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Abstract Global localization problem is one of the
classical and important problems in mobile robot. In this
paper, we present an approach to solve robot global
localization in indoor environments with grid map. It
combines Hough Scan Matching (HSM) and grid
localization method to get the initial knowledge of robot’s
pose quickly. For pose tracking, a scan matching
technique called Iterative Closest Point (ICP) is used to
amend the robot motion model, this can drastically
decreases the uncertainty about the robot’s pose in
prediction step. Then accurate proposal distribution
taking into account recent observation is introduced into
particle filters to recover the best estimate of robot
trajectories, which seriously reduces number of particles
for pose tracking. The proposed approach can globally
localize mobile robot fast and accurately. Experiment
results carried out with robot data in indoor
environments demonstrates the effectiveness of the
proposed approach.

Keywords robot localization, global localization, scan
matching, pose tracking, particle filters

1.Introduction

The problem of localization has attracted immense
attention in the robotic literatures. It addresses the
problem of estimating the robot pose (position and
orientation) relative to a given map with onboard sensors.
In fact, the localization problem is to compensate for
sensor noise and odometer reading errors (Milstein, A. et
al., 2002). And two different cases can be distinguished
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(Thrun, S. et al,, 2005): given the initial knowledge of
robot’s pose, the localization problem is a pose tracking
problem; with unknown initial pose, the localization
problem turns to be global localization problem. Hence,
global localization subsums the pose tracking problem.

In robotic literature, there are mainly three kinds of
approaches providing a solution to global localization
problem: Extented Kalman Filter (EKF) algorithms
(Thrun, S. et al, 2005) , Grid localization and Monte
Carlo localization (MCL) algorithms (Dellaert, F. et al.
,1999). EKF are computationally efficient and can deal
with slight non-linear systems, but become sub-optimal
when the dynamic models are serious non-linearity.
What's more, it assumes that the control and
measurement noises are Gaussian. Grid localization
method seems more robust to non-linearity and arbitrary
noise distributions, but it ignores the computational
complexity problem, when applied to large scale
environments. To overcome these limitations, MCL was
introduced as an effective solution to solve pose tracking
(Dellaert, F. et al, 1999; Thrun, S. et al, 2005). In
statistical literature, Monte Carlo method is known as
particle filter, so we call it particle filter in this paper.
Over the last years, particle filters have been applied with
great success in mobile robot, including mobile robot
localization (Thrun, S. et al., 2001; Fox, D., 2003), map
building (Doucet, A., 2000) and fault detection (Freitas,
N., 2002). The main problem of particle filter approach is
their complexity, measured in terms of the number of
required particles. Therefore, reducing this quantity is
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one of the major challenges of this family of algorithms
(Grisetti, G., 2007).

Since there is no initial knowledge of robot pose in global
localization, the particle filter based localization
algorithms need very large number of particles to localize
robot. Although the KLD-sampling strategy (Fox, D.,
2003) is proposed to adapt the number of particles during
localization, there are not very quickly converge to a
single likelihood pose. And this strategy is not very
functionary during pose tracking stage, because the
uncertainty does not vary much in this stage, so the
variety of particle number is small (Blanco, J.L. et al,
2008). But the the calculation of KL-distance at each step
increases the computational complexity.

This paper proposes a new approach to solve the global
localization problem in indoor environments represented
by grid maps. Different from previous approaches, we
divide global localization problem into two separate
stages : get the initial pose of robot and track the robot
poses. During the first stage, one laser scan data can be
used to get the initial pose in short time; then particle
filter is employed to estimate the robot trajectories with a
sample-based representation. To reduce the number of
particles, a scan matching technique called Iterative
Closest Point (ICP) (Besl P., 1992 ;) is used to amend the
robot motion model, it can drastically decreases the
uncertainty about the robot’s pose in prediction step.
Then accurate proposal distribution taking into account
recent observation is introduced into particle filters to
recover the best estimate of robot trajectories, which
seriously reduces number of particles for pose tracking.
The rest of this paper is organized as follows. After
explaining how a particle filter can be used in general to
solve the pose tracking problem, we present our
approach in Section III. We then provide implementation
details in Section VI. Experiment results carried on real
robots data set are presented in Section VI. The last
section concludes with some discussions.

2. Robot localization with particle filters

Suppose the initial knowledge of robot pose p(x,) is
provided by some appropriate methods. Then the global
localization turns to be the pose tracking problem. The
key idea of particle filter for pose tracking is to estimate
the robot trajectories with a sample-based representation.
Given odometry reading u,, = {u,,U,,...,u,} and sensor
observations z,, =1{z,,2,,...,Z,} , the primary goal is to

recover the best estimate of robot trajectories :

p(xl:t | Zl:t’ul:t) (1)

Based on the Bayes’ rule, it can derive a recursive filter to

update the trajectory x][ft] samples during each iteration.
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And each iteration process can be summarized by the
following steps:

(1). Sampling : With the the previous generation {x' },

draw (sample) the next generation of particles {xl['t]}

from the proposal distribution 7z(-) . The selection of

proposal  distribution can influence the
performance of algorithm itself.
(2). Importance weighting: Calculated an importance

weight for each particle:

greatly

[ p(‘x{:ft] | 25Uy, M)

B C A ERLD)

1:t2

oc ] p(z, |xt[i]am)p(xt[i] |xz[i]1’”z

-1 ;
7(x, | xl[:lt]—l sUpy s 2y, 1)

@

Most of the existing particle filter application reply on
this recursive structure.

(3). Resampling : Particles are drawn with replacement
proportional to their importance weight, which means a
particle with small weight maybe replaced by a particle
with large weight.

Often, a probabilistic odometry motion model is used as
the proposal distribution in the simultaneous localization
and mapping (SLAM) or localization algorithm. But the
odometry readings are always noisy and there needs
large number of particles to avoid filter divergence. In
following section, we will describe a technique that can
get the initial pose with only one laser scan and compute
a more accurate proposal distribution.

3. Effective global localization algorithm

In this section, we first analyze the property of indoor
environments and present an efficient approach to
acquire the initial pose of robot with only one laser scan.
Given the initial knowledge of robot’s pose, we use a
particle filter with accurate proposal distribution to track
robot pose in real time.

3.1 Initial pose acquiring

In 2D plane, the robot pose is composed of robot position
(¢,,t,) and orientation & . A simple method that can

acquire the initial pose of robot is to using a grid
sampling representation of the pose configuration space
(Lina, M. P., 2006; Thrun, S. et al., 2005). As shown in Fig.
1, each grid cell represents a robot pose in the
environment and different planes represent different
robot orientations. Then the observation can be used to
calculate the probability values of each grid and the grid
with the largest weight is selected as the robot pose. Since
the robot pose has three dimensions in plane, the number
of grid cells is cubic. Hence, more efficient approach is
necessary.



Indoor environment

X

Figure 1. Grid sampling representation of the pose configuration
space

Before introducing the initial pose acquiring, we can
analyze the characteristics of laser scan data and grid
map. A laser scan data is some two dimensional points in
Cartesian coordinate, with the center of laser range finder
as its coordinate origin. And the grid ea pis composed of
many cells, with the state stored in the matrix. It is
difficult to directly deal with two different kinds of data.
Compared to one laser scan, a grid map contains much
more information. Under the premise of ensuring
accuracy, we can only select the cells of grid map with
occupied state and view them as points with defined
Coordinate value. That's means the problem of initial
pose acquiring in gird map can also be viewed as scan
matching problem between point set. In most engineered
indoor environments, major structures, such as doors,
walls, cupboards, etc., can be represented by sets of lines
in 2D plane. Hence, Hough Scan Matching (HSM) (Censi,
A. et al,, 2005) can be used to estimate the orientation of
robot &.

In the 2D plan, a line can be easily parameterized as a
collection of points (X, ) as follows :

Xcos@+ ysinp=r 3)
where @ €[0,27) and 7 > 0. Suppose the pose of robot

in gird map is(?,,f,,60) . After transformation, the laser

scan points (x,,,) become the point in grid map:

x=costx, —sinfy, +1t,

. 4
y=sinfx, +costly, +1,

By introducing the Eq.(4) into Eq.(3), we can get Eq.(5):
x,cos(p—0)+y, sin(p—0)=r+[cosp singlt (5)

Given the quantization precision of the parameter pairs
(6,r), we can build two Hough tables [15]. Take each

point and vote for all lines that could go through it, we
can get two Discrete Hough Transforms (DHT) with
following relation:

DHT, (¢ —0,r +[cos¢ sing]t)=DHT,(p,r) (6)
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With the definition of Hough Spectrum presented in
(Censi, A. et al,, 2005), we can get two Discrete Hough

Spectrum: DHS,(¢) and DHS, (¢ — ). As the HSM,

we can get the estimation of robot orientation by the
correlations of the two spectra:

corr(f)= >, DHS,(¢)DHS,(¢-6) %

@e[0,27)

Where @ € (—m, 7] . If there are no symmetrical or alike

structures in indoor environments, the global maximum
of the correlation is much larger than other local maxima
and the global maximum can be view as the solution of
robot orientation. Hence, the pose configuration space
now descends into a plane ( such as the yellow plane
shown in Fig. 1). Then we only need to get the position of
the robot in a plane.

Combined with the orientation, each grid in the plane
represents a possible robot pose. Suppose the robot pose
in gird map is x, we can compute the likelihood of the
laser scan by "beam endpoint model" [3]: for one laser
beam, there is a cell with occupied state in grid map that
has the nearest Euclidean distance to the end of this laser
beam. If the nearest Euclidean distance from the beam

end to cell is Adij, then likelihood of the laser scan for

one pose X is:

w, = p(z, | x([)i]am)

N
= p(z} | X m) ®)

J=1

N 2

_ Z e_(Ad” [20)
Jj=1

After calculating weight for all possible pose, pose with
largest weight can be selected as the initial robot pose.

In order to eliminate the quantization errors, gradient
descent search algorithm can be employed to get more
accurate initial robot pose.

3.2 Pose tracking

For pose tracking, a particle filter is used. The original
particle filter based algorithm was proposed by Dellaert
(Dellaert, F. et al., 1999). Based on the pose tracking
results of previous generation, the next generation of
particles is sampled for a probability odometry motion
model, and an individual importance weight is assigned
to each particle, according to suboptimal observation
model (Grisetti, G. et al., 2007). Since the odometer
reading is noisy and the proposal distribution only uses
the odometer reading, it need high number of particles to
track robot pose. To overcome this problem, one can
improve the robot motion model and consider the most
recent sensor observation when generating the next
generation of samples.
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3.2.1 Improved motion model

In this section, we will introduce how to use Iterative
Closest Point (ICP) (Besl & McKay, 1992) algorithm to
improved the motion model. ICP algorithm is a popular
algorithm in robotics, which can assign correspondences
between two sets of points and recover the transformation
that maps one points set to the other. It is simple and has
computational complexity, while it has accurate results.
Since the information of laser range finder (usually, with a
SICK Laser Measurement Sensor (LMS)) equipped on
robot is significantly more precise than the motion estimate
of robot based on the odometry. It is reasonable to estimate
motion of robot by using ICP with two adjacent laser scans,
which are mostly overlap. Suppose the laser scan points at

(t—l) are 0=1{q, jiql ,
are P ={ pl -1 - The relative transformations of robot pose

between time (Z —1)and ¢ can be calculated as:

time and at time ¢

R,T,c(i)efl, N,

N
min y }(;HR p,+T - qc(i)uz) o
st.  RR=I  det(R)=1

where g, is the closest point for p;, R is a rotation

matrix and 7 is a translation vector. ICP algorithm solves
the least square problem presented in Eq. (9) by using
two iterative steps:

(1). With the transformation results get in previous
iteration k, construct the new correspondence for each
point in data sets P from data set QO :

2

_1 -9, “ )

c(i) = arg mm(HRk P+ (10)

Jefl,..

(2). Based on the new correspondence set, calculate new
transformation as follows:

R,.T,)= mymn(zm&v+T G|

R.t,c(i)ell,..., N} i=1

(11)

Eq. (10) can be solved by many efficient methods, such as
the nearest point search based on k-d tree algorithm or its
variants (Greenspan & Yurick, 2003; Nuchter et al., 2007)
and Eq. (11) can be solved by many methods (Nuchter et

al., 2010). For 2D scan matching problem, an efficient
solution is presented in (Lu & Milios, 1997). When ICP
algorithm is convergent, we can recover the relative
transformation §, of robot pose between time (# —1) and

t (Lu F. & Milios E., 1997). Because ICP performs explicit
point-to-point data association during iteration, which
can introduces error since the points in each scan
represent a surface and not a set of discrete locations. For
simplify, we assume the error distribution of ICP results
is Gaussian, with zero means and constant variance X .
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Finally, the motion estimate of robot p(x, | x,_;,u,) can

be calculated by using ICP results:

p(x, | x,_u,) = x5 +Ms! (12)

Where s/ ~ N(5,,%,), and M is a matrix defined as :
cos(8") —sin(d") 0
M =|sin(@") cos(@") 0
0 0 1

Because the ICP results are very accurate, so we can use it
to replace odometry readings and get a very accurate
motion estimate of robot.

3.2.2 Accurate proposal distribution

Previous pose tracking algorithm use the odometery
p(x,|x,_,,u,,) as the proposal
distribution (Dellaert, F. et al.,, 1999; Fox, D., 2003).
Although it is easy to compute for most types of robot, it
has high risk of filter divergence. In this paper, we use the

m) , which

motion model

more informed proposal p(X,|Xx, ,u4,,z,,

take into account recent observation z, . According to

Bayes’ rule, the distribution:

(X, X, 5u,,2,,m)

_pz | x,m)p(x, | x_,u,) (13)
p(Zt | xtflﬂu;am)
By introducing the Eq.(13) into Eq.(1), we can get
wil oc w[’]p(zt | x e, m)
(14)

W [ p(z, | m)p(e |0, mdx

When modeling the environment with a grid map, there
are two kinds of approximation of this informed
proposal.

Suppose, N particles are used to track robot pose. They
first one approximates the sensor model with a Gaussian
(Grisetti, G. et al.,, 2007) model and the second one
approximate it by sampling M localization samples for
each particles, then resample N particles from the whole
N x M samples at resampling step (Grzonka, S. et al,,
2009) . Here, we adopt the second one.

For each particles, draw M samples according to motion
model:

X~ p(x X .u,)

And it’s corresponding weight is calculated as follows:

- p(z, |34 m)

[’ J1 (15)



The samples for each particle can approximate term
inside the integral in Eq.(14). We can draw N new

particles xt[i] from the whole samples set according to

their importance weights wt[i’j ! And each new particle

has the same importance weights. The whole robot pose
process can be described as shown in Fig. 2. In order to
weight each samples, it needs to calculate the observation

likelihood p(z, | x,m). Here, we use the method called
“beam end model” as Eq.(8).

(1] (2]

Sampling

1l e (2]
Figure 2. The whole process of robot pose tracking. The red
histograms visualize the current weight of each samples.

According to motion model, draw M localization
samples for each particles and use the recent observation
to weight each sample, resample N particles from the
whole N x M samples.

3.3. Global localization algorithm

Hence, from what is discussed above, the overall global
localization process can be described as follows:

(1). Using the first measurement (u,,z,) to get the initial
robot pose in grid map.

(2). With ICP, calculate the relative transformation of
robot pose between two consecutive time step and get the

accurate motion estimate of robot p(x, | x,_,,u,) .

(3). For each pose tracking particle, draw M samples
from p(x, |x,_,u,).

(4). Calculate the weight p(z, | x,m) for each sample by
using “beam end model”.

(5). Resampling N particles from the whole sample set,
which has N x M samples.

(6). If there is new measurement arrived, return to step (2).

Implement the above steps until these is no new
observation.

4. Experimental Results

In this Section, we outline the experimental results and
some analysis. To demonstrate the good performance of
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the proposed algorithm, it was tested on an opened data
set collected by a robot, which is equipped with a LMS.
And the data set is collected in indoor environment
(Eliazar, A. & Parr, R., 2002). The gird map of the indoor
environment is depicted in Fig. 3. All experiments are
tested on a PC with 3.0 GHz Dual-Core. Since the ground
truth of robot trajectory is not available, a fixed number
of 100,000 particles are used to estimate the approximate
trajectory.

L5

i
H

i

L.~13.5m

e et

S il

|
|
|

W

Figure 3. Grid Map used for localization. The red trajectory is the
path followed by robot during data collection. The points A and
B mark the start and end point for the global localization
experiments respectively.

4.1. Initial Pose acquiring
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Figure 4. DHS for grid map and the first laser scan, with their
correlation results

Before tracking robot pose, it is necessary to acquiring the
initial knowledge of robot’s pose. One simple method is
to use the raw grid sampling method presented in (Paz,
L. M., 2005) to estimate initial robot pose. Since the pose
has three dimensions, the number of grid is cubic and the
real-time performance is poor. However, we can firstly
estimate the robot orientation by using HSM. As shown
in Fig.4, the global maximum value of the correlation
results is large than other three local maxima, hence it can
be selected as robot’s orientation. This process only costs
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76 ms. As shown in Fig.1, the pose configuration space
new becomes quadratic. With the voting process
employed in (Paz, L. M., 2005), we can get the weight for
each position in the grid. And the voting results are
depicts in Fig.5. The gird with the largest weight can be
selected as the initial position of the robot. Combined with
the robot orientation got from HSM, we can get the initial
robot pose with some level quantization errors. Suppose
the quantization precisions are 0.2m for robot position and
1deg for robot orientation, and the voting process costs
600ms. If we use the raw grid sampling algorithm, it will
cost more than 200s to acquire the initial robot pose. In
order to eliminate the quantization errors, gradient descent
search algorithm can be use to get the fairly accurate
results. The search process costs about 16ms. In one word,
the proposed method can get the initial robot pose in one
second and only with one laser scan data.

If there are symmetrical or alike structures in indoor
environments, there may be several local maxima closed to
the global maximum value in DHS’s correlation results. At
this time, several ordered local maxima should be kept in
order to avoid losing true orientation value. So does it for
position acquiring process. If this happens, initial pose
acquiring process will costs more time and may be more
laser scans are needed to get the true pose. Someone may
ask why don’t use HSM to get the robot position directly,
this is due to the fact that HSM is irresponsible for
acquiring translation (robot’s position) results when
applied to large environments. (Censi, A. et al., 2005).

A typical SICK LMS has only a 180deg field-of-view, with
a fixed resolution 1deg (or 0.5deg) and a maximum range
of 8.1m. Hence a laser scan data has limit information.
When a robot starts at one point in a long corridor, it
maybe failed to acquire the initial robot pose. One
possible way is to use two LMSs to consist of a scan
system with 360° field of view, which can increase the
reliability of initial pose acquiring method.

I

N

Normalization weight
<)

5 10 -10 X/m

Y /m

Figure 5. The voting results for each robot’s position grid. All the
weights of each gird are divided by the largest weight along
themself.
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4.2 Pose tracking

Since the initial robot pose is acquired, pose tracking

algroithm can be used to estimate the robot trajectory. For

readability, the following abbreviations are employed to

denote the alternative localization approaches.

PFO: Standard particle filter based pose tracking
approach with odometry-based proposal.

PFI: Standard particle filter based pose tracking approach

with ICP results to replace the odometry readings.
PFOI : Our pose tracking approach with ICP result and
recent observation to calculate the accurate proposal.

Before comparing the precision, we use odometry
readings and ICP algorithm to estimate robot pose
respectively. As shown in Fig.6, the odometry readings
are noisy. After loop closing, the estimated position of
robot is far away from the true position. If we use the
odometry reading to calculate the proposal distribution,
we can only get a suboptimal proposal. As a result, one
needs a comparably high number of particles to track the
robot pose. However, the laser scan data are significantly
precise and reliable. We can use ICP algorithm to
estimate the robot transformation between
consecutive time steps. Compared to odometry reading,
the robot poses estimated by ICP are more accurate. And
the proposal distribution will be more accurate, if the
odometry readings are replaced by ICP results. Although
the odometer readings are replaced by ICP results, it is
essential. In some situations, ICP may be failed. At this
time, the odometer readings can be adopted to calculate
the proposal.

two

- ICP
Odometer
Ground truth

Y /m
N

10t i

12 I I I I I I I I I
-10 -8 -6 -4 -2 0 2 4 6 8 10

Figure 6. The robot trajectories predicted by ICP and Odometry
reading. The red one is the ground truth (approximate)
estimated by 100,000 particles.

Because the odometry readings are noisy, the PFO can
not get accurate estimated trajectory, even with high
number of large particles. Fig.7 depicts the estimate
trajectory based on PFO with 500 particles. At the same
time, 5 particles are used in PFI and PFOI to estimate



robot trajectory and the results are also depicted in Fig.7
and Fig.8 Compared with estimated results of PFO, the
proposal calculated from ICP results can get accurate
trajectory, even with low number of particles. Since the
accurate proposal takes into account the most recent
observation, the PFOI can get the most accurate estimated
trajectory.

Ground truth

PFO
or —— PFI 1

Y /m

Figure 7. The robot trajectories estimated by two different
algorithms. The number of particles used in PFO and PFI are 500
and 5 respectively.

particles. The red one is the ground truth (approximate) and the
green one is estimated by PFOL

To compare PFO and PFOI more deeply, we changed the
number of particles for each of them and estimated robot
trajectory respectively. As shown in Fig.9, when low
number of particles is used, the estimated results of PFOI
are more accurate than that of PFO. When the number of
particles is over 30, they almost have the same precision.
Usually, the LMS can collect 30 scans in 1 second (33ms per
scan). If 20 particles are used, the rum time for dealing with
each scan is about 20ms in PFOI, which is little than the
collected time for each scans. That's mean the proposed
approach can localize the robot in grid map in real time.
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5. Conclusions

In this paper, we proposed an improved approach to
solve robot global localization in indoor environments. It
can acquire the initial knowledge of robot’s pose in short
time, with only one laser scan data. Then a particle filter
can be used to track robot pose. In order to calculate
accurate proposal distribution, our approach replaces the
noisy odometry readings by ICP results and takes into
account the recent observation. When it estimate robot
trajectory, the proposed approach employs a fixed
number of particles. It has been tested and evaluated on
an opened data acquired with a robot equipped with
laser range finder scan. To get the same precise
localization results, the number of particles needed in the
proposed approach is one order of magnitude lower than
that of previous approaches. Experiment results show
that the proposed approach can accurately localize robot
in real time.
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Figure 9. Localization error (mean) for different approaches with
different number of particles.
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