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Abstract. We propose a method of calculating the corneal asphericity (Q) and analyze the characteristics of the
anterior corneal shape using the tangential radius. Fifty-eight right eyes of 58 subjects were evaluated using the
Orbscan II corneal topographer. The Q-values of the flat principal semi-meridians calculated by the sagittal radius
were compared to those by the tangential radius. Variation in the Q-value with semi-meridian in the nasal and
temporal cornea calculated by the tangential radius was analyzed. There were significant differences in Q-values
(P < 0.001) between the two methods. The mean Q-values of the flat principal semi-meridians calculated by tan-
gential radius with −0.33� 0.10 in the nasal and −0.22� 0.12 in the temporal showed more negative than the
correspondingQ-values calculated by the sagittal radius. TheQ-values calculated by tangential radius became less
negative gradually from horizontal semi-meridians to oblique semi-meridians in both nasal and temporal cornea.
Variation inQ-value with semi-meridian was more obvious in the nasal cornea. The method of calculating corneal
Q using the tangential radius could provide more reasonable and completeQ-value than that by the sagittal radius.
The model of a whole anterior corneal surface could be reconstructed on the basis of the above method.© 2012 Society
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1 Introduction
It is well established that the anterior surface of the cornea is the
major refractive element of the human eye, being responsible for
approximately 75% of the eye’s total un-accommodated refrac-
tive power.1 It is currently believed that the human anterior cor-
neal shape is closely modeled by a conic section which can be
fully described by the vertex radius of curvature (r0) and a shape
factor.2,3 The shape factor of a conic represents the variation in
curvature form the apex towards the periphery. Five different
parameters are used to express the shape factor of a conic:
the shape factor E and its derivatives p, the eccentricity e,
the conic constant k, and asphericity Q. The formulas of con-
version between them are: E ¼ e2,Q ¼ −e2, and K ¼
p ¼ 1þQ. Figure 1(a) shows a conic section referred to Car-
tesian coordinates with the vertex at the origin O. The equation
of the conic section is given by Y2 ¼ 2r0Z − pZ2, where the Z-
axis is the optical axis, Y-value is the semi-chord diameter, and
Z-value is the sagittal depth of the section.4,5 A conic section is
obtained by cutting a cone by a plane including sphere, ellipse,
hyperbola, and parabola [Fig. 1(b)]. Figure 1(b) is a version of
Figure 5.14 from Smith and Atchison’s book, “The Eye and
Visual Optical Instruments. ”6 Bennett7 derived the conic equa-
tion r2s ¼ r20 þ ð1 − pÞy2 to calculate the p-value by sagittal
radius (rs) from keratometry. Since then, many researchers
have studied the corneal shape by asphericity (p or Q) calcu-
lated by sagittal radius according to Bennett’s equation.8–12

Figure 2 represents a conicoidal corneal section in any given
meridian in contact with a sphere at P and P 0. At any off-axis
point such as P there are two principal curvatures, the sagittal
and the tangential. They can be obtained respectively from the
axial power map and tangential power map in current corneal
topography. The sagittal section is perpendicular to the tangen-
tial section containing the optical axis ZZ. The sagittal radius of
curvature (rs) in sagittal section refers to the distance PCs along
the normal from the corneal surface to the optic axis ZZ. The
tangential radius of curvature (rt) in the tangential section, also
known as the instantaneous radius of curvature refers to the dis-
tance, PCt. The tangential curvature is referred to as axis inde-
pendent, because the center of curvature does not have to lie on
the optical axis.13–15

The asphericity (Q) calculation by sagittal radius (rs) has
been reported from previous studies. However, the sagittal
radius (rs) is spherically biased, and is not a true radius of
curvature.13–15 Tangential radius (rt) is a true radius which
can better represent corneal shape and local curvature changes
especially in the periphery.16 To our knowledge, there is no
report of investigating the corneal asphericity (Q) calculation
by rt. In the present study, we evaluate corneal shape by Q cal-
culated by rt for the first time. The purposes of this study was to
assess the difference of Q-values in the flat principal semi-
meridians between that calculated by the sagittal radius (rs)
and tangential radius (rt), respectively. We also analyzed the
characteristics of the Q-values calculated by the tangential
radius (rt) in the nasal and temporal cornea. By calculating
360Q-values of semi-meridians, we explored the reconstruction
of an accurate model of a whole anterior corneal surface.
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2 Subjects and Methods

2.1 Aspheric Test Objects

Ten conicoidal surface convex aspheric test objects were man-
ufactured to produce surfaces similar to normal human cornea.
The material of these aspheric test objects was polymethyl-
methacrylate (PMMA). The test objects had well-defined con-
vex aspheric surfaces (vertex radius r0preset and asphericity
Qpreset), a diameter of 10 mm, and were manufactured using
an ultra-precision diamond turning lathe (AMETEK. Sterling.

Precitech, Inc). The test objects were all verified by the Form
TalySurf PGI840 (Taylor Hobson Ltd., Leicester, UK) and mea-
sured in 1 meridian marked by the engraved line, which was
horizontal. Then, the test objects were mounted on a matt
black holder and subjected to three measurements using the
Orbscan II topographer (version 3.00). The Q-value and r0-
value of horizontal meridian of each test object were calculated
by sagittal radius and tangential radius. Data collection of Orbs-
can II and calculation of Q-value and r0-value by the two
methods is introduced in following section in detail.

2.2 Subjects

Fifty-eight right eyes of 58 normal emmetropic subjects
(29 females and 29 males) were evaluated. The mean age of
the subjects was 24 years �4.04 (SD) (range: 18 to
36 years). Inclusion criteria were the spherical equivalent refrac-
tive error more than −0.25DS and less than þ0.50DS, corneal
astigmatism less than 1.00DC, and absence of ocular disease
and previous refractive surgery. The study followed the tenets
of the Declaration of Helsinki. Informed consent was obtained
from all subjects.

2.3 Data Collection

The Orbscan II corneal topographer was used to acquire three
independent images of the topography of the right eye of each
subject and test objects. All three images were acquired by the
same examiner. The raw data of the topography map were down-
loaded onto a compact disk in .txt file format, which contained
the dioptric power (P) of data points of the anterior corneal sur-
face from both axial and tangential power maps. Figure 3 shows
an example of axial power map (a) and tangential power map (b)
of the right eye for subject no. 4. The perpendicular distance
from the point to optical axis was defined as y (Fig. 2). A series
of points on a semi-meridian section were arranged at 0.1-mm
intervals. The interval between two semi-meridians was 1 deg.
The sagittal radius (rs) and tangential radius (rt) were obtained
using the corneal refractive index of 1.376, and the equation
r ¼ 376∕P.17 The flat principal meridian was selected by
keratometry for examination.

Fig. 1 The general equation to all of the conic section is given by Y2 ¼
2r0Z − pZ2 (a) and the family of conic sections of asphericity p (b)
(Fig. 5.14, Ref. 5).

Fig. 2 Schematic of a section in any given meridian through a
conicoidal corneal surface in contact with a sphere at the points P
and P 0.

Fig. 3 An example of axial power map (a) and tangential power map (b) of the right eye for subject no. 4.
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2.4 Q-Value Calculation by Sagittal Radius
According to Bennett’s Equation

Bennett6 derived the equation for conic section as following:

r2s ¼ r20 þ ð−QÞy2; (1)

where rs, r0, Q, and y refer to the sagittal radius, the vertex
radius, corneal asphericity (Q), and perpendicular distance
from the point to optical axis, respectively. Douthwaite18

used the linear regression method to plot a straight line graph
of r2s (on the ordinate) versus y2 (on the abscissa). The square
root of the intercept on the ordinate equals r0, and the negative
slope of the line equalsQ. The straight line gives a coefficient of
determination (R2). The Q-value and r0-value of the flat prin-
cipal meridian of human eyes and horizontal meridian of test
objects were calculated by the points on the axial power
map, from the first point at 0.1 mm to the most peripheral
point. The means of three Q-values and three r0-values were
regarded as the resulting value.

2.5 Q-Value Calculation by Tangential Radius
According to the Implicit Function
Differential Method

A three dimensional Cartesian coordinate system is set with its
origin at vertex normal to the corneal intersection of the optic
axis of the videokeratoscopy.19 The Z-axis, Y-axis, X-axis of the
coordinate represent the optical axis direction, the vertical direc-
tion and the horizontal direction, respectively. θ is the angle
between the corneal meridian section and the XOZ plane.
The corneal meridian section is located on the YOZ plane
when θ ¼ 90 deg, and it can be correspondingly described
by the conic equation: y2 ¼ a1zþ a2z2, while situated on the
XOZ plane when θ ¼ 0° and described by the conic equation:
x2 ¼ a1zþ a2z2. For any other angle θ except for 0, 90, 180,
and 270 deg., the YOZ plane can be coincided with the θOZ
plane by rotating the coordinate system. Thus the corneal
meridian section of any other angle θ can also be described
by the conic equation y2 ¼ a1zþ a2z2 in the new coordinate
system.

Let us take corneal meridian section with θ ¼ 90 deg, for
example. The formula of the curvature of a point on the section
can be expressed as:

K ¼ 1

rt
¼ jy 0 0jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1þ ðy 0Þ2�3
p ; (2)

where y 0 and y 0 0 are the first and second derivatives with respect
to z, which is a Z-axis coordinate value of the point. Differen-
tiating both sides of the conic equation y2 ¼ a1zþ a2z2 with
respect to z, we get

y 0 ¼ a1 þ 2a2z
2y

; y 0 0 ¼ −a21
4y3

:

Then by substituting y 0 and y 0 0 into Eq. (2), we obtain:

rt ¼
4

a21

�
a21
4
þ ð1þ a2Þy2

�3
2

: (3)

SinceQ ¼ −e2 in which e is eccentricity and equals the focal
length divided by the major axis length of the conic curve,
Q ¼ −ð1þ a2Þ. r0 can be calculated by setting y ¼ 0 from
Eq. (3), so that r0 ¼ a1∕2. Finally by substituting a1 ¼ 2r0
and a2 ¼ −ð1þQÞ into Eq. (3), we obtain the following
equation:

rt ¼
1

r20
½r20 −Qy2�32; (4)

where rt, r0, Q, and y refer to the tangential radius, the vertex
radius, corneal asphericity (Q), and perpendicular distance from
the point to optical axis, respectively.

Since rt is a nonlinear function of y in Eq. (4), it is difficult to
calculate r0 and Q. To transform the nonlinear problem to the
linear problem, Eq. (4) is converted to another form which can
be written as:

y2 ¼ bþ cr
2
3
t ; (5)

where b and c are constants, a straight line graph of y2 (on the

ordinate) versus r2∕3t (on the abscissa) is plotted. By the linear

regression method, we get b ¼ r20∕Q and c ¼ −ðr4∕30 ∕QÞ, that
is, Q ¼ r20∕b and r0 ¼ ½−ðb∕cÞ�3∕2. The straight line also gives
a coefficient of determination (R2). The Q-value and r0-value of
the given meridian of human eyes and horizontal meridian of
test objects were calculated by the points on the tangential
power map, from the first point at 0.1 mm to the most peripheral
point. The means of three Q-values and three r0-values were
regarded as the resulting value.

2.6 Comparison of Precision Between Two Q-Values
by Sagittal Radius and Tangential Radius

Perturbation analysis was used to assess the precision of
Q-values calculation between the two methods. The two
sides of both equations [see Eqs. (1) and (4)] were differentiated
separately. We obtained equations as following:

dQs ¼
2rs
y2

drs: (6)

dQt ¼ −
4r20drt

6ðrtr20Þ
1
3y2

: (7)

Then Eq. (6) was divided by Eq. (7). Since rs∕r0 and
rt∕r0 equals to 1 approximately. So assuming drs ¼ drt, we
obtained:

���� dQs

dQt

���� ¼ 3 ·
rs
r0

·

�
rt
r0

�1
3 � 3. (8)

The implication of Eq. (8) will be explained in detail later
(see Discussion, Sec. 4 below).
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2.7 Repeatability of Q and r0 Calculations using
Orbscan II

Douthwaite20 suggested that a three measurement average
should be a representative result forQ and r0 for single meridian
measurements using Orbscan II to improve repeatability. In our
study, intrasession and intersession repeatability of Q and r0 of
the temporal flat principal semi-meridian using Orbscan II with
the two methods were assessed in a subset of 20 right eyes of 20
subjects. In the first session, three repeated measurements were
obtained for intrasession repeatability analysis. Measurements
were repeated in a second session at the same time on the
third day for intersession repeatability.

2.8 Analysis

The nasal cornea includes quadrant I (0–11, 11–20, 21–30, and
31–50 deg.) and quadrant IV (350–359, 340–349, 330–339, and
310–329 deg.). The temporal cornea includes quadrant II (170–
180, 160–169, 150–159, and 130–149 deg.) and quadrant III
(181–190, 191–200, 201–210, and 211–230 deg.).

Statistical analysis was performed using SPSS software (ver-
sion 17.0, SPSS, Inc.). The Kolmogorov-Smirnov test was used
to check normal distribution of data. The level of significance
was set at five percent. The differences in r0-value and Q-value
of test objects between predefined values and those calculated
by the two methods were compared using a repeated measures
analysis of variance (ANOVA). The intrasession repeatability
was tested using the intraclass correlation coefficient (ICC)21

and coefficient of variation (CV). The intersession repeatability
was defined as twice the standard deviation (SD) of the differ-
ence between the mean of three measurements in the two
sessions according to The British Standard Institution.22 Differ-
ences between Q-values and between r0-values of the flat prin-
cipal semi-meridians by the two methods were compared by
paired t-tests. In linear regression analysis, the regression coef-
ficient was tested by the ANOVA. Considering the reliability of
linear regression equation, the coefficient of determination (R2)
should be more than 0.5.

3 Results
The Kolmogorov-Smirnov test showed that all parameter distri-
butions were not significantly different from normal, with the
exception of the coefficients of determination in the flat princi-
pal semi-meridians with the two methods. The linear regression
equation had statistical significance. In all subjects, the flat prin-
cipal meridians were within 10 deg.

3.1 Aspheric Test Objects

Table 1 shows results of the horizontal meridian of each test
object calculated by sagittal radius and tangential radius
using Orbscan II measurement. A repeated measures
ANOVA, with a Bonferroni correction for multiple compari-
sons, for r0-value (P < 0.001) indicates the differences between
the predefined values and the values calculated by the two meth-
ods are significant. The ANOVA results for Q-value show no
significant difference between the predefined values and
those calculated by tangential radius (P ¼ 1.0), while values
calculated by sagittal radius showed a significant difference
from the other two values (P ¼ 0.000). Table 2 shows the
mean of the differences in vertex radius Δr0 and asphericity
ΔQ of the test objects compared to the predefined values,
r0preset and Qpreset. The mean differences between the values
calculated by sagittal radius and the predefined values were
approximately 1.48 times larger for Δr0sagittal and approximately
3.47 times larger for ΔQsagittal than the mean differences of
the values calculated by tangential radius. Statistically
significant differences were found between Δr0sagittal and
Δr0 tan gential (P ¼ 0.039) and between ΔQsagittal and
ΔQtan gential (P < 0.001).

3.2 Repeatability of Orbscan II Assessment
of Q and r0

The Orbscan II intrasession repeatability of Q and r0 in the tem-
poral flat principal semi-meridian calculated by the tangential
radius were very reliable (Q’s ICC: 0.91; CV ¼ 2.23%.r0’s

Table 1 Results of measurement of the horizontal meridian of test objects calculated by sagittal radius and tangential radius.

Calculated value from Orbscan II measurement

Preset value Sagittal Tangential

r0preset Qpreset r0 sagittal Qsagittal r0 tan sagittal Q tan sagittal

7.2 −0.20 7.26 −0.12 7.15 −0.18

7.6 −0.41 7.65 −0.28 7.56 −0.44

7.7 −0.30 7.73 −0.24 7.66 −0.32

7.7 −0.49 7.75 −0.37 7.69 −0.46

7.8 −0.25 7.85 −0.11 7.75 −0.20

7.8 −0.41 7.86 −0.31 7.77 −0.45

7.9 −0.30 7.94 −0.22 7.89 −0.33
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ICC: 0.948; CV ¼ 1.50%). The results for Q and r0 calculated
by the sagittal radius were similar (Q’s ICC: 0.893;
CV ¼ 2.59%.r0’s ICC: 0.95; CV ¼ 1.73%). The Orbscan II
intersession repeatability was 0.050 mm for Q and 0.076 mm
for r0 in the temporal flat principal semi-meridian calculated
by the tangential radius, and 0.060 mm for Q and 0.074 mm
for r0 calculated by the sagittal radius. Both calculation methods
demonstrated a high repeatability.

3.3 Function Relationship

The most peripheral points of the semi-meridians in the oblique
semi-meridian regions were more than 3.5 mm departed from
the corneal center and almost up to 4.5 mm in the horizontal
semi-meridian regions. Figure 4 shows the dioptric power dis-
tributions against the distance (y) at 0.1 mm intervals in the nasal
flat principal semi-meridian from both axial and tangential
power maps respectively for the right eye of subject no. 1.
Figure 5 illustrates a function scatterplot of the nasal flat
principal semi-meridian of the right eye of the same subject
with the implicit function differential method.

3.4 Coefficients of Determination

The median values of coefficients of determination (R2) in the
flat principal semi-meridians of the right eye with the two meth-
ods were above 0.9. The mean values of R2 in the nasal and
temporal of the right cornea with the implicit function differen-
tial method were above 0.83.

3.5 Comparison of Q-Values and r0-Values
in Flat Principal Semi-Meridians

Table 3 shows the mean Q-values and r0-values in the flat prin-
cipal semi-meridians calculated by sagittal and tangential radius.
There were significant differences in Q-values (P < 0.001) and
r0-values (P < 0.001) between the two methods. The mean
Q-values of the flat principal semi-meridians by the tangential
radius were −0.33� 0.10 in the nasal and −0.22� 0.12 in the
temporal, respectively. The Q-values were more negative when
calculated by the tangential radius than the sagittal radius. The
mean r0-values of the flat principal semi-meridians calculated
by the tangential radius were 7.83� 0.24 mm in the nasal
and 7.80� 0.20 mm in the temporal, respectively, which
were much smaller than those calculated by the sagittal radius.

3.6 Q-Values from Horizontal to Oblique
Semi-Meridian Regions by Tangential Radius

Tables 4 and 5 showmean values forQ in the nasal and temporal
of the cornea, respectively, at different semi-meridian regions.
Table 3 shows the ranges of variation in Q-values from horizon-
tal to oblique semi-meridian regions were −0.34
to −0.27 in quadrant I and −0.33 to −0.19 in quadrant IV.
Table 4 shows the ranges of variation in Q-values from horizon-
tal to oblique semi-meridian regions were −0.20 to −0.18 in
quadrant II and −0.23 to −0.21 in quadrant III. The Q-values
became gradually less-negative from horizontal to oblique

Table 2 Differences in vertex radius (r0) and asphericity (Q) of test objects.

Parameter

Difference from preset value

Sagittal Tangential

Δr0 sagittal ΔQsagittal Δr0 tan sagittal ΔQtan sagittal

Mean 0.043 0.104 0.030 0.030

Standard deviation 0.013 0.025 0.015 0.012

Note: Δ ¼ difference.

Fig. 4 Corneal tangential and axial dioptric power distributions as a
function of distance from the optical axis in the nasal flat principal
semi-meridian for the right eye of subject no. 1.

Fig. 5 Scatterplot of distance squared versus tangential radius to the
two-thirds power in the nasal flat principal semi-meridian of the
right eye for subject no. 1 with the implicit function differential method.
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semi-meridian regions in the nasal and temporal cornea. The Q-
values in the nasal cornea were more negative than those in the
temporal cornea. Figure 6 shows the variation in asphericity
with semi-meridian region in the nasal cornea of the right
eye. Figure 7 shows the variation in asphericity with semi-
meridian region in the temporal cornea of the right eye. It
appeared there was no significant variation in Q-values with
semi-meridian region in the temporal cornea. However, the
nasal cornea showed obvious variation with semi-meridian
region. The maximal difference between the Q-values of the
semi-meridian regions in the nasal cornea was 0.15, while it
decreased to 0.05 in the temporal cornea.

3.7 r0-Values from Horizontal to Oblique
Semi-Meridian Regions by Tangential Radius

The variations in r0-values from horizontal to oblique semi-
meridian regions were 7.83 to 7.80 mm in quadrant I, 7.82
to 7.78 mm in quadrant IV, 7.77 to 7.72 mm in quadrant II,
and 7.79 to 7.76 mm in quadrant III. We found that the r0-values

became smaller from horizontal to oblique semi-meridian
regions in the nasal and temporal of the cornea. The r0-values
in the nasal cornea were much greater than those in the temporal
cornea. The maximal difference between the r0-values of the
semi-meridian regions was 0.05 mm in the nasal cornea and
0.07 mm in the temporal cornea.

4 Discussion

4.1 Aspheric Test objects

The Q-value calculated by tangential radius was not signifi-
cantly different to the predefined values, but the Q-value calcu-
lated by sagittal radius under-read compared to the predefined
values. The r0-value calculated by sagittal radius over-read,
while that calculated by tangential radius under-read compared
to the predefined values. The mean of the differences in r0-value
(Δr0) and Q-value (ΔQ) between the values calculated by sagit-
tal radius and the predefined values were both larger than the
mean differences of the values calculated by tangential radius.

Table 3 Values for asphericity (Q) and vertex radius of curvature (r0) in flat principal semi-meridians calculated by sagittal and tangential radius of
curvature.

Sagittal Tangential N P

Q Nf −0.30� 0.11 −0.33� 0.10 57 <0.001

Q Tf −0.16� 0.09 −0.22� 0.12 51 <0.001

r0 Nf 7.87� 0.23 7.83� 0.24 57 <0.001

r0 Tf 7.86� 0.21 7.80� 0.20 51 <0.001

Note: Nf: Nasal flat principal semi-meridian; Tf: Temporal flat principal semi-meridian. n = number of eyes.

Table 4 Values for asphericity (Q) in the nasal cornea at different corneal semi-meridian regions.

Corneal semi-meridian region (degrees)

Nasal 310–329 330–339 340–349 350–359 0–10 11–20 21–30 31–50

(n ¼ 56) (n ¼ 58) (n ¼ 58) (n ¼ 58) (n ¼ 58) (n ¼ 58) (n ¼ 58) (n ¼ 57)

Mean� SD −0.19� 0.07 −0.25� 0.12 −0.30� 0.13 −0.33� 0.12 −0.34� 0.10 −0.33� 0.12 −0.31� 0.13 −0.27� 0.13

Range −0.35 to −0.08 −0.53 to −0.08 −0.70 to −0.08 −0.64 to −0.10 −0.53 to −0.14 −0.64 to −0.13 −0.62 to −0.12 −0.66 to −0.14

Note: n ¼ number of eyes; SD ¼ standard deviation.

Table 5 Values for asphericity (Q) in the temporal cornea at different corneal semi-meridian regions.

Corneal semi-meridian region (degrees)

Temporal 130–149 150–159 160–169 170–180 181–190 191–200 201–210 211–230

(n ¼ 55) (n ¼ 58) (n ¼ 58) (n ¼ 58) (n ¼ 58) (n ¼ 58) (n ¼ 58) (n ¼ 57)

Mean� SD −0.18� 0.09 −0.20� 0.10 −0.20� 0.11 −0.20� 0.11 −0.22� 0.12 −0.23� 0.13 −0.23� 0.11 −0.21� 0.08

Range −0.39 to −0.06 −0.46 to −0.08 −0.49 to −0.06 −0.55 to −0.07 −0.58 to −0.07 −0.65 to −0.06 −0.57 to −0.07 −0.45 to −0.09

Note: n ¼ number of eyes; SD ¼ standard deviation.
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This result further indicates the tangential radius of curvature
(rt) is a true radius of curvature which can represent corneal
shape more accurately.

4.2 Repeatability of Q-Value Calculations
using Orbscan II

The Q- and r0-value calculations with the sagittal radius have
been used by many researchers previously. From the results of
our study, we believe the Q- and r0-value calculations with the
tangential radius using Orbscan II are as reliable as those cal-
culated with the sagittal radius. The repeatability ofQ calculated
by the tangential radius may be much better.

4.3 Optical Principle of Calculating Q-Value

Since Bennett7 introduced the equation rs2 ¼ r20 þ ð1 − pÞy2 to
calculate asphericity (p) by sagittal radius measured from kerato-
metry, theequationhasbeenaccepteduntil now,particularlywhen
used in anykind of videokeratoscope to calculate corneal aspheri-
city. Many researchers studied the corneal asphericity which cal-
culated by sagittal radius (rs) according toBennett’s equation.

8–12

But there are two differences between the two methods. First, the
sagittal radius used byBennett to calculate the asphericity (p) is in
the sagittal plane perpendicular to the tangential plane. Bennett
supposed the center of the sagittal radius to intersectwith the opti-
cal axis (Fig. 2). However, the human cornea is not a rotationally
symmetric surface, so the center of the sagittal radius does not
always lie on the optical axis. The sagittal radius can be obtained
from the axial power map in corneal topography. However, the

axial curvature does not reallymeasure the curvature of the cornea
in any direction.23 Thus, rs is spherically biased and not a true
radius of curvature,13–15 and it will lead to erroneous result for
an asymmetric corneal surface. The corneal surface consists of
a series of tangential sections containing the optical axis. The
methodwe introduced to calculate theQ-value used the tangential
radii in the tangential section. The tangential radius of curvature
(rt) is a true radius of curvaturewhich can better represent corneal
shapeand it can identify localizedcurvaturechanges sensitively in
the peripheral cornea.16 We believe the asphericity of the corneal
surface calculated by tangential radius is more reasonable.

The second difference is Bennett’s equation did not involve
the rotation of the coordinate system. It could only be used to cal-
culate Q-values of the principal semi-meridians or the principal
semi-axes. Although the Q-value calculation of our method is
more complex because the center of the tangential radius of a
point on any given meridian section is outside the optical axis,
this method can not only calculate Q-values of four principal
semi-axes, but it can also calculate Q-values of other semi-
meridians. In our study, Q-values of semi-meridians at 1-deg.
intervals were calculated by tangential radius with 122Q-values
of horizontal semi-meridians and 80 Q-values of oblique
semi-meridians. It follows that we could analyze the characteris-
tics of the anterior corneal surface according to the relationship
between Q-values of different semi-meridian regions.

4.4 Perturbation Analysis

Table3 tellsus that theQ-valuescalculatedby the tangential radius
weremorenegative than theQ-values calculatedby sagittal radius
in the flat principal semi-meridians. It was coincident with the
trendofdioptricpowerdistribution inFig.4showing the flattening
of the dioptric power from center to periphery on the tangential
power map more obviously than that on the axial power map.
Mathematically, we compared precision between two Q-values
by sagittal radius and by tangential radius with perturbation ana-
lysis. Equation (8) indicates the change ofQ caused by the change
of rs is three times greater than that caused by the change of rt,
assuming the change of rs and rt are equal. Here, the change of
radius of curvature refers to the error between the measured
value and true value. Therefore, the change of Q-value caused
by the minor change of radius of curvature with the tangential
radius is less than that with the sagittal radius. We suggest that
the Q-value calculation by tangential radius can represent more
accurate asphericity of corneal section.

4.5 Distribution of Q-Values by Tangential Radius

From Tables 4 and 5 and Figs. 6 and 7, the characteristics of the
anterior corneal surface are as follows. First, theQ calculated by
tangential radius in the nasal and temporal of the cornea for the
sample analyzed in our study displayed negative values
(−1 < Q < 0) corresponding to the most common corneal
shape (prolate ellipse).24 Second, the Q-values in the nasal cor-
nea were more negative than in the temporal cornea. Thus, the
nasal cornea has greater asphericity than the temporal cornea,
and the ellipse shapes of semi-meridian regions between the
nasal and temporal of the cornea are not symmetric. Third,
the Q-values became less negative gradually from horizontal
semi-meridian regions to oblique semi-meridian regions. This
variation trend is more obvious in the nasal cornea than in
the temporal cornea. However, the variation in Q-value with

Fig. 7 Variation in asphericity as a function of semi-meridian region in
the temporal cornea of the right eye. Bars denote 95% confidence inter-
val (CI).

Fig. 6 Variation in asphericity as a function of semi-meridian region in
the nasal cornea of the right eye. Bars denote 95% confidence interval
(CI).
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the semi-meridian regions is quite moderate and smooth. It con-
forms to the smoothness of the corneal surface.

Figure 8 shows an example of the variation in asphericity
with semi-meridian at 1-deg. intervals both in the nasal (a)
and temporal (b) of the right cornea for subject no. 53. The var-
iation trend in individual Q-value is similar to that in Fig. 6
(nasal) and Fig. 7 (temporal). The Q-values gradually become
less-negative rom horizontal semi-meridians to oblique semi-
meridians. The asphericity of the corneal surface gradually
weakens from the horizontal to oblique meridians.

4.6 Distribution of r0-Values by Tangential Radius

The r0-values became smaller from horizontal semi-meridian
regions to oblique semi-meridian regions in the nasal and tem-
poral cornea. The r0-values in the nasal cornea were much
greater than those in the temporal cornea. We suggest that a cor-
neal section with greater r0-value has a more negative Q-value.
The variation in r0-values within semi-meridian regions is
moderate and smooth.

4.7 Coefficients of Determination

Themeanvalues of coefficients of determination (R2) in the nasal
and temporal corneawere above 0.83,which indicated that theQ-
value calculation by the linear regression method was viable. In
addition, the coefficient of determination for the near vertical
region was poorer than the horizontal and oblique regions,
which was in agreement with Douthwaite.9 This difference
may be due to problems associated with acquiring a good
image or due to the upper lid inducing a non-conic form to the
section. Further work is needed to studyQ and r0 for the near ver-
tical region in order that thewhole corneal shape can be presented
more completely.

In summary, themethodof calculatingQ-valuesby the tangen-
tial radius of curvature could provide more reasonable and com-
pleteQ-values of anterior corneal surface than that calculated by
the sagittal radius of curvature. TheQ-value of any semi-meridian
could be calculated by the tangential radius of curvature. This
would be the basis to reconstruct the model of the whole anterior
corneal surface.
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