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Motivated by the observed coordination of nearby beating cilia, we use a scale model experiment to show
that hydrodynamic interactions can cause synchronization between rotating paddles driven at constant torque in
a very viscous fluid. Synchronization is only observed when the shafts supporting the paddles have some
flexibility. The phase difference in the synchronized state depends on the symmetry of the paddles. We use the
method of regularized Stokeslets to model the paddles and find excellent agreement with the experimental
observations. We also use a simple analytic theory based on far-field approximations to derive scaling laws for
the synchronization time as a function of paddle separation.
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I. INTRODUCTION

One of the central aims in the field of cell motility is to
understand how a collection of beating cilia coordinates, or,
on a larger scale, how a collection of swimming organisms
form coherent patterns. For example, Paramecium swims by
propagating waves of ciliary beating along its surface �1�.
The alga Chlamydomonas beats its two flagella in synchrony
to swim straight and asynchronously to change its orientation
�2,3�. At the level of a population of cells, sea urchin sper-
matozoa spontaneously form vortex patterns in the absence
of cell signaling �4�. Coordination of cilia is also important
in the transport of fluid. The coordination of nodal cilia in
developing vertebrate embryos has been implicated in the
determination of left-right asymmetry of the organism �5�.
The cilia lining the human airway must beat in a coordinated
manner to sweep foreign particles up the airway. Beating
cilia may also play a role in the transport of sperm and egg
during fertilization in mammals �6�.

These examples are instances of the general tendency for
the emergence of synchronization in a broad array of physi-
cal and biological systems �7�. In this article, we investigate
the long-standing hypothesis that the coordination observed
in nearby beating cilia or swimmers is due to hydrodynamic
interactions between these objects �8,9�. In recent years,
there have been many computational and theoretical studies
to support this hypothesis �10–19�. The key physical fact
underlying all of these studies is that at the small scale of the
cell, where the Reynolds number Re�1, the velocity field
arising from a deforming body falls off slowly with distance,
leading to significant hydrodynamic forces between nearby
bodies. Furthermore, the development of a fixed phase dif-
ference between two bodies—phase locking—requires some
kind of compliance in which the deforming body can adjust
its beat pattern in response to hydrodynamic forces from
other nearby bodies.

The nature of this compliance is subtle. In the case of two
rotating rigid helices driven with fixed torques �the “defor-
mation” here is rotation�, the freedom of the phase of each

helix to speed up or slow down to maintain the fixed torque
for all phase differences does not lead to phase locking �20�.
Theoretical calculations suggest that additional degrees of
freedom are required for phase locking, or synchronization.
For example, synchronization develops if the shafts of the
rotating helices are connected to fixed points by stiff springs,
allowing the axes of the helices to translate or tilt �14�. The
directions of these small motions depend on whether the hy-
drodynamic forces are attractive or repulsive, which in turn
depends in detail on the phase difference �cf. the case of
nearby swimmers �21,22��.

The complexities of designing experiments that include
both hydrodynamic interactions and controlled elastic defor-
mation at very low Reynolds numbers have hindered experi-
mental studies of hydrodynamic synchronization; therefore,
we built a scale model system that captures the essential
physics, allows for detailed measurements, and is amenable
to modeling. This paper presents results from experiments
�Sec. II�, numerical simulations �Sec. III�, and a theoretical
model �Secs. IV and V� that together outline a coherent
framework for describing hydrodynamic synchronization.

II. EXPERIMENT

Figure 1 illustrates the experimental configuration. Two
thin paddles are immersed in a large tank �60�60
�60 cm� filled with a viscous fluid ��=110 N s /m2�, sepa-
rated at their closest approach by a small gap, �=3.6 mm.
We study two different paddle configurations: symmetric and
asymmetric. The symmetric paddle has the axis of rotation
through the paddle center and dimensions h=60 mm, w
=2R=30 mm, and thickness t=6 mm. The asymmetric
paddle has the axis of rotation through one edge and dimen-
sions of 60�20�6 mm. The paddles are small compared to
the size of the tank. By repeating some of the experiments
with the paddles at different positions within the tank, we
confirmed that the side walls did not affect the results in any
appreciable manner.

The paddles are supported by shafts that are hardened
steel, of diameter 6.35 mm and length �=120 mm, con-
nected to the motors via flexible couplings that allow the
paddles to tilt. The shafts are so rigid that bending due to
hydrodynamic forces is negligible, but the couplings act as
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torsional springs with spring constant kT=8000 mN m / rad,
leading to an equivalent spring constant for lateral shifts in
the paddles of k=kT /�2. This flexibility allows the paddles to
tilt slightly in response to hydrodynamic forces. We also
tested shafts without an intermediate coupling, in which the
ability of the paddles to tilt effectively vanished. The bearing
assemblies are supported on separate stages to minimize any
mechanical communication beyond hydrodynamic interac-
tions �23�, and to allow for precise control of the distance of
closest approach, �. Since � /h�1, the resultant flow is
mostly two-dimensional, in the plane perpendicular to the
axes of rotation.

The two paddles are driven at constant torque using a dc
servo motor, digital encoder, load cell, and feedback control-
ler. Each paddle is driven by a servo motor, which is encased
in a housing. To measure the torque delivered by the motor,
the housing is supported by bearings and prevented from
rotating by a rigid, �10 cm-long torque arm. Due to the
bearings, the entire reaction torque on the housing is trans-
mitted by the torque arm to a precision load cell. The load
cell output signal is used as a feedback to a proportional-
integral-differential �PID� controller that adjusts the voltage
driving the servo motor, thus maintaining a defined torque.
The PID controller updates at approximately 100 Hz—500
times faster than the typical rotational frequency of the
paddles in the experiment �0.2 Hz�. The position of the
paddle is recorded from the output of the digital encoder at
each update of the PID controller. Velocity is calculated from
the position using high-order finite differences. The system
was calibrated by measuring the rotational speed vs voltage
for an isolated paddle over a range of torques and using the
theoretically known torque-speed relationship to associate
the measured load cell voltage with a specific torque. The
accuracy and stability of the system was verified by measur-
ing �i� the torque fluctuation for an isolated paddle rotating at
constant speed, and �ii� the velocity fluctuation of an isolated
paddle rotating at constant torque. In both configurations, we
confirmed that the system was stable to better than 1.5% of
the set point. Typical driving torques range from 4 mN m to
25 mN m, corresponding to rotation frequencies no more
than 0.2 Hz.

At these conditions, the Reynolds number, Re=��R2 /�
�10−3, is small enough to justify the neglect of inertial
forces. This was confirmed experimentally by noting that if
the paddle rotation was initiated with a constant velocity, the
time taken to reach constant torque was less than 250 ms.
For these Stokes flows, the characteristic velocities scale lin-
early with the motor torques �M1 ,M2�, and the state of the
system is determined by the angles of the two paddles
��1 ,�2� �Fig. 1� and the small shifts of the paddles due to the
flexible couplers. In the high-stiffness case, the paddles did
not synchronize in any measurable time; instead, the phase
of each paddle increased roughly linearly with driving
torque, ��1 ,�2�� �tM1 , tM2�, independent of the initial phase
difference �Figs. 2�a� and 2�b��. However, paddles with flex-
ible couplers and small distance of closest approach locked
phases in 10–20 revolutions �Fig. 2�c��. Note that we mea-
sure time in units of T0=6	�R3 /M �M is the mean torque�,
which is roughly one tenth of a rotation period. The data we
display in this article are for a dimensionless gap size � /R
=0.24. We also varied � /R for both kinds of paddles from
�0.1 to �0.6, and found that the time to synchronize in-
creased with spacing, with longer times and a faster increase
for the symmetric paddles �Fig. 3�.

For M1=M2, the symmetric paddles locked phases at

���2−�1=	 /2, and the asymmetric paddles settled at

�=0 �Fig. 4�. These two states represent the conditions that
roughly maximize the distance of closest approach of the two
paddles. Since the paddles would minimize their distance of
closest approach if they maintained their typical initial phase
differences �
�=0 for the symmetric paddles, 
�=	 for the
asymmetric paddles�, the rotation speed of each paddle rises
as the paddles synchronize. Denoting the rotation speed of an
isolated paddle by �0, we found that the speed of both sym-
metric paddles rises from 0.72�0 to 0.85�0 as synchroniza-
tion develops, whereas the speed of both asymmetric paddles
rises from 0.75�0 to 0.93�0. While these synchronized states
are stable, there is a consistent and repeatable phase fluctua-
tion �Fig. 4, inset� corresponding to the variation in rotational
speeds as the hydrodynamic interactions between the paddles
wax and wane during a cycle. The fluctuation amplitude in
the asymmetric case is larger than in the symmetric case
because there is a larger variation in the distance between the
asymmetric paddles during a period. These observations
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FIG. 1. Schematic of the model system for hydrodynamic syn-
chronization. Left: a pair of symmetric paddles in a fluid with vis-
cosity � are rotated with constant torques M1 and M2. The shafts
are rigid but have flexible couplings that allow the paddles to tilt.
Right: asymmetric paddles.
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FIG. 2. �Color online� Phase-difference 
�=�2−�1 vs dimen-
sionless time t /T0�T0=6	�R3 /M� for symmetric paddles with �a�
M1=M2 and stiff shafts, �b� �M2−M1� /M1�0.003 and stiff shafts,
and �c� M1=M2 and shafts with flexible couplers.
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qualitatively agree with the results of numerical calculations
on rotating rigid helices with flexible couplers �14�. In our
experiments, the phase fluctuations and rise in velocity as
synchronization develops are more dramatic since the varia-
tion in the hydrodynamic interaction between paddles over a
period is greater than in the case of helices.

The final state of synchronization was found to be inde-
pendent of the initial orientation of the paddles. The time to
synchronize scales with T0, perhaps with a weak dependence
on torque �Fig. 5�. The number of paddle revolutions needed
to synchronize is therefore roughly constant, 15 in the case
of symmetric paddles, and 20 for asymmetric paddles. In the
synchronized state, however, the dimensionless rotation pe-
riod T /T0 increases slightly with torque �Fig. 5, inset�. When
the symmetric paddles are operated with a torque mismatch
between the two motors, the synchronized phase difference
increases with 
M, although for a large mismatch, 
M /M1
=3%, the synchronized state is only marginally stable and
the phase difference can jump abruptly by 
�=	 �Fig. 6�.

III. NUMERICAL SIMULATIONS

These experiments give strong evidence that the phase-
locking of the paddles is due to hydrodynamic interactions.
We tested this hypothesis by using the method of regularized
Stokeslets �24� to model the flows induced by the paddles.
Each paddle is replaced by a rectangular array of regularized
Stokeslets S��

b with strength f�, where � and � label the
Cartesian coordinates x, y, and z. The flow from the Stokeslet
at x� is given by

v��x� = �
�

S��
b �x,x��f�, �1�

with associated pressure

p�x� = �
�

p�
b�x,x��f�

8	
. �2�

The Stokeslet S��
b satisfies

�
�

�S��
b /�x� = 0, �3�
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FIG. 3. �Color online� Dimensionless synchronization time vs
dimensionless gap size � /R for symmetric paddles �circles� and
asymmetric paddles �squares�. For symmetric paddles, the dimen-
sionless synchronization time is measured from the moment of
phase-difference 
�=0.1 to the time of the first stable state 
�
=	 /2. For asymmetric paddles, the dimensionless synchronization
time is defined as the time from 
�=0.8 to 
�=0. The uncertainty
comes from the low frequency fluctuation in 
� due to the system
noise. Time is normalized by T0=6	�R3 /M.
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FIG. 4. �Color online� Phase difference vs dimensionless time
for symmetric �red line� and asymmetric paddles �green line�, com-
pared to simulation �blue lines�. The curves from the simulations
are more regular. Time is measured in units of T0=6	�R3 /M. The
insets show the phase difference once phase-locking is achieved. In
both cases, the normalized gap between the paddles is � /R=0.24.
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FIG. 5. �Color online� Phase difference vs dimensionless time
t /T0 for symmetric paddles driven at torques M1=M2=8.4, 12.8,
17.5, and 22 mN m, with � /R=0.24. The collapse of the data shows
that the time to synchronize scales with T0=6	�R3 /M. The inset
shows the dimensionless period T /T0 in the synchronized state.
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FIG. 6. �Color online� Phase difference vs dimensionless time
for symmetric paddles with � /R=0.24 and 
M /M1= �M2

−M1� /M1=−1% �a�, 
M /M1=0% �b�, 
M /M1=1% �c�, and

M /M1=2% �d�. When 
M /M1�3%, the synchronized states be-
come unstable, and 
� can jump by 	.
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�2S��
b �x,x�� − �p�

b/�x� = − 8	���
b�x − x�� , �4�

where 
b�x−x�� is a smooth approximation to the Dirac
delta function with spread b,


b�x − x�� =
15b4

8	�r2 + �2�7/2 , �5�

and r= �x−x��. The number of Stokeslets and the spread b are
chosen to give good agreement between the measured and
simulated resistance coefficient for a single rotating paddle at
the center of the tank. The spread b is large enough to make
the regularized Stokeslets overlap, which prevents fluid from
leaking through the paddles. We model the flexibility of the
couplers with springs of torsional spring constant kT. For
simplicity we suppose that the shafts are always vertical, but
can undergo slight shifts in the horizontal plane. With the
assumption that the paddles are rigid, the degrees of freedom
are the angles ��1 ,�2� of the paddles and the positions of the
shafts. Balancing forces and torques leads to coupled nonlin-
ear differential equations which we solve numerically. Figure
4 shows the excellent agreement between the experiments
and the simulations for both the asymmetric and the symmet-
ric paddles. The simulation accurately captures the frequency
and amplitude of the oscillations associated with the rotation
of the motors, as well as the slower evolution of the phase-
locking. When the driving torque is varied over the range
used in the experiment, the simulations yield that the dimen-
sionless time to synchronize Ts /T0 remains approximately
constant, with a weak dependence on torque, in accord with
Fig. 5. Simulations with infinite spring constant kT show no
phase-locking. Since the paddles in the simulation are
coupled only through the hydrodynamic interaction, we con-
clude that the cause of the phase-locking is the hydrody-
namic interaction and not any stray mechanical coupling that
might be present in the experimental apparatus.

IV. SIMPLE MODEL FOR ASYMMETRIC PADDLES

A. Oseen tensor model

We can gain more insight into the mechanism of phase-
locking by developing a simple theory along the lines of
reference �18�. A minimal model for the asymmetric paddles
is to replace each paddle with a sphere of radius a attached to
one end of a rod of length R �Fig. 7�. The rod is rigid and
does not disturb the fluid. The other end of the rod is at-
tached to a stationary point by a spring with spring constant
k. The rods are rotated by moments M1 and M2 which are
applied at the ends of the rods attached to the springs, where
we can imagine shafts perpendicular to the plane of the page.

The spring is stiff, with k�M1 /R2. Denote the positions of
the balls by ri= � �D /2�x̂+xi+R�̂i, where the minus sign
applies for i=1, the plus sign applies for i=2, and �̂i
= �cos �i , sin �i�. Note that �i is defined as the angle the rod
makes with the x axis, not the angle ri makes with the x axis.
The vectors x1= �x1 ,y1� and x2= �x2 ,y2� are the displace-
ments of the shafts from the stationary points �−D /2,0� and
�D /2,0�, respectively. If we suppose the balls are far apart,
with D�a, then the leading-order interaction between the
two balls is given by the Oseen tensor �25�

v1 =
f1

6	�a
+

1

8	�
	 f2

�r12�
+

�f2 · r12�r12

�r12�3

 , �6�

v2 =
f2

6	�a
+

1

8	�
	 f1

�r12�
+

�f1 · r12�r12

�r12�3

 , �7�

where vi=dri /dt= ṙi is the velocity of the ith ball, f1 and f2
are the forces exerted by the balls on the fluid, and r12=r1
−r2.

Since the spring is assumed linear and the motion of the
rod incurs no drag force, the balance of forces on each
paddle is −fi−kxi=0. We must also enforce moment balance.
Since inertia is unimportant at Re=0, we may compute mo-
ments about the points xi for each paddle,

Mi + ẑ · �R�̂i� � �− fi� = 0. �8�

B. Separation of time scales

The analysis of the equations of motion is simplified by
the recognition that our problem has three well-separated
time scales: �i� a short time scale Tk=�a /k �recall k=kT /�2�
that controls the rate of relaxation of the springs, �ii� an
intermediate time scale T1=6	�aR2 /M1 �28� that controls
the period of an isolated ball driven by torque M1, and �iii� a
long time scale Ts that characterizes the time for phase-
locking to develop. Since the springs are stiff, Tk�T1. Since
the interaction between the paddles is weak, T1�Ts. The
goal of the simple model is to give a clear derivation of how
Ts depends on the parameters of the problem. Since the
phase-locking arises from hydrodynamic interactions, which
vanish when a /D→0, we expect Ts to scale as some power
of D /a for large D /a.

C. Dimensionless far-field equations of motion for �i and xi

Since the balls are far apart, we expand the equations of
motion in powers of 1 /D, assuming that a�D and R�D.
Measuring length in units of R, time in units of T1, and using
force balance to eliminate fi leads to the dimensionless equa-
tions of motion,

�Ẋ + �̇� = − HX/� . �9�

In Eq. �9�, �=M1 / �kR2��1, X, and �̇ are 4�1 vectors with

θ1 θ2

D
(x1, y1) (x2, y2)

x

yR
R

a

a

M1
M2

r1

r2

FIG. 7. Model for asymmetric paddles. The figure is not to
scale; note that a�R�D.
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X = �x1

x2
�, �̇ = ��̇1�̂1

�̇2�̂2

� , �10�

where �̂i= �−sin �i , cos �i�. The 4�4 matrix H is the Oseen
tensor to leading order in a /D,

H = 
 I
3

4

a

D
�I + x̂x̂�

3

4

a

D
�I + x̂x̂� I � , �11�

where I is the 2�2 identity matrix and x̂x̂ is the 2�2 matrix
with unity in the upper left-hand corner and zeros elsewhere.

Using M1 as the unit for torque, the moment-balance
equations �8� take the form

1 + �x1/�� · �̂1 = 0, �12�

1 +

M

M1
+ �x2/�� · �̂2 = 0, �13�

where 
M =M2−M1. From these equations, we conclude
that xi is O���. Note that the shafts have a nonzero displace-
ment xi even when the paddles are isolated.

D. Far-field equations of motion for average angular speed
and phase difference

To understand phase-locking, it is not necessary to resolve
the motion of the paddles on the short time scale Tk. In
dimensionless variables, these short-scale motions are char-
acterized by transients of the form exp�−t /��. By considering
dimensionless times t��, we may neglect these transients

and treat �Ẋ as small. Physically, this approximation reflects
the fact that once the transients have decayed, the drag forces
incurred by the small motions X arising from the extension
of the springs are small, but not negligible, compared to the

drag forces due to the rotation �̇ of the balls about the shafts.
Therefore, we solve Eq. �9� for X using iteration, finding

X � − �H−1�̇ + �2H−1 d

dt
�H−1�̇� . �14�

In terms of �i, we have

X � ��− �̇1�̂1 +
3

2

a

D
�̇2�̂2

− �̇2�̂2 +
3

2

a

D
�̇1�̂1

� + �2�− �̇1
2�̂1 +

3

2

a

D
�̇2

2�̂2

− �̇2
2�̂2 +

3

2

a

D
�̇1

2�̂1
� ,

�15�

where we have only retained terms of O�a /D�.
In Eq. �15�, we have discarded terms of the form �̈i, since

they are O�a2 /D2�. To see why, observe that for time scales
longer than Tk, the motion is characterized by two well-
separated time scales, T1 and Ts. The form of the interaction
suggests that Ts�D /a. To explicitly account for the multiple
scales T1 and Ts, write �26�

�1,2 = ����t � 
����/2, �16�

where �=at /D describes the slowly varying time depen-
dence of the rotational frequency and the phase difference.
Note that ���� is the average angular speed, and 
� is the
average phase difference. The angular speed and phase dif-
ference also have rapidly varying parts with zero average,
but these are lower order in a /D �26�. Equation �16� shows

that the leading term of �̈i is �a /D������. But since the av-
erage rotation speed � is constant in the absence of interac-

tions, ����� must be at least O�a /D�. Thus, �̈i is at least
O�a2 /D2�.

To find the governing equations for angular speed � and
phase-difference 
�, substitute the shaft displacements xi
from Eq. �15� into moment balance, Eqs. �12� and �13�. Fi-
nally, average the resulting equations over a period, treating
the slowly varying variables � and 
� as constants under the
average. We find that the average dimensionless speed is
given by

� = 1 +

M

2M1
+

9

8

a

D
cos 
� . �17�

The interacting paddles turn faster than they would in isola-
tion. This result is in contrast with our paddle experiments,
where we saw in §II that the asymmetric paddles rotated
more slowly compared to an isolated paddle. It is too much
to demand that our far-field theory captures every aspect of
the paddle experiments, since the paddles are close to each
other in the experiment and the theory is valid when they are
far apart.

The dimensionless phase difference obeys

d
�

dt
= −

9

2
�

a

D
sin 
� +


M

M1
. �18�

These results �17� and �18� are equivalent to the results of
Ref. �18�. For equal driving torques, 
M =0, Eq. �18� shows
that the paddles synchronize to 
�=0, independent of the
initial value of 
�, in �dimensional� time Ts
��D /a��kR2 /M1�T1, or

Ts �
D

a

kR2

M1

6	�aR2

M1
. �19�

When M1�M2, the paddles phase-lock with a nonzero phase
difference, which increases to 	 /2 in the steady state as the
torque difference increases to the critical value given by

M /M1= �9 /4��a /D�M1 / �kR2�. Note that the factor of a /D
and the smallness of �=M1 / �kR2� mean that M2 must be
very close to M1 for the phase-difference 
� to have a fixed
point. Thus, in the derivation of Eqs. �17� and �18� we con-

sidered 
M /M1 and T1
�̇ to be O��a /D�.
This simple theory predicts that Ts /T1 varies inversely

with torque, whereas the experiments show that Ts /T1 de-
pends at most weakly on torque �Fig. 5�. Again, the reso-
lution of this discrepancy is that the simple theory is valid in
the far-field limit with D�a, whereas the experiments are
carried out in the near-field regime where Ts /T1 is indepen-
dent of torque.
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E. Physical explanation for phase-locking

Each of the terms of Eq. �15� has a simple interpretation.
First, consider the limit of an isolated paddle, a /D=0. To
leading order in �, the ball on the end of the rod undergoes

circular motion. This motion leads to a drag in the −�̂i direc-

tion, which stretches the spring along −�̂i, which in turn
leads to an O��� component of the ball’s velocity parallel to
the rod, along the �̂i direction �see the left ball in Fig. 8�a��.
In our dimensionless units, the ball exerts an O�1� force on

the liquid in the �̂i direction, and an O��� force on the liquid
in the �̂i direction. To get the displacement X, we multiply
these forces by �, and thus get the O��a /D�0� terms of Eq.
�15�. Now consider the hydrodynamic interactions. For a
given paddle, each of the forces just described induces a
Stokeslet flow, falling off inversely with distance, and lead-
ing to the O�a /D� terms in Eq. �15�.

The drag forces on each paddle induced by the motion of
the other are shown in Fig. 8. From this figure we can see
why the paddles synchronize. Suppose that the second
paddle slightly lags the first. Since the spring is flexible, the

ball of the paddle on the left has a velocity component of ��̇1

along the rod as well as the component �̇1 perpendicular to
the rod �blue arrows, Fig. 8�a�, left�. This motion induces
drag forces on the ball on the right �red dotted arrows, Fig.
8�a�, right�, which in our dimensionless units are down by a
factor of a /D from the velocities. The components of these
forces perpendicular to the rod �green arrows, Fig. 8�a�,
right� contribute to the hydrodynamic torque on the paddle.
Likewise the motion of the paddle on the right �blue arrows,
Fig. 8�b�, left� induces forces that lead to hydrodynamic

torques on the left paddle. The phase-difference 
� is gov-
erned by the difference of the torques, which for small 
� is
given by the difference of the small �green� arrows in Figs.
8�a� and 8�b�. The torque difference makes 
�=0 a stable
fixed point �for 
M =0�.

F. Power dissipation

We may readily examine the question of power dissipa-
tion using our simple model. First note that for fixed driving
torques, the power dissipated decreases when the hydrody-
namic resistance of the paddles increases. Therefore, when

�=0, the drag is minimized and the dissipation rate is
maximized. As 
M increases, the increase in 
� leads to
greater resistance and therefore lower dissipation rate. To
leading order in �, we may use Eq. �17� to show that the

dimensionless power averaged over one period, P=M1�̇1

+M2�̇2, takes the form

P

M1
= 2 +

9

4

a

D
cos 
� . �20�

In general, the phase difference chosen by the system does
not minimize the power dissipated. The same conclusion has
been reached for the hydrodynamic phase-locking of nearby
swimming sheets �19�.

V. SIMPLE MODEL FOR SYMMETRIC PADDLES

A. Oseen model and nondimensionalization

To understand why the symmetric paddles lock phases
with 
�=	 /2 when 
M =0, we model the paddles as dumb-
bells �Fig. 9�. Each dumbbell consists of two balls connected
by a rod that does not disturb the fluid as it moves. The
midpoint of each rod is attached to a fixed point by a stiff
spring, and the balls at the ends of the rods have positions

r1� = − �D/2�x̂ + x1 � R�̂1, �21�

r2� = �D/2�x̂ + x2 � R�̂2, �22�

where xi is the displacement of the midpoint of the ith rod
from the corresponding fixed point. Denoting by fi�, the
forces that the balls on the ith dumbbell exert on the fluid,
the balance of forces on each dumbbell implies

− fi+ − fi− − kxi = 0 , �23�

and the balance of torques implies

(a)

(b)

M1

M1

M2

M2

a

D
θ̇2

a

D
θ̇1

θ̇2

θ̇1
εθ̇1

εθ̇2

ε
a

D
θ̇2

ε
a

D
θ̇1

FIG. 8. �Color online� Physical explanation for synchronization.
The figure is not to scale and the paddles have been moved artifi-
cially close. �a� On the left we show the components of velocity of
the first ball �blue arrows�. On the right, we show the components
of the drag induced on the second ball by the motion of the first ball
�red dotted arrows�, and the components that contribute to the hy-
drodynamic torque on the second paddle �green arrows�. �b� The
same situation as �a�, but showing the velocity components of the
second ball and the induced forces on the first. The difference in the
hydrodynamic torques tends to make 
�=0.

R R

a
a

M1 M2

a a

r1+

r1−

r2+

r2−

θ1 θ2x1 x2
xy

D

FIG. 9. Model for symmetric paddles. The figure is not to scale;
note that a�R�D.
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Mi + ẑ · �R�̂i� � �− fi+� + ẑ · �− R�̂i� � �− fi−� = 0. �24�

Assuming all balls are far apart, we again use the Oseen
model, Eq. �7�, this time extended to the four balls labeled
�=1− ,1+ ,2− ,2+

v� =
f�

6	�a
+

1

8	�
�

���
	 f�

�r���
+

�f� · r���r��

�r���3 
 , �25�

where r��=r�−r�. This is valid when R�a and D�a, but
we will also assume D�R.

The �i��i+	 symmetry of the dumbbells makes the hy-
drodynamic interaction between the dumbbells more subtle
than the asymmetric case. First observe that the spring of an
isolated rotating dumbbell does not stretch since the net hy-
drodynamic force on the balls vanishes. Thus, xi=0 when
D→�. However, for finite D /R, the flow induced by the
rotation of one dumbbell causes the spring of the other
dumbbell to stretch. To estimate the amount of stretch, con-
sider the flow induced by dumbbell 1 at dumbbell 2. The
far-field flow is an asymmetric force dipole, also known as a
rotlet, falling off inversely with the square of distance �27�.
Thus, the flow v21 induced at dumbbell 2 is approximately
v21� f1R / ��D2�, leading to drag on dumbbell 2 of about
�av21�af1R /D2�aM1 /D2. This drag causes the spring of
dumbbell to stretch, with a displacement

�x2�
R

�
a

R

R2

D2

M1

kR2 . �26�

As in the previous section, it is convenient to measure
length in units of R and time in units of T1=6	�R2a /M1.
Thus, the dimensionless displacement is �x2���a /D2.

B. Far-field equations of motion

For each spring of a pair of rotating dumbbells, the
leading-order stretch of the spring is second order in D−1.
However, to derive equations describing phase-locking of
symmetric dumbbells, we will see that we must expand the
displacements xi to O�D−3�. These third-order displacements
arise from reflections of the dipole force. For example, the
O�D−2� deflection of spring 2 from the dipole originating at
dumbbell 1 induces a point force at dumbbell 2. This point
force causes an O�D−3� displacement at dumbbell 1. As we
will see, to find xi to O�D−3� we need only expand the Oseen
tensor to second order in D−1. Thus, to second order in D−1,
Eq. �25� becomes

�
ẋ1 + �̇1�̂1

ẋ1 − �̇1�̂1

ẋ2 + �̇2�̂2

ẋ2 − �̇2�̂2

� = H�f1+

f1−

f2+

f2−
� , �27�

where H is the 8�8 Oseen tensor evaluated at x1=x2=0 and
expanded to O�D−2�.

Before describing H, it is convenient to re-express Eq.
�27� in terms of the sums and differences of forces on each
paddle, fi= fi++ fi− and 
fi= fi+− fi−, respectively. Note that in

terms of these variables, the dimensionless force-balance
equation �23� becomes

− fi − xi/� = 0 , �28�

and the dimensionless moment-balance equations become

1 − 
f1 · �̂1 = 0, �29�

1 +

M

M1
− 
f2 · �̂2 = 0, �30�

where M1 is the unit for torque. Returning to Eq. �27�, we
add and subtract the appropriate rows of Eq. �27� and rear-
range to find

Ẋ =
1

�
AX + B
F , �31�

�̇ =
1

�
CX + D
F . �32�

where X and �̇ are defined as before in Eq. �10�; the 4�4
matrices A, B, C, and D are given in the Appendix; and


F = �
f1


f2
� . �33�

Expanding in powers of D−1, we find �see Appendix�

A = A�0� + D−1A�1� + O�D−3� , �34�

B = D−2B�2� + O�D−3� , �35�

C = D−2C�2� + O�D−3� , �36�

D = D�0� + O�D−3� . �37�

Likewise, we expand X and 
F in powers of D−1

X = X�0� + D−1X�1� + D−2X�2� + , ¯ , �38�


F = 
F�0� + D−1
F�1� + D−2
F�2� + ¯ �39�

Since B and C are O�D−2� at leading order, our order of
expansion is sufficient for determining X to O�D−3� and 
F
to O�D−5�. At zeroth order, we find X�0�=0, as expected, and


F�0�= �D�0��−1�̇, with


fi
�0� =

2�̇i�̂i

1 − 3a/8
. �40�

Substituting 
f�0� into the moment-balance equations �29�
and �30�, taking their sum and difference, using Eq. �16� to
eliminate �1 and �2 in favor of � and 
�, and integrating
over one period yields the dimensionless average speed and
phase difference,

��0� = 1/2�1 − 3a/8� , �41�


�̇�0� = �1 − 3a/8�
M/M1. �42�

Since ��0� and 
�̇�0� are independent of D, they are the av-
erage speed and phase difference, respectively, for noninter-
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acting dumbbells. There is no phase-locking if there is no
interaction, and the phase difference increases in proportion
to the difference in driving torques, 
M.

Note that the factors of 3a /8 in Eq. �40� are due to the
interaction between the two balls of a given dumbbell: one
ball induces a disturbance flow of magnitude

�6	�a�̇� / �8	�2�=3a�̇ /8 at the other ball. This disturbance
flow hinders the motion of the other ball.

The leading-order displacements of the shafts are given
by

Ẋ�2� =
1

�
A�0�X�2� + B�2�
F�0�. �43�

As in the case of the asymmetric paddles, this equation is
readily solved to O��2�; however, the full expression is so
cumbersome that we only report the result to leading order in
� and a in the appendix. The next order contribution to the
force difference is given by

0 =
1

�
C�2�X�2� + D�0�
F�4�. �44�

Again, the full expression for 
F�4� is so cumbersome that
we only report the leading-order terms in the appendix. Us-
ing 
F�4� in the difference of the moment equations and av-

eraging yields terms proportional to 
�̇, which do not lead to
phase-locking. The average of the sum of the moment equa-
tions leads to a decrease in the average rotation speed, which
together with Eq. �41� yields

� =
1

2
−

3a

16
−

153

16

a2

D4 . �45�

The interacting paddle turns more slowly than they would in
isolation.

The third-order displacement of the shafts is determined
by

Ẋ�3� =
1

�
A�1�X�2� +

1

�
A�0�X�3�. �46�

Solving for X�3� �see Appendix for leading terms�, and sub-
stituting into

0 =
1

�
C�2�X�3� + D�0�
F�5� �47�

yields 
F�5� �see Appendix for leading terms�, which has
terms that lead to phase-locking. Using moment-balance
equations �29� and �30� and averaging, together with the
leading-order result �40�, yields


�̇ =
1

2

M +

243

8
�

a3

D5sin 2
� . �48�

Equation �48� is the main result of this section. The �di-
mensional� synchronization time for the symmetric paddles
scales as

Ts �
D5

a3R2

kR2

M1

6	�aR2

M1
. �49�

When 
M =0, Eq. �48� has a stable fixed point at 
�=	 /2,
in accord with our experiments and the more accurate regu-
larized Stokeslet simulation of §III. As in the case of the
asymmetric paddles, the torque difference must be small for
phase-locking to occur. The critical torque difference, above
which phase-locking cannot occur, is 
Mcrit
= �243 /4��a3 /D5. Note that the average phase difference in
the phase-locked state depends on 
M. Note also that the
time for phase-locking depends more strongly on separation
for the symmetric paddles compared to the asymmetric
paddles. It is not easy to give a simple physical picture for
why the paddle separation D enters the synchronization time
with a fifth power. We simply note two effects: �1� the flow
induced by the force dipole of one paddle reflects off the
other paddle, and then again off the first paddle, leading to
four powers of D−1, and �2� the torque exerted by a flow on
the paddle arises from the difference in the flow at the two
ends of the paddle, leading to another factor of D−1. Our case
is reminiscent of the fifth power that appears in the reorien-
tation of oscillating dumbbells �21�. Although our experi-
ments were not carried out in the far-field regime, we found
that the synchronization time depends more strongly on
separation in the symmetric case compared to the asymmet-
ric case �Fig. 3�. Finally, we note that to leading order in D−1,
the power dissipated in the synchronized state is independent
of 
�, since the average rotation speed � in the synchronized
state is independent of 
� �Eq. �45��.

VI. CONCLUSION

To summarize, we have presented perhaps the simplest
experimental realization of the phenomenon of hydrody-
namic synchronization at low Reynolds number. The require-
ments for synchronization are subtle: the system must have a
slight flexibility to allow small shifts in the positions of the
paddles. Since this flexibility is generic, we expect that con-
ditions allowing hydrodynamic synchronization will com-
monly arise in a wide range of systems at low Reynolds
number. On the other hand, our work indicates that hydrody-
namic synchronization is not robust, since it requires that the
driving moments be fine-tuned to be close to each other.
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APPENDIX: OSEEN TENSOR FOR SYMMETRIC
PADDLES

For H evaluated at xi=0 and the matrices A, B, C, and D
defined in Eqs. �31� and �32�, expanding in powers of D−1
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yields

A =�
−

1

2
−

9a

32
−

3

32
a cos�2�1� −

3

32
a sin�2�1� −

3a

2D
0

−
3

32
a sin�2�1� −

1

2
−

9a

32
+

3

32
a cos�2�1� 0 −

3a

4D

−
3a

2D
0 −

1

2
−

9a

32
−

3

32
a cos�2�2� −

3

32
a sin�2�2�

0 −
3a

4D
−

3

32
a sin�2�2� −

1

2
−

9a

32
+

3

32
a cos�2�2�

�
�A1�

and

D =�
+

1

2
−

9a

32
−

3

32
a cos�2�1� −

3

32
a sin�2�1� 0 0

−
3

32
a sin�2�1�

1

2
−

9a

32
+

3

32
a cos�2�1� 0 0

0 0 +
1

2
−

9a

32
−

3

32
a cos�2�2� −

3

32
a sin�2�2�

0 0 −
3

32
a sin�2�2�

1

2
−

9a

32
+

3

32
a cos�2�2�

� �A2�

for the blocks on the diagonal of the Oseen tensor. For the blocks off the diagonal, we have

B =�
0 0 −

3a2

2D2cos �2
3a2

4D2sin �2

0 0
3a2

4D2sin �2 −
3a2

4D2cos �2

3a2

2D2cos �1 −
3a2

4D2sin �1 0 0

−
3a2

4D2sin �1
3a2

4D2cos �1 0 0

� , �A3�

C =�
0 0 −

3a

2D2cos �1
3a

4D2sin �1

0 0
3a

4D2sin �1 −
3a

4D2cos �1

3a

2D2cos �2 −
3a

4D2sin �2 0 0

−
3a

4D2sin �2
3a

4D2cos �2 0 0

� . �A4�
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The second-order spring deflection to leading order in �
and a is

X�2� = a��
�9/2��̇2 sin�2�2�

− 3�̇2

− �9/2��̇1 sin�2�1�

3�̇1

� + O��a2� . �A5�

The fourth-order force difference to leading order in a and �
is


F�4� �
9

4
a2�

− �̇1�5 sin �1 + 3 sin�3�1��

2�̇1 cos �1�1 + 3 sin2 �1�

− �̇2�5 sin �2 + 3 sin�3�2��

2�̇2 cos �2�1 + 3 sin2 �2�
� . �A6�

The third-order spring deflection, leading order in � and a,

X�3� =
9

2
a2��

3�̇1 sin�2�1�

− �̇1

− 3�̇2 sin�2�2�

�̇2

� . �A7�

Finally, again to leading order in � and a,


F�5� =
27

4
a3�

− �̇2�sin �1 + 6 cos �1 sin�2�2��

�̇2�cos �1 + 3 sin �1 sin�2�2��

− �̇1�sin �2 + 6 cos �2 sin�2�1��

�̇1�cos �2 + 3 sin �2 sin�2�1��
� .

�A8�
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