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Abstract
We present a general scheme for multiparty-controlled teleportation of
an arbitrary m-qudit (d-dimensional quantum system) state by using non-
maximally entangled states as the quantum channel. The sender performs
m generalized Bell-state measurements on her 2m particles, the controllers
take some single-particle measurements with the measuring basis Xd and the
receiver only needs to introduce one auxiliary two-level particle to extract
quantum information probabilistically with the fidelity unit if he cooperates
with all the controllers. All the parties can use some decoy photons to set
up their quantum channel securely, which will forbid a dishonest party to
eavesdrop freely. This scheme is optimal as the probability that the receiver
obtains the originally unknown m-qudit state equals the entanglement of the
quantum channel.

PACS numbers: 03.67.Hk, 03.65.Ud, 42.50.Dv

1. Introduction

The principle of quantum mechanics provides some novel ways for quantum information
transmission, such as quantum key distribution [1–4], quantum secret sharing [5–9], quantum
secure direct communication [10, 11], deterministic secure quantum communication [12, 13],
quantum secret report [14], quantum secret conference [15], quantum dialogue [16], quantum
teleportation [17], and so on. Quantum teleportation, a unique thing in quantum mechanics,
provides a way for two parties to teleport an unknown quantum state |χ〉 = a|0〉 + b|1〉,
exploiting the nonlocal correlation of an Einstein–Podolsky–Rosen (EPR) state shared in
advance. For this task, the sender performs a Bell-state measurement on the unknown
quantum system χ and one of the EPR particles, and the receiver takes a unitary operation
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on the remaining EPR particle, according to the information of the Bell-state measurement.
Since Bennet et al [17] first discovered that the information of an unknown qubit |χ〉 can be
disassembled into some pieces and then reconstructed with classical information and quantum
correlations, researchers have devoted much interest to quantum teleportation. On one hand,
several experiments have demonstrated the teleportation of a single qubit with entangled
photons and ions [18–23]. On the other hand, a great number of theoretical schemes for
teleporting an unknown state, especially an N-particle entangled state, have been proposed
with different quantum channels [24–37].

Recently, the controlled teleportation for the single-qubit or the m-qubit state has been
studied by some groups. The basic idea of a controlled teleportation scheme [38–41] is to
let an unknown quantum state be recovered by a remote receiver only when he cooperates
with the controllers. It is similar to another branch of quantum communication, quantum state
sharing (QSTS) [42–48], whose task is to let several receivers share an unknown quantum
state with cooperations. Essentially one receiver can reconstruct the originally unknown state
with the help of others. In principle, almost all the QSTS schemes [42–48] can be used
for controlled teleportation with or without a little modification, and vice versa [40, 42, 44].
In 1999, Karlsson and Bourennane proposed the first controlled teleportation protocol with a
three-qubit Greenberger–Horne–Zeilinger (GHZ) state for teleporting a single-qubit state [38].
In 2004, Yang et al [39] presented a multiparty controlled teleportation protocol to teleport
multi-qubit quantum information. In 2005, Deng et al [40] introduced a symmetric multiparty
controlled teleportation scheme for an arbitrary two-particle entanglement state. Moreover,
they presented another scheme for sharing an arbitrary two-particle state with EPR pairs
and GHZ-state measurements [44] or Bell-state measurements [45]. Both those two QSTS
schemes [40, 44] can be used for controlled teleportation directly without any modification.
Also, Zhang, Jin and Zhang [46] presented a scheme for sharing an arbitrary two-particle state
based on entanglement swapping. Zhang et al [47] proposed a multiparty QSTS scheme for
sharing an unknown single-qubit state with photon pairs and a controlled teleportation scheme
by using quantum secret sharing of classical message for teleporting arbitrary m-qubit quantum
information. Recently, Li et al [42] have proposed an efficient symmetric multiparty QSTS
protocol for sharing an arbitrary m-qubit state. All those three QSTS schemes, in principle,
are equivalent to a secure scheme for teleportation with some controllers.

Although there are some schemes for controlled teleportation [38–41] or QSTS
[42–47], all of them are based on a maximally entangled quantum channel, not a pure
entangled one. A practical quantum signal source often produces a pure entangled state
because of its unsymmetry to some extent. In this work, we will give a general form for
controlled teleportation of an arbitrary m-qudit (d-level quantum system) state via the control
of n controllers by using d-dimensional pure entangled states as the quantum channel, following
some ideas in [42]. Except for the sender Alice, each of the controllers needs only to take m
single-particle measurements on his particles, and the receiver can probabilistically reconstruct
the unknown m-qudit state with an auxiliary qubit (two-level particle) and m unitary operations
if she cooperates with all the controllers. This scheme for controlled teleportation of the
m-qudit state is optimal as the probability that the receiver obtains the originally unknown
m-qudit state with the fidelity unit equals the entanglement of the quantum channel.

2. Controlled teleportation of an arbitrary single-particle qudit with a
pure entangled quantum channel

The generalized Bell states (GBS) of d-dimensional quantum systems (the analogue of the
Bell state for spin- 1

2 particles) are [17]
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|ψrs〉 = 1√
d

d−1∑
j=0

e
2π i
d

jr |j 〉|j ⊕ s〉 (1)

where r, s = 0, 1, . . . , d −1, are used to label the d2 orthogonal GBS. |0〉, |1〉, . . ., and |d −1〉
are the d eigenvectors of the measuring basis (MB) Zd , and j ⊕ s means j + s mod d. The
d2 unitary operations Uuv(u, v = 0, 1, . . . , d − 1) can transfer one of the Bell states into each
other:

Uuv =
d−1∑
j=0

e
2π i
d

uj |j ⊕ v〉〈j |. (2)

Another unbiased basis Xd which has d eigenvectors can be written as {|0〉x, . . . , |r〉x, . . . , |d−
1〉x} [13, 49]:

|r〉x = 1√
d

d−1∑
j=0

e
2π i
d

jr |j 〉 (3)

where r ∈ {0, 1, . . . , d − 1}. The two unbiased bases have the relation |〈k|r〉x |2 = 1
d

. Here
|k〉 is an eigenvector of the MB Zd and |r〉x is an eigenvector of the MB Xd .

Now, let us describe the principle of our controlled teleportation of an arbitrary m-qudit
state with m pure entangled states. For presenting the principle of our scheme clearly, we first
consider the case to teleport an unknown single-particle qudit state and then generalize it to
the case with an arbitrary m-particle qudit state.

Suppose the originally unknown single-particle qudit state teleported is

|χ〉χ0 = β0|0〉 + β1|1〉 + · · · + βd−1|d − 1〉, (4)

where

|β0|2 + |β1|2 + · · · + |βd−1|2 = 1. (5)

The pure entangled (n + 2)-particle state used for setting up the quantum channel is

|�〉a0a1···an+1 = c0

n+1∏
k=0

|0〉ak
+ · · · +

n+1∏
k′=0

cd−1|d − 1〉ak′ , (6)

where ak (k = 0, 1, . . . , n + 1) are the n + 2 particles in the pure entangled state |�〉, and

1

d

d−1∑
j=0

|cj |2 = 1. (7)

Similar to the controlled teleportation of qubits [40, 42], Alice should first set up a pure
entangled quantum channel with the controllers, say Bobq (q = 1, 2, . . . , n) and the receiver,
say Charlie. The way for sharing a sequence of pure entangled (n + 2)-particle qubit states
has been discussed in [13]. In detail, Alice prepares a sequence of pure entangled states
|�〉a0a1···an+1 , and divides them into n + 2 particle sequences, say Sk (k = 0, 1, . . . , n + 1).
That is, Alice picks up the particle ak in each pure entangled state |�〉a0a1···an+1 to make up the
particle sequence Sk , in the same way as [10, 11, 40, 42]. To prevent a potentially dishonest
controller from stealing the information freely or the receiver from recovering the unknown
state without the control of the controllers [50], Alice has to replace some particles in the
sequence Sk with her decoy photons [51, 52] before she sends the sequence Sk to a controller,
say Bobk (or the receiver Charlie if k = n + 1). The decoy photons can be prepared by
measuring and manipulating some particles in pure entangled states [13]. For instance, Alice
measures the particle a0 in the state |�〉a0a1···an+1

with the MB Zd , and then obtains the state
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of all the other particles |r〉 if that of the particle a0 is |r〉. Alice can manipulate the particle
ak with unitary operations {U ′

uv = |u〉〈v|} and high-dimensional Hadamard operation Hd

[13, 49, 52]:

Hd = 1√
d




1 1 · · · 1
1 e2π i/d · · · e(d−1)2π i/d

1 e4π i/d · · · e(d−1)4π i/d

...
... · · · ...

1 e2(d−1)π i/d · · · e(d−1)2(d−1)π i/d


 . (8)

That is, Alice can prepare her decoy photons randomly in one of the 2d states {|0〉, |1〉, . . . ,
|d − 1〉; |0〉x, |1〉x, . . . , |d − 1〉x} without an ideal high-dimension single-photon source [13,
52].

After setting up the pure entangled quantum channel securely, Alice performs a
generalized Bell-state measurement on her particles χ0 and a0, the quantum correlation will be
transferred into the quantum system composed of the other n+1 particles a1, a2, . . . , an+1. For
reconstructing the original qudit state |χ〉χ0 , the n controllers Bobk perform Xd measurements
on their particles and the receiver can probabilistically extract the information of the original
state |χ〉χ0 by introducing one auxiliary two-level particle. In detail, one can rewrite the state
of the composite quantum system composed of all the particles χ0, a0, a1, . . . , an+1 as follows:

|χ〉χ0 ⊗ |�〉a0a1···an+1 =

d−1∑

j=0

βj |j 〉



χ0

⊗

d−1∑

j ′=0

cj ′

n+1∏
k=0

|j ′〉ak




= 1√
d

∑
r,s


|ψrs〉χ0a0 ⊗

d−1∑
j=0

e− 2π i
d

jrβj cj⊕s

n+1∏
k=1

|j ⊕ s〉ak


 . (9)

After Alice performs the generalized Bell-state (GBS) measurement on the particles χ0 and
a0, the remaining particles (a1, a2, . . . , an+1) collapse to the state |ϕ〉a1···an+1 (without being
normalized) if Alice gets the outcome |ψrs〉χ0a0 :

|ϕ〉a1,...,an+1 =
d−1∑
j=0

e− 2π i
d

jrβj cj⊕s

n+1∏
k=1

|j ⊕ s〉ak
. (10)

To probabilistically reconstruct the original state, the controllers Bobk perform measurements
with the MB Xd on their particles independently. The measurements done by all the controllers
can be expressed as M, similar to [42, 44]:

M = (〈0|x)n−t1−···td−1 ⊗ (〈1|x)t1 ⊗ · · · ⊗ (〈d − 1|x)td−1 . (11)

Here tj (j = 1, 2, . . . , d − 1) represents the number of the controllers that obtain the result
|j 〉x . After controllers perform M measurements on their particles, the state of the particle in
the hand of the receiver Charlie becomes (neglect a whole factor 1

dn/2 )

|ϕ〉an+1 = M


d−1∑

j=0

e− 2π i
d

jrβj cj⊕s

n+1∏
k=1

|j ⊕ s〉ak




=
d−1∑
j=0

e− 2π i
d

[jr+(j⊕s)r ′]βjcj⊕s |j ⊕ s〉an+1 , (12)
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where

r ′ = 1 · t1 + 2 · t2 + · · · + (d − 1) · td−1. (13)

That is, the state of the receiver’s particle an+1 is determined by the measurement results of the
sender and all the controllers. Suppose |ck|2 = min{|ci |2, i = 0, . . . , d − 1}. For extracting
information of the original state |χ〉χ0 from |ϕ〉an+2 probabilistically, Charlie can perform a
general evolution Umax on particle an+1 and an auxiliary qubit aaux whose original state is |0〉aux.
In detail, under the basis {|0〉|0〉aux, |1〉|0〉aux, . . . , |d − 1〉|0〉aux, |0〉|1〉aux, . . . , |d − 1〉|1〉aux},
the collective unitary transformation Umax can be chosen as

Umax =




ck

c0
0 · · · 0

√
1 − ( ck

c0
)2 0 · · · 0

0 ck

c1
· · · 0 0

√
1 − ( ck

c1
)2 · · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 · · · ck

cd−1
0 0 · · ·

√
1 − ( ck

cd−1
)2

√
1 − ( ck

c0
)2 0 · · · 0 − ck

c0
0 · · · 0

0
√

1 − ( ck

c1
)2 · · · 0 0 − ck

c1
· · · 0

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 · · ·
√

1 − ( ck

cd−1
)2 0 0 · · · − ck

cd−1




,

(14)

i.e.,

Umax|ϕ〉an+1 |0〉aux =
d−1∑
j=0

e− 2π i
d

[jr+(j⊕s)r ′]βjcj⊕s |j ⊕ s〉an+1

×

 ck

cj⊕s

|0〉aux +

√
1 −

(
ck

cj⊕s

)2

|1〉aux


 . (15)

Charlie measures his auxiliary particle after the unitary transformation Umax. The
controlled teleportation succeeds if the measurement result is |0〉aux; otherwise the teleportation
fails, and the information of the original state is disappeared. If the controlled teleportation
succeeds, Charlie gets the state of the particle an+1:

|ϕ′〉an+1 =
d−1∑
j ′=0

e− 2π i
d

[(j ′r ′+(j ′−s)r]βd+j ′−s⊕dck|j ′〉an+1

= ck

d−1∑
j=0

e− 2π i
d

[(j⊕s)r ′+jr]βj |j ⊕ s〉an+1 . (16)

Charlie can reconstruct the originally unknown state |χ〉 by performing a unitary operation

Ur ′+r,d−s =
d−1∑
j ′=0

e
2π i
d

j ′(r+r ′)|j ′ ⊕ d − s〉〈j ′| (17)
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on his particle an+1, i.e.,

Ur ′+r,d−s |ϕ′〉an+1 = A

d−1∑
j=0

βj |j 〉an+1 , (18)

where A = ck e− 2π i
d

rs is a whole factor which does not change the feature of the state.
As discussed in [53, 54], the maximal probability Ps for extracting the unknown state

|χ〉 with the fidelity unit from the state |ϕ〉an+1 is the square of the minimal coefficient in cj

(j = 0, 1, . . . , d − 1). That is, the receiver Charlie can recover the unknown state |χ〉 with
the probability Ps = |ck|2.

3. Controlled teleportation of m qudits

Now, let us generalize this scheme to the case with an unknown m-qudit state. In this time,
the agents should first share m pure entangled states |�〉⊗m in the same way discussed above.
Similar to the case with an unknown single-particle qudit state, the sender (Alice) performs m
generalized Bell-state measurements, and then the controllers (Bobs) make Xd measurements
on their particles. The receiver Charlie first probabilistically extracts the information via a
unitary transformation on his particles and an auxiliary two-level particle, and then reconstructs
the original state by performing some unitary operations on his particles kept.

In detail, the quantum channel is a sequence of pure entangled (n + 2)-particle states (the
same m quantum systems), i.e.,

|�′〉 ≡
m∏

l=1

(
c0

n+1∏
k=0

|0〉ak
+ · · · +

n+1∏
k′=0

cd−1|d − 1〉ak′

)
l

. (19)

Alice sends the kth (k = 1, 2, . . . , n) particle akl in the lth (l = 1, 2, . . . , m) pure entangled
state to Bobk and the (n + 1) th particle an+1,l to the receiver Charlie, and she keeps the first
particle a0l in each pure entangled state. Also all the parties can set up this quantum channel
with decoy photons [13, 14, 51, 52], the same as that discussed above.

Suppose an arbitrary m-qudit state can be described as

|χ ′〉χ1χ2···χm
=

d−1∑
n′

1n
′
2···n′

m=0

βn′
1n

′
2···n′

m
|n′

1n
′
2 · · · n′

m〉, (20)

and
d−1∑

n′
1n

′
2···n′

m=0

∣∣βn′
1n

′
2···n′

m

∣∣2 = 1, (21)

where χ1, χ2, . . . , χm are the m particles in the originally unknown state |χ ′〉. For the controlled
teleportation, Alice first takes the generalized Bell-state measurement on the particles χl and a0l

(l = 1, 2, . . . , m), and then the controllers Bobk (k = 1, 2, . . . , n) perform Xd measurements
on their particles. The measurements done by all the controllers Bobs can be written as

M ′ =
m∏

l=1

Ml, (22)

where

Ml = (〈0|x)n−t l1−···−t ld−1 ⊗ (〈1|t l1x
) ⊗ · · · ⊗ (〈d − 1|x)t ld−1 (23)
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represent the single-particle measurements done by all the controllers on the particles in the
lth pure entangled state |�〉l ≡ (

c0
∏n+1

k=0 |0〉ak
+ · · · +

∏n+1
k′=0 cd−1|d − 1〉ak′

)
l
, and t lj represents

the number of the controllers who obtain the outcomes |j 〉x .
The state of the composite system composed of particles χ1, χ2, . . . , χm and akl

(k = 0, 1, . . . , n + 1 and l = 1, 2, . . . , m) can be described as

|χ ′〉 ⊗ |�′〉 =
d−1∑

n′
1n

′
2···n′

m=0

βn′
1n

′
2···n′

m
|n′

1n
′
2 · · · n′

m〉χ1χ2···χm

⊗
m∏

l=1

(
c0

n+1∏
k=0

|0〉ak
+ · · · +

n+1∏
k′=0

cd−1|d − 1〉ak′

)
l

= 1

dm/2

d−1∑
r1···rm,

s1···sm,j1···jm

∣∣ψr1s1

〉
χ1a01

⊗ ∣∣ψr2s2

〉
χ2a02

⊗ · · · ⊗ ∣∣ψrmsm

〉
χma0m

⊗ e− 2π i
d

(j1r1+j2r2+···+jmrm) ⊗ βj1j2···jm
⊗ cj1⊕s1cj2⊕s2 · · · cjm⊕sm

×
(

n+1∏
k1=1

|j1 ⊕ s1〉k1

)(
n+1∏
k2=1

|j2 ⊕ s2〉k2

)
· · ·


 n+1∏

km=1

|jm ⊕ sm〉km


 . (24)

That is, after Alice performs m GBS measurements on her 2m particles χla0l (l = 1, 2, . . . , m),
the subsystem composed of the particles remained collapses to the corresponding state
|ξ 〉a11a12···an+1,m

. If the outcomes of the GBS measurements obtained by Alice are |ψrlsl
〉χla0l

(l = 1, 2, . . . , m), the state of the subsystem can be written as (without normalization)

|ξ 〉a11a12···an+1,m
=

d−1∑
j1···jm=0

e− 2π i
d

(j1r1+j2r2+···+jmrm)βj1j2···jm
cj1⊕s1cj2⊕s2 · · · cjm⊕sm

⊗
(

n+1∏
k1=1

|j1 ⊕ s1〉k1

)(
n+1∏
k2=1

|j2 ⊕ s2〉k2

)
· · ·


 n+1∏

km=1

|jm ⊕ sm〉km


 . (25)

After all the controllers Bobs take single-particle measurements on their particles with the
MB Xd , the state of the particles an+1,l (l = 1, 2, . . . , m) kept by the receiver Charlie becomes

|θ〉an+1,1an+1,2···an+1,m
≡ M ′|ξ 〉a11a12···an+1,m

=
d−1∑

j1···jm=0

e− 2π i
d

{[j1r1+(j1⊕s1)r
′′
1 ]+[j2r2+(j2⊕s2)r

′′
2 ]+···+[jmrm+(jm⊕sm)r ′′

m]} ⊗ βj1j2···jm

⊗ cj1⊕s1cj2⊕s2 · · · cjm⊕sm
⊗ |j1 ⊕ s1〉an+1,1 |j2 ⊕ s2〉an+1,2 · · · |jm ⊕ sm〉an+1,m

.

(26)

Here r ′′
l = t l1 + 2t l2 + · · · + (d − 1)t ld−1. To reconstruct the original state probabilistically,

Charlie first performs a unitary transformation on his particles and an auxiliary particle whose
original state is |0〉aux. In essence, the auxiliary particle is used to select the useful information
from the unknown state, no matter what the useless information is. That is, Charlie can use a
two-dimension qubit (a two-level quantum system) for extracting the useful information. One
level is used to map the useful information after a unitary evolution, and the other is used to
map some useless information. Similar to the case of controlled teleportation of an unknown
single qudit, under the basis

{|fg · · ·h〉an+1,1an+1,2···an+1,m
|0〉aux; |fg · · ·h〉an+1,1an+1,2···an+1,m

|1〉aux
}
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(f, g, h ∈ {0, 1, . . . , d − 1}) the unitary evolution (2dm × 2dm matrix) can be chosen as

U ′
max =




(ck )m

(c0)m
· · · 0 · · · 0

√
1 − (

ck
c0

)2m · · · 0 · · · 0

.

.

.
. . .

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
. . .

.

.

.

0 · · · 	fg···h · · · 0 0 · · · 	+
fg···h · · · 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

0 · · · 0 · · · (ck)m

(cd−1)m
0 · · · 0 · · ·

√
1 − (

ck
cd−1

)2m

√
1 − (

ck
c0

)2m · · · 0 · · · 0 − (ck )m

(c0)m
· · · 0 · · · 0

.

.

.
. . .

.

.

.
. . .

.

.

.

.

.

.
. . .

.

.

.
. . .

.

.

.

0 · · · 	+
fg···h · · · 0 0 · · · −	fg···h · · · 0

.

.

.

.

.

.

.

.

.
. . .

.

.

.

.

.

.

.

.

.

.

.

.
. . .

.

.

.

0 · · · 0 · · ·
√

1 − (
ck

cd−1
)2m 0 · · · 0 · · · − (ck)m

(cd−1)m




,

(27)

where

	fg···h ≡ (ck)
m

cf cg · · · ch

, 	+
fg···h ≡

√
1 − (	fg···h)2. (28)

That is, the unitary evolution U ′
max can transfer the state |θ〉an+1,1an+1,2···an+1,m

into the unknown
state |χ ′〉χ1χ2···χm

probabilistically, i.e.,

U ′
max|θ〉an+1,1an+1,2···an+1,m

|0〉aux =
∑

j1···jm

e− 2π i
d

{[j1r1+(j1⊕s1)r
′′
1 ]+[j2r2+(j2⊕s2)r

′′
2 ]+···+[jmrm+(jm⊕sm)r ′′

m]}

⊗ βj1j2···jm
⊗ cj1⊕s1cj2⊕s2 · · · cjm⊕sm

⊗ |j1 ⊕ s1〉an+1,1 |j2 ⊕ s2〉an+1,2 · · · |jm⊕ sm〉an+1,m

×

 cm

k

cj1⊕s1cj2⊕s2 · · · cjm⊕sm

|0〉aux +

√
1 −

(
cm
k

cj1⊕s1cj2⊕s2 · · · cjm⊕sm

)2

|1〉aux


 . (29)

Same as the case for controlled teleportation of a single qudit, Charlie performs a
measurement on the auxiliary qubit with the MB {|0〉, |1〉}. The controlled teleportation
fails if the measurement result is |1〉aux; otherwise, the teleportation succeeds and the particles
kept by Charlie will collapse to the state

|θ ′〉an+1,1an+1,2···an+1,m
= cm

k

∑
j1···jm

e− 2π i
d

{[j1r1+(j1⊕s1)r
′′
1 ]+[j2r2+(j2⊕s2)r

′′
2 ]+···+[jmrm+(jm⊕sm)r ′′

m]} ⊗ βj1j2···jm

⊗ |j1 ⊕ s1〉an+1,1 |j2 ⊕ s2〉an+1,2 · · · |jm ⊕ sm〉an+1,m

= α
∑

j1···jm

e− 2π i
d

(j1r
′′′
1 +j2r

′′′
2 +···+jmr ′′′

m )βj1j2···jm
|j1 ⊕ s1〉an+1,1

× |j2 ⊕ s2〉an+1,2 · · · |jm ⊕ sm〉an+1,m
(30)

where

α = cm
k e− 2π i

d (s1r
′′
1 ⊕s2r

′′
2 ⊕···⊕smr ′′

m), (31)

r ′′′
l = rl + r ′′

l . (32)

Charlie can reconstruct the originally unknown state |χ ′〉χ1χ2···χm
with a unitary transformation

determined by the measurement results published by Alice and the controllers Bobs if the
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controlled teleportation succeeds. Under the basis
{|fg · · · h〉an+1,1an+1,2···an+1,m

}
(f, g, h ∈

{0, 1, . . . , d − 1}), the unitary transformation is

Ur ′′′
1 r ′′′

2 ···r ′′′
m ,s1s2···sm

=
∑

j ′
1j

′
2···j ′

m

e
2π i
d

(j ′
1r

′′′
1 +j ′

2r
′′′
2 +···+j ′

mr ′′′
m )

|j ′
1〉|j ′

2〉 · · · |j ′
m〉〈j ′

1 ⊕ s1|〈j ′
2 ⊕ s2| · · · 〈j ′

m ⊕ sm|,
(33)

i.e.,

Ur ′′′
1 r ′′′

2 ···r ′′′
m ,s1s2···sm

|θ ′〉 = α|χ ′〉χ1χ2···χm
. (34)

From equation (29), one can see the maximal probability that Charlie can reconstruct
the originally unknown state |χ ′〉χ1χ2···χm

with the fidelity unit is Psm = |ck|2m. Here
|ck|2 = min{|cj |2, j = 0, 1, . . . , d − 1}.

4. Discussion and summary

If cj = 1 for all the j from 0 to d − 1, the quantum channel is composed of m maximally
entangled (n + 2)-particle states. The receiver can reconstruct the unknown state with
probability 100% in principle if he cooperates with all the controllers, similar to the case
with two-level quantum systems in [42]. Moreover, the unitary evolution U ′

max is the identity
matrix I2dm×2dm which means doing nothing on the particles controlled by the receiver and his
auxiliary two-level particle. The receiver can obtain the unknown state with m single-particle
unitary operations on his m particles.

In summary, we have presented a general scheme for multiparty-controlled teleportation
of an arbitrary m-qudit state by using m pure entangled (n + 2)-particle quantum systems
as the quantum channel. The sender Alice can share a sequence of pure entangled states
with all the other parties by inserting some decoy photons randomly in the particle sequences
transmitted to the controllers and the receiver. The receiver can probabilistically extract the
information of the originally unknown state by performing a general evolution on his particle
and an auxiliary two-level particle. Charlie can reconstruct the originally unknown state with
m unitary transformations on his particles according to the measurement results obtained by
all the parties. The optimal probability of successful teleportation is p = |ck|2m which is just
the entanglement of the quantum channel.
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