpotent. Obviously, each vertex i E Q0 gives rise to 
a one-dimensional nilpotent representation Si. Note that if Q contains no oriented 
cycles, then every representation is nilpotent. 

Example 2.1. Let Q be a Dynkin quiver, that is, its underlying graph is a (simply 
laced) Dynkin graph of  type ADE. By Gabriel's theorem [7], there is a bijection be- 
tween the set of  isoclasses of  indecomposable representations of Q and the positive 
system q~+ = ~+(Q)  of the root system q~(Q) associated with Q. For any ~ E ~+,  
let M(~) = Mk(ot) denote the corresponding indecomposable representation of  Q 
over k. By the Krull-Remak-Schmidt theorem, every representation M of  Q is 
isomorphic to 

M(X) = Mk(X) := ~1~ )~(c~)Mk(cl), 

for some function ~.:~+ ~ N. Thus, the isoclasses of representations of  Q are 
indexed by the set 

A : A Q  = { ) ~ ' ~ +  ~ N } ~ N  q~+. 

We embed q~+ into AQ naturally. 

Example 2.2. Let Q be the cyclic quiver A,, (n /> 2). For each integer l ~> 1, 
there is a unique (up to isomorphism) indecomposable nilpotent representation 
Si[l] of  length / with top Si. It is well known that Sill] (i E I, 1 >1 1) yield all 
isoclasses of indecomposable nilpotent representations of  Q, and this classification 
is independent of the field k. Thus, one way to describe the isoclasses of  nilpotent 



representations of Q is to use n-tuples of  partitions. Namely, for each n-tuple 
.. " (i) re : (Jr fl), rr (2), ., Jr~')) of  partitions y/.(i) = (71-~ t) ~ 7r 2 ~ --"), 1 ~< i ~< n, we 

define a nilpotent representation 2 of  Q 

M(Jr):Mk(~): ~ Si[TlJi)]. 
iEl,j>/1 

If we write the partition 717 (i) a s  

j r  (i) = (1~-i,1 , 2x/,2 . . . . .  l)'i.t . . . .  ). 

Then rr is uniquely determined by ~. = ( )~ i , / ) .  Thus, we obtain a bijection between 
the set of  n-tuples of partitions and the set 

AQ = {X:I x Z+ ~ N I supp(~.) is finite}, 

where Z+ denotes the set of all positive integers, and supp(~.) = {(i, l) I ,k(i, l) -¢ 0}. 
We may also rewrite M(zr) as 

M(rr) = M ( X )  : =  ~ )~i,lSi[I]. 
iE l , l~ l  

We now assume for the rest of  the section that k is algebraically closed. Fix 
d = (di)i E N n and define the affine space 

R ( d ) = R ( Q , d ) : =  I-I H°mk(kdt~p"kdh~P') ~ 1-I kah'p'×d'~P~" 
PEQ1 PEQI 

Thus, a point ,x = (xp)p of  R(d) determines a representation V(x) of  Q. The 
algebraic group GL(d) = I - I in=l  GLdi (k) acts on R(d) by conjugation 

-1  
(gi)i  " (Xp)p = (gh(p)Xpgt(p))  p , 

and the GL(d)-orbits Ox in R(d) correspond bijectively to the isoclasses IV(x)] of  
representations of  Q with dimension vector d. 

The stabilizer GL(d)x -- {g 6 GL(d) I gx = x} ofx  is the group ofautomorphisms 
of  M := V(x) which is Zariski-open in EndkQ(M) and has dimension equal to 
dimEndkQ(M). It follows that the orbit OM := Ox of M has dimension 

dim OM = dim GL(d) - dim Endk Q (M). 

For two representations M, N of Q, define [N] <~ [M] (or simply N < M) if ON C_ 
OM, the closure of OM. This gives rise to a partial order on A Q by 

~. ~</z .~ ',. Mk(X) ~< Mk(#). 

2 The module  M(n) defined here is indeed the module  M ( # )  defined in [20], where ~" = 

(~(1), . .  ~ ( n ) )  and ~(i) denotes the dual - (i) ., partit ion o ! r r  , i E 1. 



From now on, we assume that Q is a Dynkin or cyclic quiver. Given nilpotent 

representations M, N o f  Q, consider the extensions 

0 > N  ~ E  > M  >0 

o f  M by N. Note that E is again nilpotent. By [1,17,2], there is a unique (up 
to isomorphism) such extension G with dim O a  maximal  (or equivalently, with 

d imEndkQ(G) minimal).  We call G the generic extension of  M by N, denoted by 

M * N .  
Let ~2 be the set o f  all words on the alphabet 1 = {1,2 . . . . .  n}. For w = 

i l i 2 " "  im C g2, let ~v(w) c AQ be the element defined by 

(2.2.1) Si, * Si2 * ' " *  Sire ~- M ( p ( W ) ) .  

Thus, we obtain a map 

~ : ~ O : ~ - - - - - +  AQ, Wl ) ~(W) .  

Moreover, if  Q is a Dynkin quiver, then So is surjective; if  Q is a cyclic quiver, then 
is not surjective with Im~o = A~,  the set o f  all aperiodic n-tuples o f  partitions, 

that is, those rr = (Tr (1), zr ~2) . . . . .  Jr (n)) satisfying that for each t ~> 1, there is some 

i 6 1 such that t is not a part in Jr (i). 

For each i ~ I ,  there is a map 

(2.2.2) •i:AQ ----+ AQ; X I > O'i~ 

defined by 

M(o'iX) ~ Si * M(X). 

It is clear that for each w = i l i2 . . ,  ira, it holds 

(2.2.3) So(w) =~rilc~i 2 "''trim(O), 

where 0 is the element in A a corresponding to the isoclass of  zero module. 
We end this section with the definition of  the generic extension graph. 

Definit ion 2.3. Let Q be a Dynkin or cyclic quiver. The generic extension graph 
i 

associated to Q is the directed graph G with vertices )~ 6 A Q and arrows )~ > # ,  

where )~, # c AQ and ~ri)~ = # for some i 6 I .  Indeed, it is a n / - c o l o r e d  graph. 

Thus, by (2.2.3), every word w c f2 defines a path from 0 to )~ --- ~ ( w ) .  Clearly, 

~-~0~)  consists o f  all such paths, and the map ~v sends every such a path to the 

other endpoint ~.. 
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3. RINGEL-HALL ALGEBRAS AND QUANTUM GROUPS 

Let Q be a Dynkin or cyclic quiver. By [19,20,9], for )~,/z, v in A Q ,  there is a 
polynomial ~0uz,v(T) • Z[T], called a Hallpolynomial, such that for any finite field 
k of  qk elements, ~ouX v(qk) is the number of  submodules X of Mk(~.) satisfying 
X ~- Mk(v) and Mk()O/X -~ M~(#). 

Let Z = Z[v, v -I]  be the Laurent polynomial ring over Z in indeterminate v. 
The (twisted generic) Ringel-Hall algebra 7%(Q) of Q is by definition the free 
Z-module having basis {ux = UlM(Z)l I )~ • A Q }  and satisfying the multiplication 
rules 

UI~Uv "~ V(#'v) Z ~" 2 ~O#,v(V )u)~, 
)~EAQ 

where (g, v) = dimk HOmkQ(M(/z), N(v)) - dimk EXt~Q(M(/z), N(v)) is the Euler 
form associated to the quiver Q. For each i • I, we simply write ui = utsil. 

On the other hand, every quiver Q determines uniquely a symmetric (generalized) 
Cartan matrix C(Q). Let U = Uv(Q) be the quantized enveloping algebra associ- 
ated to C(Q). Note that U is a deformation of the universal enveloping algebra 
of  the semisimple Lie algebra g(Q) (resp. ~n) with Cartan matrix C(Q) if Q is a 
Dynkin (resp. cyclic) quiver. Let U + = U+(Q) be the positive part of  U, that is, 
the Q(v)-subalgebra of  U generated by Ei, i • I, with quantum Serre relations. 
Further, for each m/> 1, let 

i) m - -  u - m  
[ m ] -  and [m] ! = [1][2]...[m]. 

U - - U - I  

The Lusztig integral form U + = U+(Q) is the Z-subalgebra of  U + generated by 

divided powers E~ m) 
E m 

= ~  w h e r e i • I a n d m ~ > l .  
[m]! ' 

Theorem 3.1 [19,20]. Let Q be a Dynkin or cyclic quiver and U+(Q) be the 
Lusztig integral form ofU + (Q). 

:= um 
(1) I f  Q is a Dynkin quiver, then ~v(Q) is generated by Ul m) [m]~, i • I and 

m >1 I, and there is a Z-algebra isomorphism 

.(m) ( i • l , m ~ > l ) .  qJ:U+(Q) ~ 7-(v(Q); E~m) l > u i 

(2) I f  Q is a cyclic quiver, then there is a Z-algebra isomorphism 

• "U+(Q) ~ Cv(Q); E{m) l > Ul m) (i • I, m ~ 1), 

where Cv(Q) is the Z-subalgebra Of ~o(Q) generated by all (m) called the U i , 
composition algebra of  Q. 

In the sequel, we shall identify U+(Q) with ~v(Q) (resp. Cv(Q)) in case Q is 
a Dynkin (resp. cyclic) quiver. We finally note that the generic extension map 



can be applied to obtain a strong monomial basis property for the corresponding 
quantized enveloping algebra U = U~(Q) in [2,3]. 

4. CANONICAL BASES, GLOBAL CRYSTAL BASES AND THE MAP K 

In this section we review the canonical and global crystal bases for U + = U+(Q) 
defined by Lusztig and Kashiwara, respectively. The map x:f2 ~ A Q  will be 
defined in terms of  Kashiwara operators. 

Again, let Q be a Dynkin or cyclic quiver. For each )~ c A Q, define 

fi;~ = 1)-dimM()')+dimEnd(MO'))U), E 7%(Q). 

Note that ffi = ui. 
By [13,15] (see also [22,18,3,5]), for each ,k ~ AQ, there is a unique element 

(4.0.1) b)~=fi~ + Z pz,lzfi~ E klv(Q) , 
/z<~. 

where pz, ,  ~ v-~Z[v 1]. All the elements bz are invariant under the Z-algebra 
involution 

- : U  + ~, U + ;  E~m) l > E~ m), v l > v -1 .  

If Q is a Dynkin quiver, then BQ = {b~ ] )~ E A Q }  is a Z-basis of  7%(Q) = U+; if 
Q is a cyclic quiver, then BQ = {brr I 7r c A~} is a Z-basis ofCv(Q) = U +. In both 
cases, B = B Q is called the canonical basis of  U + (Q). Lusztig [ 13] shows that this 
basis has many remarkable properties, 

Independently, Kashiwara [10,11] introduces the global crystal basis for a 
quantized enveloping algebra, which is shown in [14,8] to coincide with Lusztig's 
canonical basis. We follow [11, 2.2] to define the global crystal basis 3 of  U +. For 
each i c I, let/~i : U+ -")" U +  be the Kashiwara operator. Let & ~  be the subring of  
Q(v) consisting of  all rational functions f ( v )  such that f ( v  -1) is regular at v = 0 
and define ~£ to be the o4~-submodule of U + generated by the elements 

(4.0.2) Ei~ Ei2 "'" Eim - 1 

for all words w = i l i 2 . .  "ira E if2, where 1 is the identity element of  U +. By B 
we denote the subset of ~/v-1~£ consisting of  the images of all elements of  the 
form (4.0.2) under the canonical projection ~/I -+ ~£/v - l  ~£. Kashiwara shows the 
following facts: 

(1) The set B is a Q-basis of d~/v-l,£, called the global crystal basis of U +. 
(2) For each b c B, there is a unique element/, 6 U + such that/~ ~ ~£ • Ze and that 

the image of/~ under canonical map ~£ ~ £ / v - l £  is b. 
(3) The set B' := {/, r b ~ B} is a Z-basis of  U +. 

3 Note that Kashiwara defines the crystal basis of U -  at v = 0. By using the isomorphism U --+ 

U, Ei ~ El, Fi ~ E l ,  Ki  w-> K i ,  v w+ v - I  , this can be reformulated as a basis o fU  + at v = ~ .  
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Following [14, Theorem 2.3], we have B = B'. 
i l i 2 . . ,  im, there is a unique x(w) -- )` c A Q  such that 

EilE, i2 • "'E'im ' 1 -~ bz (mod v-l~C). 

Thus, for each word w = 

This gives rise to a map 

K = K Q : ~ 2  > AQ; tot ; ~ ) ` = g ( w ) .  

Clearly, if  Q is a cyclic quiver, then Imx = A~. 
Further, for each i E 1, there is a map 

(4.0.3) r i : A Q  > AQ; XI > .ri)` 

define by 

/~i(b)~) ~ bri)~ (rood v-la[~). 

In case Q is a Dynkin quiver, by (4.0.1), this is equivalent to 

Ei(/~)~) ~/~riX (mod v - l ~ ) ,  

Note that in this case all fix lie in ~.  
From the definition, for each w = i l i2 . . ,  im E Q, we have 

(4.0.4) ~(to) = ril.ri2 --.  "rim (0). 

Now the crystal graph C (see [10,11]) is the directed graph with vertices )` c AQ 
i 

and arrows ~. > #, where )`, # c AQ and "ri). ~--- /Z for some i e I. It is also an 
l-colored graph. Like the generic extension graph G, (4.0.4) can be used to identify 
the word set f2 with the set of  all paths starting at 0. 

It is interesting to compare the crystal graph C with the generic extension graph 
G. By definition, it suffices to compare the maps .ri, cri : AQ ---+ AQ. We will see 
shortly that .ri and ai are not equal in general. However, by [14, Corollary 2.5] and 
the definition o fe i ,  we have the following. 

Proposition 4.1. Let Q be a Dynkin quiver and i be a sink of  Q, i.e., there is no 

arrow p with t(p) = i. Then zi = ai and, for each )` E AQ, .ri)` : cri)` is defined by 

M(ri)0 --- Si (~ MOO. 

Based on this fact, Reineke [ 16] obtains the following characterization of  each .ri 
if Q is a Dynkin quiver. Given a Laurent polynomial f ( v )  c Z[v, v -1 ], the degree 
of f ( v )  is defined to be the smallest integer d such that v - d f ( v )  ~ Z[v-1]. For i E I 
and )` ~ A Q, define 

ai ()`) : =  max deg fi,)~:., 
# 

where uifi~ = ~2~ fi,x;~u~,. 
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The following result is a combination of [16, 3.2] and [16, 6.1, 7.1], from which 
the cyclic quiver case also follows (see the discussion in [12, 4.4] or the comments 
after Proposition 7.2). 

Theorem 4.2. Let Q be a Dynkin quiver o f  type other than E8 or a cyclic quiver. 
Then, .for i c I and )~, # e A Q ,  /~i ( t~x)  ---- t~# (mod v 1 o£) (i.e., ~'i ~. = # )  i f  and only 

i f  fi,~u ¢ 0 and deg f/,~:u = ai (,k) ~ ai (#) - 1. 

The theorem together with the fact that fi,zw :~ 0 implies # ~< 0"i (,k), i.e., M(#)  ~< 
Si * M()~) ~- M(0"i)~) gives the following nice relation. 

Corollary 4.3. Let Q be a Dynkin quiver o f  type other than E8 or a cyclic quiver. 
Then for each w ~ f2, we have 

xo(w) ~ ~e(w). 

Proof. Let w = il i2. . .  im E ~. Ifm = 0 or 1, then ~ (w) = x(w). Let m/> 1 and set 
Wl = i 2 . . .  ira, )~ = t¢( tVl  ) and # = x(w). By Theorem 4.2, we have 

x(w) = ~X(Wl) ~ ~tX(Wl). 

Using an inductive argument, we may suppose that X(Wl) <<. ~v (W l). This together 
with [17, Proposition 2] and [2, Proposition 3.4] implies 

K(w) <~ 0"i~x(wl) <<. ~ i~ (w l )  = ~(w), 

as required. [] 

However, the two maps KQ and ~3Q are not equal in general as seen from the 
following example. 

Example 4.4. Let Q be the quiver Q = L 2 " • ~. Let al and Ot 2 denote 
the simple roots. Then cp+(Q) ={otl, c~l + a2, ot2}. Hence, each ~. e AQ can be 
identified with a triple (a, b, c) of non-negative integers, where a = ~.(cq), b = 
~.(cq + c~2), and c = )~(~2). For each )~ = (a, b, c) e AQ, we have by [3, 7.1] 

(a ,b ,c )  = [ (a + 1, b,c) i fc  = 0 ,  
0"1 ! ( a , b +  l , c - 1 )  i fc~>l  

and by [16, 3.2] 

b,c) = / (a + 1, b, c) i fa  ~ c, 
rl (a, 

/ ( a , b + l , c - l )  i f a  < c. 

Thus, al ~ ra. On the other hand, we have by Proposition 4.1 0" 2 = T2. This shows 
that the edge sets of  the generic extension graph and the crystal graph are different. 
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(0,0,0) 

(1,0,0) (0,0,1) 

(2,0,0) (1,0,1) (0,1,0) (0,0,2) 

(3,0,0) (2,0,1) (1,0,2) (1,1,0) (0,1,1) (0,0,3) 

(4,0,0) (3,0,1) (2,0,2) (1,0,3) (2,1,0) (1,1,1) (0,2,0) (0,1,2) (0,0,4) 

Figure 2. The graph G(A2). 

(o,o,o) 

(1,o,o) / / \ \  
(2,0,0) (1,o,1) 

(3,0,0) (2,0,1) (1,0,2) 

(4,0,0) (3,0,1) (2,0,2) 

(0,0,1) 

(0,1,0) (0,0,2) 

(1,1,0) (0,1,1) (0,0,3) 

(1,0,3) (2,1,0) (1,1,1) (0,2,0) (0,1,2) (0,0,4) 

Figure 3. The graph C(A2). 

The generic extension graph G of  Q consisting of  all )~ with dimM(,k) ~< 4 is 
illustrated in Figure 2. Whereas, the crystal graph C of  Q is given in Figure 3. 

Here, in both cases, the color 1 is represented by a dark arrow, while the color 2 
is represented by a gray arrow. Note that the two graphs have the same gray arrows 

since 0" 2 -- r2. 

For Z, # e A Q, we set 

hz,u =dimHomkQ(m(,k) ,m(#))  and d~ =d imm(Z) .  

In particular, we set hz = hz,x = dimEndkQ(M()0). We need the following result 
[16, Section 5] in the next section. 

Proposition 4.5. Let Q be a Dynkin quiver. Let )~, Iz ~ A Q and i ~ I be such that 

MOO is an extension of  Si by M(#). Then 

deg ~p~ u(T) = hu,z - h u. 
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5. THE FINITE LINEAR QUIVER CASE 

In this section, we assume that Q is the finite linear quiver L,, given in Figure 1. 
Then the set qb+(Q) of  positive roots can be identified with {(i, j )  I 1 ~< i ~< j ~< n}. 
Let Mi,j be the indecomposable representation of  Q associated to the pair (i, j ) .  Its 
top and socle are isomorphic to Si and Sj,  respectively. For each )~ E AQ, we set 
)~i.j = )~(i, j )  for all 1 ~< i ~ j ~< n. 

L e m m a  5.1. Let i < j be in I = {1,2 . . . . .  n} and )~ c AQ be such that 

n 

M()~) ~ @)~i,sMi,s G )~i+t,jMi+l,j 0 N, 
s = j  

where N satisfies that its top contains no summands isomorphic to Si or Si+l. Then 

n 

ai()~) = Z ~i,s and ai~. : "gi~.. 
s=j 

Moreover, i f  )~i+l,j = O, then Gi)~ = ri)~ = v is defined by M(v )  ~- Si @ M()~); / f  
)~i+l,j > O, then  ai)~ = r iL  = Iz is defined by 

{ ~..,-,t + 1 if(s,  t) = (i, j ) ,  
# s , t  = )~s,t -- 1 i f ( s ,  t) = (i + 1, j ) ,  

Ls,t otherwise. 

Proof. 

Ext~Q(Si, N) = O, we have 

S i * M ( ) Q =  ).i,sMi,s(~N (t)(Si*)~i+l,jMi+l,j). 

It is easy to see that 

Let ,~ be given in the lemma. S i n c e  ExtlkQ(Si, @,~s!=j ).i,sMi,s)-----0 and 

Si i f ) ~ i + l , j  ---= 0,  
Si * ()~i+l,jmi+l,j) ~- mi,j (~ ( )~i+I , j  - 1)Mi+l,j i f ~ . i + l , j  > 0.  

Hence, Si * MOO ~- M(v)  (resp. M(#))  if ~-/+l,j = 0 (resp. > 0), that is, o-i). = 1) 
(resp. #). 

I f ) ~ i + l , j  = 0 ,  then Ext j (Si, M(,~)) = 0, that is, M(v)  is the unique extension of  
MOO by Si, and so 

{ti{tX = Z fi'x:P{tP = f/ 'Z;v/~v" 

P 

On the other hand, by definition, we have 

~ti{t X = 1)hx-d;~uiux = l)hz-dx+(i'X)qg~,Z (V2)gv. 
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Thus, fi,x;o - -  ~ h z - d x + { i ' X } - h v + d v m v  (+~2~ 
- -  ~ w, A ~ ]- By Proposition 4.5, we get 

ai ()Q = deg fi,A;v = hA -- dA + {i, X} -- h~ + dv + 2(hA,o -- hA) 
n 

= hx,i = dim HOmkQ (MOO, Si) = Z ),i,,. 
s=j 

Replacing X by v in the above yields ai ( v )  = ~-~f=j )~i,s q- 1 = a i ()Q -t- 1. Hence, by 

Theorem 4.2, we get/~i(fiA) - fly (rood v-ldl),  i.e., ri)~ = v. 
Suppose n o w  )~i+l,j > 0. Again, by definition, we have 

 i;,A = vh -  uiuA = + 

= jS,A;ufi, + f/,~;,fi~, 

where 

fi,A;U = 1)hx-dx +(i'X)-htz+dumu (p2~ wi,), ~, 1 

Then, by Proposition 4.5, we get 

deg fi,A;u = 2hA,u - hA -- h u + 1 + {i, X} 

deg f/,Azv = 2hA,v - h z  - h v  + 1 + (i, L). 

Set 

n 

M = ~)~ i , sMi , s  • ( ) ~ i + l , j  - 1)Mi+l,j • N. 
s=j 

M(X) = M G M i + l , j  

Then 

Hence, we get 

= vhx-d~.+(i,k}-hv+dv~,~ v [V2~ and fi,A;;, 't"i, A \ 1" 

and 

and M(~) = M ~ M i , j .  

n 

dimHomkQ(M, Mij ) = dimHomkQ(M, Mi+l,j) q- Z )~i,s, 
s=j 

dim HOmka(Mij ,  M)  - dim HOmkQ(Si, M)  

= dimHomkQ(Mi+l , j ,  M)  - -  ~-i+l,j -~- 1, 

(dimS/, dimM(L)} = dim HOmkQ (Si, M)  - ~.i+l,j. 

14 

An easy calculation shows that 

deg fi,x;u = d imHomkQ(M,  M i j )  - d imHomkQ(M,  M i + l , j )  - dimHomkQ(Mi j ,  M)  

+ dimHomkQ(Mi+l , j ,  M)  + (dimS/, dimM()0} + 1. 



This gives deg fi,z;u = ~n=j ~,i,s. Similarly, we have deg fi,x;~, = Y~=j  ~,i,, - Xi+~,j. 
n X Thus, a i(X) = Y~s=j  i,s. 

Repeating all the arguments above for # replaced by ,k, we obtain that 

/ /  

ai (I J )  : Z ~.i,s q- 1 = ai ()~) -}- 1. 
s=j 

This together with Theorem 4.2 implies "t'i)~ = ]Z. 
We conclude that O'i). = 1"i)~ in both cases. 

R e m a r k  5.2. Although one may use the explicit formula "gi ) .  (for the linear quiver 
case only) given in [17, Section 1] to prove the lemma,  we provided a p roof  which 

directly uses Theorem 4.2. 

and 

Let ;. E A Q and define for 1 ~< i ~< j ~< n 

toi,j = tOi,j()~) = i . . . i i  + 1 . . . i  + 1 . . . j  . . . j ,  

Xij )~ij Xij 

tO = tO(k) ~ tOn,nton-l ,n-1 ton- l ,n  .. • 1/}1,1//)1,2 • . .  t o l , n -  

We now show that the paths corresponding to to in the generic extension graph and 
the crystal graph have the same endpoints. 

T h e o r e m  5.3. Let X E A Q  and to = to(Z) be defined as above. Then 

(w) = z = x(w). 

lnparticular, ~ - I ( X )  n x - l ( k )  :~ 0. 

Proof .  Since Ext~o(Mi,y, Mi,j) = O, we get 

M(K 3 (toi,j)) ~ Xi,jMi,j. 

Further, f rom the fact EXt~Q(Mi,j, Msa) = 0 for i >~ s it follows 

M(~(w) )  ~)~n,nMn,n Gkn  l , n - [Mn - l , n -1  GT.n- l ,nMn- ] ,n  @ " "  

G ) M , 1 M I , 1  • " ' "  G )~],nMl,n ~- M()~),  

i .e. ,  ~ (w)  = )~. 
For 1 <~ i ~ j ~< n, we define ~(i,j) G A Q  b y  

)(i,j) [ )~s,t i f s  < i or s = i, t ~> j ,  
s,t = [ 0 otherwise. 
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We use induction on the length l()~) : =  Zi , j  )~ij to show x(w) = )~. If/(;~) = 0 or 
1, it is clear. Let now l(;0 >/ 1. Then there are 1 ~< i ~< j ~< n such that ~'i,j ~ O, but 
;~s,t = 0 for all s > i or s = i, t < j ,  hence, L = )~(i,j). For simplicity, we set m = ,ki, j 
and Jr = )~(i,j+l). Then l(rr) < l(;~) and 

w=w(Z)=i . . . i . . . j . . . jw(rr) .  
m m 

By induction hypothesis, we may suppose x(w(rr)) = Jr. Then 

Since 

K ( w )  = "-"   7-1 

M(Tr)= + )~i,sMi,sO ~ ~.s,tMs,t, 
s = j + l  s<i s<~t~n 

we have by repeatedly applying Lemma 5.1 that M(rjnJr) = mSj q~ M(zr). By 
further applying Lemma 5.1 to rTzr, we get M(rT_lr~zr)  = mMj-l, j  ~ M(zr). 
Inductively, we finally deduce 

M(r /m- ' '  rjm_ 1 r~nTr) ~ mMi,j G MOr) ~ M(~.), 

that is, x(w) = ).. 

Example  5.4. We use Figure 2 and Figure 3 to compute the intersection ~o -1 ()~) n 
x-1 ()0 for all ~. with dim M()~) -- 4 in the following table: 

/~;9-- 1 (~) N K-- 1 (~) X ~--1 (~) N K - 1  (X) X ~0--1 (~) n K -  1 (~) 

(4,0,0) 14 (1,0,3) 231 (0,2,0) 1212, 1222 

(3,0,1) 213 (2,1,0) 132 (0,1,2) 2212,2122,123 

(2,0,2) 2212 (1,1,1) 1221,2122 (0,0,4) 24 

6. THE INFINITE LINEAR QUIVER CASE 

The consideration for linear quivers Ln can be easily transferred to the infinite 
linear quiver Loo. As in the finite case, for all i, j • Z with i <~ j, there is an 
indecomposable representation Mij of  Loo with top Si and socle S j, where Si and 
Sj are simple representations corresponding to vertices i and j ,  respectively. Thus, 
the set of  isoclasses o f  (finite-dimensional) indecomposable representations o f  L ~  

is identified with 

q b + =  {(i, j ) l i ,  j • Z ,  i <~j}, 

and the isoclasses of  representations o f  Loo are indexed by the set 

A ~  = {2.: q~+ ~ N I suppO.) is finite}, 

where suppO.) = {(i, j )  • q~+ I ~-(i, J) ¢ 0}. 
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The existence o f  Hall polynomials  allows us to define the Ringel-Hal l  algebra 
H v ( L x )  of  L o~, which can be identified with the Lusztig integral form U + (s [~) o f  
the positive part U + (s[oo) of  the quantized enveloping algebra o f  5Ioo (see [12]). 

As in the Ln case, for each i 6 Z, the generic extension o f  Si by a representation 
and the Kashiwara o p e r a t o r / ~ ,  respectively, induce maps  

O'i ~ , "/'/~ : Aoc > Aoo. 

Let ~2~ denote the set o f  all words on the alphabet I = Z. We further define maps  

~ ,  K °c " Q ~  > Aoc 

by respectively 

~°°(w)  = o ? ° a ~ .  tl 12 " "aiT(O ) and x°°(w)  = r~r?°" , J  '2 "rim ~ ( 0 ) '  

where w = i l i2 . . ,  im E Q ~ .  Theorem 5.3 implies the following 

Proposition 6.1. For each )~ E A ~ ,  we have ~ ( w )  = x ~ ( w )  = )~ for  some 
w E Qcc. 

7. THE CYCLIC QUIVER CASE 

In this section, we assume that Q is the cyclic quiver A = An (n ~> 2) with vertex 
set I = {1,2 . . . . .  n}. We first compare  maps ai and ri (1 ~< i ~< n) for An with those 
for Loo. 

For all 1 ~< i ~< n - 1, we define 

by 

1~ : 1/t i : A A ) A ~ ;  ~- : (~.i',l)i'cl,lEZ+ I > l[t()~) 

n 

: ( 3  s+j-I 
s : l  j /> l  

In other words, for (s, t) E ap+, we have 

{)~,j  i f j = t - s + l ,  
7~(~.)(s, t) = 0 otherwise. 

Further, we define 

by 

n - I  

M(l~n(~-)) = O @ ~ . s . j M s + l , s + j  @ ~ n , j M l , j .  
s = l  j~>l ,j~l 
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Proposition 7.1. 

(1) We have the following commutative squares 

AA ~i > Aoo AA ~:" > Aoo 

+I I: an. °I L: 

where l <~ i <<. n - 1 .  
(2) For I~, X ~ AA and 1 <<. i <~ n, we have 

~o~,x (T) ~i(u) ,,.,. 
: q)~i (i), ~i ()v) L1)"  

Proof. (1) This follows from [2, Proposition 3.7] and [3, Proposition 7.3]. 
(2) If  there exists an exact sequence 

(7.1.1) 0 > S i ~ M ( # )  > M(X) > O, 

then there is an I ~> 1 such that 

#i,l - 1 if (s, t) = (i, l), 
Xs,t= # i + l , t - l ÷ l  i f ( s , t ) = ( i + l , l - 1 ) ,  

lzs,t otherwise. 

Let 

a = Z # i , j  (resp. b = Z # i , j ) .  
j> l  j = l  

An easy calculation shows (see the proof of [2, Proposition 9.1 ]) 

~o~,)v(T ) - ~i(#) :,'r,x Ta( l  q- T q- + Tb-1).  
= q)~Pi(i)AOi(X)~,l) . . . .  

If  there is no exact sequence of the form (7.1.1), then ~o~,z (T) = 0 = qg~i(i),~i(X)(l).V ] ~ ' i  (#) +~- 

The following result has been given in [12, 4.4]. 4 

Proposition 7.2. The following squares commute 

~i lPn AA > Aoo AA > Ac~ 

A A ~ _ ~ i  Ao ° ( l~<i~<n--1) ,  A A ~ A o c  

4 It was not pointed out in [12, 4.4] that the case for i = n is sl ightly different from the cases for 

i = 1,2 . . . . .  n - 1. We separate this through the second commutat ive  diagram. 
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We remark that Theorem 4.2 for the cyclic quiver case can be easily obtained 
form 7.1(2), 7.2 and the Dynkin case. Moreover, based on Proposition 7.2, Leclerc 
et al. [12, Theorem 4.1] have explicitly worked out l"i)v which we now describe. 

For each )v E A A, let 

si.~ = 2_~ (~i,t - ),i+I,P, 
l >~m 

w h e r e  )vi+ I ,l = )Vl,/in case i = n. Let m0 be the minimal positive integer such that 

Si,mo ~ -  max{si,m I m >~ 1}. 

By definition, i f  m0 > 1, then )Vi+l,m0_ 1 ~ 1. In this case, we define # E AA by 

)Vi,mo q- l if  (S, t) = (i, m0), 
)Vi+l,m0_l I l i f ( s , t ) = ( i + l , m o - - 1 ) ,  
)Vs,t otherwise. 

In other words, M(/z) is obtained from M()0 by replacing a summand Si+~ [m0 - 1] 

with a summand Si[mo]. I f  m0 = 1, # is defined by M ( # )  ~ Si @ M(),). 

In contrast, for the given i and )v, if)vi+l,j = 0 for all j ~> 1, we define v E AA by 
M (v) -~ Si • M(),).  Otherwise, let m l be the maximal  number  j such that )Vi+l, j ~;k 0 
and define v by 

)Vi,ml+l q- 1 

l)s, t ~ )Vi+l,ml - -  l 

~-s,/ 

i f ( s , t )  = (i, ml + 1), 

i f ( s , t )  = (i + 1 ,ml) ,  
otherwise. 

T h e o r e m  7.3. Let )~ E A A, i E 1 and let ~,  v be defined as above. Then 

(1) ([12, Thm 4.1]) ri)v = #;  

(2) ([2, 3.71) ~i,~ = v. 

We now apply the theorem to show that there  exists X c AA satisfying p - l ( ~ )  n 
K - 1 ( ~ ) = O .  

E x a m p l e  7.4. Let n = 3 and Q be the cyclic quiver A3. Let ~. E AA be such that 

M ( ~ ) = S 1 G S j [ 2 ] G & [ 3 ] G S 2 [ 2 ] O S 3 [ 3 ] .  

Let N be a maximal  submodule with M / N  ~- Si for 1 ~< i ~< 3. I f / =  1, then 

SI O Sl[210S212]~3S212]GS313]=:Nl  or 
N ~  SI G SI[3]@S2@S212]GS313]=:N2 or 

S~[210S11310S212]~3S313]=:N3.  

By Theorem 7.3(2), we have 
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S1 * N1 ----- SI  ~ $112] ~ S113] ~ $2121 @ $313] = M()v), 

SI  * N2 -- Sl @ S113] q~ $113] ~ $2 q~ $313], 

$1 * N3 -- Sl[2] ~ S113] ~ $113] • $313]. 

In a similar way, for i = 2 or 3, we can show Si  * N ~ MOO. Let # e A satisfy 
M(/z) ~ Nl. Then crl (#) = )~ and 

~-~(z) = { l w l w  ~ ~-'(~)}. 

Repeating the arguments above, we finally obtain 

go-l()v) = {y = 1322133222}. 

But, by Theorem 7.3(1), we have 

M(tc(y)) ~ S! (~ S1 • Sl[2] ~ S212] ~ $212] ~ S3131 ~ M(JL). 

This means that ga-l(L)FI x - l ( ~ . ) =  0. In fact, by applying Theorem 7.3(1) 
repeatedly, we get 

x- l (Z)  = {12231213232,12231213222,12231231232,12231231322, 

12232123232,12232123222,12232131232,12232131322, 

12321213232,12321213222,12321231232,12321231322}. 

Remark  7.5. Although Theorem 5.3 fails for cyclic quivers, it is natural to expect 
that the same result holds for all Dynkin quivers. Furthermore, with the techniques 
of  Frobenius morphisms on quiver representations developed in [4], the truth for 
the simply-laced case would imply that for the non-simply laced case. 
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