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Abstract: Several preconditioning techniques, such as Jacobi、SSOR and ILU0, are used 
to accelerate the convergence of iterative methods, such as CG and GMRES, which are 
used to solve the large system of linear equations resulted from the time-domain 
finite-element methods (TDFEM). Convergence properties and the time used of these 
conventional preconditioning techniques are also compared and analyzed. The cylindrical 
cavity partially filled with dielectric rod and the PML terminated waveguides are 
simulated. Numerical results show that the ILU0 preconditioned method converges the 
fastest and costs the smallest time in TDFEM compared with other preconditioning 
techniques when computing the same number of time steps.  
Keywords: preconditioning techniques, iterative methods, time-domain finite-element 

methods (TDFEM), convergence properties 

I. INTRODUCTION 

Over the past few years, numerical schemes for simulating electromagnetic 
transients have grown increasingly popular for their potential to generate wide-band data 
and model nonlinear materials. The most popular one is the finite-difference time-domain 
(FDTD) method [1] for transient analysis involving complex inhomogeneous bodies [2-3]. 
However, this method possesses topological limitation of staircasing [4-6]. In contrast, the 
finite-element time-domain (TDFEM) can easily handle both complex geometry and 
inhomogeneous media by using tetrahedral edge elements [7-12]. 

A variety of TDFEM schemes have been proposed during the past decades [7-22]. 
These schemes fall into two categories. The first scheme solves the time-dependent 
Maxwell’s equations directly. It yields an explicit finite-difference-like leap-frog, 
conditionally stable time-marching algorithm [13-16]. The second scheme discretizes the 
second-order vector wave equation, known as the curl-curl equation, involving one of the 
field variables from Maxwell’s equations [7-11]. It is similar to the traditional 
frequency-domain finite element method and it can be made unconditionally stable if the 
Newmark-beta method is used for temporal discretization [8-10]. 

For the first scheme, two unconditionally stable vector TDFEM methods based on 
the alternating-direction implicit (ADI) and Crank-Nicolson (CN) schemes to directly 
solving the first-order Maxwell’s equations, which is preferred in some electromagnetic 
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simulations, have been proposed recently [15-16]. The time step is no longer restricted by 
the numerical stability, but by the modeling accuracy of the TDFEM algorithm. However, 
in order to balance both accuracy and efficiency, the time step sometimes is chosen to be 
no longer than that of the second scheme of TDFEM when simulating the same structure. 

For the second scheme, the large system of linear equations resulted from the 
second-order vector wave equation need to be solved in each time step, the same as the 
first scheme, which lead to a fully implicit system. Several mass lumping techniques 
[17-18], which are of a popular approximation to produce diagonal mass matrices in 
TDFEM in order to obtain explicit schemes without solving the system equation, have 
been proposed to render the mass matrix diagonal to obviate the need for its inversion. 
Unfortunately, these lumping techniques often introduce significant errors for not 
well-shaped mesh elements and they are likely to produce zero or negative diagonal 
elements, which result in the definite instability [20]. Recently a set of orthogonal vector 
basis function yielding a diagonal mass matrix for both two-dimensional (2-D) and 
three-dimensional (3-D) has been constructed [19-20]. It introduces three times more 
unknowns and the time step size is much smaller than that in the traditional implicit 
TDFEM scheme. It is also not easy to develop this kind of vector basis function to high 
order. A new explicit TDFEM method, in which no global system matrix has to be 
assembled and solved as required in the implicit TDFEM, has been introduced [21-22]. It 
is fundamentally different from traditional explicit TDFEM formulations. This new 
method is derived from a recently domain decomposition algorithm by extending domain 
decomposition to the element level and computes the electric and magnetic fields in a 
leapfrog fashion while solving the dual-field second-order wave equations. The total 
number of unknowns is doubled as compared to the traditional implicit TDFEM scheme 
and it is conditional stable with the stability condition depending on the spatial 
discretization [22].  

The traditional implicit TDFEM scheme can be solved by either direct methods 
[25-26] or iterative methods. However, the direct methods bring “fill-in,” that is, nonzero 
entries are created in certain positions where the coefficient matrix originally has zeros. 
Fill-in is undesirable because it increases both the computing time and the storage 
requirement. Direct solvers usually suffer from fill-in to an extent that the large problems 
cannot be solved at a reasonable cost, even on the state-of-the-art parallel machines. Here, 
we solve the traditional implicit TDFEM scheme by iterative solvers, preconditioned CG 
[27-34] and GMRES [35-38] methods. Several preconditioning techniques, such as 
Jacobi、SSOR and ILU0, are used to accelerate the convergence of iterative methods. The 
preconditioning of the system matrix is the same at each time step, so we could factorize 
the system matrix before time marching and then reuse the factorization repeatedly at 
each time step to minimize the total computation. Convergence properties and the time 
used of these conventional preconditioning techniques will be compared and analyzed. 

This paper is organized in the following manner. Section II introduces the traditional 
implicit TDFEM scheme with perfectly matched layer (PML) and the iterative solvers, as 
well as the preconditioning techniques. Section III shows the numerical results and 
discussions. The conclusion is presented in section IV. 
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II. THEORY 

The uniaxial perfectly matched layer (UPML) is employed to terminate the 

computational domain. From the Maxwell’s equations in the anisotropic material, it is 

possible to obtain the curl-curl equation as: 
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We could recast equation (3) in the following form: 
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    The electric fields are expanded using one-form Whitney edge elements ( ) ( )1
iW r  

( 1, 2, ,i N= , N  is the number of unknowns.) weighted by constant coefficients ju  

that are continuous function of time [7]. 
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Testing (6) with ( ) ( )1
iW r , associated with non-perfect-electric-conductor (PEC) edges of 

the grid, integrating by parts, equation (8) could be received. 
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By approximating the time derivatives with the Newmark-beta method, we have 
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The choice of 0.25β ≥  in the equation leads to an unconditionally stable scheme, 

allowing us to choose a time step for a specific accuracy without being constraint by 

stability requirements. Choosing 0.25β =  minimized the solution error [8]. 

Equation (10) could also be rewritten in a matrix form as: 

[ ] [ ]C X D=                             (12) 

In the 3-D case, (12) is often a large sparse linear system, which is very tedious and long 
to solve. Thus efficient methods to solve the system must be sought. Usually, the Krylov 
subspace iterative methods are used, among which the conjugate gradient algorithm (CG) 
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and the generalized minimal residue (GMRES) algorithm are most popular because they 
give monotonically decreasing error. The CG algorithm is only suitable for positive 
definite linear systems. When applied to indefinite systems, the following systems are to 
be solved: 

[ ] [ ] [ ] [ ]H HC C X C D=                        (13) 

GMRES is to solve general non-symmetric and indefinite linear systems [37]. The 
convergence of conventional CG and GMRES is unacceptable slow for solving 
discretized Helmholtz equations. It is further desirable to precondition the coefficient 
matrix [C] so that the modified system can converge to an exact solution in significantly 
less iteration than its original counterpart. In this paper, different preconditioners are 
applied in combination with these two iterative algorithms to solve the large sparse 
equations in TDFEM. 

The Jacobi preconditioner, which is the most simple and easiest preconditioner, is 
formed by the diagonal elements of the coefficient matrix [39-40]. However, its efficiency 
is often unsatisfied. The symmetric successive over relaxation (SSOR) [31, 33, 36, 39] 
preconditioner contains more global information of the coefficient matrix when compared 
with the Jacobi preconditioner. Therefore, the SSOR preconditioner can speed up the 
iterative algorithm more efficiently. The efficient SSOR preconditioning strategy 
deployed in this work follows the implementation described in [31]. The advantange of 
the Jacobi and SSOR preconditioners is that they can be directly derived from the 
coefficient matrix [C] without additional sacrifice. 

Another kind of powerful preconditioner is the incomplete LU (ILU) factorization of 
the coefficient matrix and its variants. The simplest ILU preconditioner, i.e. the ILU(0) 
preconditioner which is used in this paper, is derived from ILU factorization without 
fill-in elements. Although additional computing time is required when forming the ILU 
preconditioners, the factorization need to be done only once before the first time step 
[38]. 

In the following of this paper, the convergence properties and CPU time used by 
preconditioned CG, GMRES and conventional CG, GMRES methods are compared and 
analyzed.  

III. NUMERICAL RESULTS AND DISCUSSIONS 

In order to compare different convergence characteristics of the iterative methods in 

this work, a cylindrical cavity partially filled with dielectric rod, a partial-height 

dielectric-filled rectangular waveguide and waveguide inserted in cylindrical cavity 

structure are simulated. Numerical simulations are carried out by the TDFEM. And the 

large systems of the linear equations resulting from the TDFEM are solved by 

preconditioned CG, GMRES methods and also conventional CG and GMRES methods. 

The residual errors are defined as R D CX D= −  for the iterative algorithm and 

they are defined as 610−  for all of the algorithms and structures. All the examples are 

simulated on an Intel Pentium IV 2.4GHz PC with 512MB RAM.  
A cylindrical cavity partially filled with a dielectric rod [23] is analyzed as the first 
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example in order to exploit the versatility of the TDFEM spatial discretization features. 
The relative permittivity of the dielectric rod and the dimensions of the structure are 
shown in Figure 1. A sinusoidal modulated Gaussian pulse of the following form is used 
as the excitation: 

                 ( )
2

0

0 0( ) sin 2
t t

Tg t e f t tπ
−⎛ ⎞−⎜ ⎟

⎝ ⎠= −                        (14) 

Where 103.18 10T −= × s and 0 3t T= . The central frequency is 0 2.5GHzf = . The time 

step is 126.67 10t −Δ = × s and 152N =  for Fourier transformations. The number of 

tetrahedrons in the finite element region is equal to 3510, yielding 3540 unknowns.  
 

h=13.97mm 

R=12.7mm
r=10.0076mm 

37.6rε =  

z 
x 

y 

 
Figure 1 Cylindrical cavity partially filled with dielectric rod 

 
Figure 2(a) displays the convergence characteristics of the Jacobi preconditioned, 

SSOR preconditioned, ILU0 preconditioned and conventional CG algorithms of the 
second time step. It can be found from Figure 2(a) that the ILU0-CG method converges in 
the fastest way. Figure 2(b) displays the convergence characteristics of the Jacobi 
preconditioned, SSOR preconditioned, ILU0 preconditioned and conventional GMRES 
algorithms, again for the second time step. It also can be found from Figure 2(b) that the 
ILU0-GMRES method converges in the fastest way. Table I presents the time used for the 
first 100 time steps for all of the algorithms. We could find that the ILU0 preconditioning 
strategy cost the smallest time for both the preconditioned CG and GMRES methods.  
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Figure 2(a) Residue errors versus iteration number for CG, Jacobi_CG, SSOR_CG and 

ILU0_CG methods for the second time step 
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Figure 2(b) Residue errors versus iteration number for GMRES, Jacobi_GMRES, SSOR_ 

GMRES and ILU0_GMRES methods for the second time step 
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Table I Total time of the first 100 time steps for CG, Preconditioned CG, GMRES, and 

Preconditioned GMRES 

 No Precondition Jacobi SSOR ILU0 

CG 3051 s 273 s 107 s 103 s 

GMRES 400 s 93 s 42 s 39 s 

 
Figure 3(a) shows the y-component of the electric field at the observation point 

(5.0038, 6.985, -5.0038) mm, the normalized spectral amplitude of which is shown in 
Figure 3(b). The resonant frequencies, corresponding to spectral peaks are clearly 
detected. Table II compares four resonant frequencies of the partially filled cylindrical 
cavity received by TDFEM method with those analytical values [24]. Very good 
agreements are obtained and the relative error of each resonant frequency is under 1%. 
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Figure 3(a) y-component of the electric field at the observation point (5.0038, 6.985, 

-5.0038) mm 
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Figure 3(b) Normalized spectral amplitude of the electric field at the observation point 

(5.0038, 6.985, -5.0038) mm 
 

Table II Four resonant frequencies of the partially filled cylindrical cavity 

Resonant frequency (GHz) 

Analytical results [24] TDFEM 

Relative error 

(%) 

1.498 1.50043 0.16 

2.435 2.44277 0.32 

3.339 3.34851 0.28 

3.596 3.60468 0.24 
 

In order to investigate the adaptability of the priority of the ILU0 preconditioning 
strategy to different microwave structures, the preconditioned GMRES methods are 
applied to PML terminated waveguide structures. The application of PML absorbers 
within computational domain will deteriorates the condition number of the TDFEM 
system matrix [31] and makes iterative solvers take more iteration to reach convergence. 

The second example is the waveguide structure partially filled with a dielectric [31] 

as shown in Figure 10. The rectangular waveguide has the width of 20a mm=  and a 

height of 10b mm= . The inserted dielectric material slab has a dimension of 

8.88c mm= , 8W mm= , 3.99d mm=  and a dielectric constant of 6rε = . A sinusoidal 

modulated Gaussian pulse with central frequency of 10GHz is used as the excitation 

source. Magnetic wall on the plane maxx x=  is used and half of the structure needs to 

be simulated. The waveguide is terminated with PML medium backed with a perfect 

conductor. The number of tetrahedrons in the finite element region is equal to 18000, 

yielding 19698 unknowns. In all computations we used 1.667t psΔ = . 
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Figure 4 Configuration of partial-height dielectric-filled rectangular waveguide 

 
Figure 5 displays the convergence characteristics of the Jacobi preconditioned, 

SSOR preconditioned, ILU0 preconditioned and conventional GMRES algorithms, which 
are applied to the waveguide structure, for the second time step. Table III presents the 
time used for the first 50 time steps for all of the algorithms. As the time steps increases, 
much more time could be saved when using ILU0-GMRES method. It can be found that 
the ILU0-GMRES method converges in the fastest way.  
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Figure 5 Residue errors versus iteration number for GMRES, Jacobi_GMRES, SSOR_ 

GMRES and ILU0_GMRES methods for the second time step 
 

Table III Total time of the first 50 time steps for GMRES, and Preconditioned GMRES 

 No Precondition Jacobi SSOR ILU0 

GMRES 434 s 165 s 102 s 99 s 
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Figure 6(a) plots the time domain voltage waveforms at the observation point in 
Ports 1. The waveform of v1 shown in Figure 6(a) is the incident voltage obtained by a 
separate pre-simulation when the dielectric is absent. The S11 parameter is calculated and 
shown in Figure 6(b). Simulation results obtained by the TDFEM are in good agreement 
with that of the frequency domain FEM algorithm. 
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Figure 6(a) Time domain voltage waveforms at the observation points in Ports 1, v1 is the 

incident voltage obtained by a separate pre-simulation when the dielectric is absent 
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Figure 6(b) Magnitude of S11 versus frequency for the dielectric-filled rectangular 

waveguide 
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The third example is a waveguide inserted in cylindrical cavity structure [41], as 

shown in Figure 7. This kind of structure can be applied to design high quality filter. The 

height b  of the rectangular waveguide is equal to the height h  of the cylindrical cavity 

with 7.9b h mm= =  and also the width of the waveguide is equal to the radius of the 

cylindrical cavity with 15.8a R mm= = . A sinusoidally modulated Gaussian pulse with 

central frequency of 15GHz is used as the excitation source. The structure is terminated 

with PML medium backed with a perfect conductor. The number of tetrahedrons in the 

finite element region is equal to 24243, yielding 23944 unknowns. In all computations we 

used 0.667t psΔ = . 
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Figure 7 The waveguide inserted in cylindrical cavity structure 

 
Figure 8 displays the convergence characteristics of the Jacobi preconditioned, 

SSOR preconditioned, ILU0 preconditioned and conventional GMRES algorithms, which 
are applied to this waveguide inserted in cylindrical cavity structure, for the second time 
step. Table IV presents the time used for the first 100 time steps for all of the algorithms. 
As the time steps increases, much more time could be saved when using ILU0-GMRES 
method. It can be found that the ILU0-GMRES method converges in the fastest way.  
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Figure 8 Residue errors versus iteration number for GMRES, Jacobi_GMRES, 

SSOR_GMRES and ILU0_GMRES methods for the second time step 
 
Table IV Total time of the first 100 time steps for GMRES, and Preconditioned GMRES 

 No Preconditioning Jacobi SSOR ILU0 

GMRES 1226 s 385 s 288 s 248 s 

 
Figure 9(a) plots the time domain voltage waveforms at the observation points in 

Ports 1 and 2. Based on these time domain data, the scattering parameters are calculated 
and shown in Figure 9(b). Simulation results obtained by the TDFEM are in good 
agreement with those of the frequency domain FEM algorithm. 
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Figure 9(a) Time domain voltage waveforms at the observation points in Ports 1 and 2 
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Figure 9(b) Scattering parameters of the waveguide inserted in cylindrical cavity structure 

IV. CONCLUSIONS 

The iterative methods are used to solve the large system of linear equations resulted 
from the time-domain finite element methods (TDFEM). Several preconditioning 
techniques, such as Jacobi、SSOR and ILU0, are used to accelerate the convergence of 
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iterative methods, such as CG and GMRES. Convergence properties and the time used of 
these conventional preconditioning techniques are also compared and analyzed. 
Cylindrical cavity partially filled with dielectric rod and the waveguide structures are 
simulated. Numerical results show that the ILU0 preconditioned method converges the 
fastest and costs the smallest time in TDFEM when compared with other preconditioning 
techniques computing the same number of time steps. We get the conclusion that the 
ILU0 preconditioning strategy is especially effective for iterative methods when the 
TDFEM is applied to analyze the electromagnetic-field problems. 
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