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In this paper, a novel power grid evolving model, which can well describe the evolving property of power grids, is presented. 
Based on the BA model, motivated by the fact that in real power grids, connectivity of node not only depends on its degree, but 
also is influenced by many uncertain factors, so we introduce the subconnection factor K for each node. Using the mean-field 
theory, we get the analytical expression of power-law degree distribution with the exponent (3, ).γ ∈ ∞  Finally, simulation 

results show that the new model can provide a satisfactory description for empirical characteristics of power network, and 
power network falls somewhere in between scale-free network and uncertain network. 
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1  Introduction 

In the past few years, a number of large power blackouts 
over the last decade have led to an increasing interest in the 
study of bulk power grid [1–5]. The topology of power grid 
can be simply modeled as a graph with m nodes and n edges. 
Nodes represent buses (power station or transformer) of 
power system, and edges represent transmission lines. The 
topography of power grid is critical to the vulnerability due 
to cascading failure  [6–10], so it is very significant to do 
further research on modeling the evolving power grid. In the 
past few years, much work has been done on the modeling 
of complex networks [11–17]. One of the most important 
work was Barabási-Albert (BA) scale-free network model 
[18]. The BA model includes two parts: the growth of net-
work and the preferential attachment mechanisms. It is 
founded that the degree of the vertices of many complex 
networks has no obvious characteristic scale, the degree 
distribution ( ) , 3,−∝ =rP k k r  where γ is the degree expo- 

nent. As a type of complex networks many power grids 
show the characteristic of scale-free [18]. In power grids, 
there are always a few central buses with high economic or 
geographical significance, in the planning of power system, 
these buses are supposed to hold more links than other 
buses, the characteristic of evolution of power grid contrib-
utes to few nodes with high degree, which is called the 
scale-free power network. The scale-free characteristic of 
network makes power grid robust to random attack yet frag-
ile to intentional attack. 

Although the BA model captures the scale-free charac-
teristic of power grids, there exist some differences between 
the model and power grids. In the planning of power system 
many other factors are considered, such as random factor, 
the distance between two stations, optimal power flow, 
network loss and so on, these factors are different from each 
other, so there exist some uncertain links in the evolution of 
power grid. Power network falls somewhere in between 
scale-free network and uncertain network, in order to give 
more satisfactory description of network characteristic of 
power system, uncertainty of evolution of power network 
must be considered. Based on the above analysis, we intro-
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duce the subconnectivity factor K, which includes all the 
uncertain factors of the evolution of power grid. 

In this paper, we propose a new evolving power grid 
model. The rest of this paper is organized as follows. In 
Section.2, our novel model is introduced, followed by ana-
lytical calculation of degree distribution and analysis of 
network features in Sections 3 and 4. In Section.5, we com-
pare the simulation result with the US West South Power 
Grid. Finally, some conclusions are given in Section 6. 

2  Our model for power grid 

Based on the BA model, we introduce the subconnectivity 
factor K, which includes all the uncertain factors of the 
evolution of power network. To simplify the analysis, we 
assume that the subconnection factor of all nodes is K. The 
model is generated by the following algorithm: 

(1) Initial condition: The network consists of m0 nodes 
and n0 edges. 

(2) Growth: At each time step, add a new node with m 

(m< 0m ) edges. 

(3) Preferential attachment: Each edge of the new node is 
attached to the existing node i. The probability Π that a new 
node will be connected to node i depends on the linear 
combination of the degree ki of node i and the subconnec-
tion factor K, that is: 
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where 0<α <1. After t time steps, the system develops to be 
a network with N=m0+t nodes and L=mt edges.  

3  Analytical expression of degree distribution 

We use the mean-field theory [19] to analyze the degree 
distribution of the network. According to continuum theory, 
we assume that the degree ki is continuous, thus the degree 
change rate of i in the new evolving model is 
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After t steps involution, the total node number of the local 
community NG=m0+t and mt edges. 

So the summation of degree in the local community is 
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and the degree change rate of node i is 
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With the initial condition, ( ) ,=i ik t m  we have  
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Because of each step in the network evolution, we add one 
node to the network, the probability density of ti is 
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We can obtain 
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We get the probability density of degree as follows: 
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For 0 ,m t  
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Since 0 1,α< <  (3, ).γ ∝ ∞  

4  Analysis of network features 

4.1  The clustering coefficient 

The clustering coefficient Ci of a single node i describes the 
density of connections in the neighborhood of this node. It 
is given by the ratio of the number ei of links between the 
nearest neighbors of i and the potential number of such links 

max ( 1) / 2.= −i ie k k  
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The clustering coefficient of the whole network is the aver-
age of all nodes clustering coefficient. 
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Figure 1 reports the clustering coefficient of the network at 
various values of K. In the simulation, the size of network 
N=5000. Each data is averaged by 20 runs. 

From Figure 1, we can see that the clustering coefficient 
of the model can be turned by the value of K, with the in-
crease of K, the clustering coefficient gets smaller. The 
clustering coefficient of power grids describes the width of 
fault spreading, the smaller it is, the smaller the scale of 
fault spreading will be. 

4.2  Average path length 

The average distance is also one of the most important pa-
rameters to measure the efficiency of networks, which is 
defined as the mean distance over all pairs of nodes. We use 
dij to represent the shortest path between nodes i and j, the 
average path length of the network L is defined as eq. (14): 

 
, ,

1 ,
( 1) ∈ ≠

=
− ∑ ij

i j n i j

L d
n n

 (14) 

where n denotes the total node number of the network. 
Figure 2 reports the average path length of the network at 

various values of K. In the simulation, the size of network 
N=5000. Each data is averaged by 20 runs. 

Figure 2 shows that the average path length of the model 
can be also turned by the value of K, with the increase of K, 
the average path length gets bigger. This is good for the 
security of power grids, because the average path length of 
power grids describes the depth of fault spreading, the big-
ger it is, the smaller the scale of fault spreading will be. 

4.3  Maximum degree 

In the BA model, due to the preferential attachment mecha-
nism, there exist few nodes with very high degree. But in 
real power grids, the maximum degree of nodes is not as 
high as the BA model. The West US Power Grid (WSPG) is 
composed of N=4941 nodes and L=6594 lines, but the 
maximum degree is just 19, and the average degree 〈k〉= 
2.67. 

Figure 3 compares the maximum degree of the network 
in our model with the BA model. In the simulation, we set 
the parameters of network: α =0.6, K=2, 10. The size of 
network n changes from 1000 to 5000. The parameter kmax 
denotes the maximum degree of the network. 

 

Figure 1  The clustering coefficient of the network at various values of K. 

 

Figure 2  The average path length of the network at various values of K. 

 

Figure 3  Curves of the maximum degree of the network. 

From Figure 3, it is seen that the maximum degree of the 
network in our model is much smaller than that of the BA 
model with the same size. With K increasing, the maximum 
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degree of the network gets smaller, namely K controls the 
few nodes with high degree, it degrades the tendency “the 
winner takes all” and makes the whole network more ho-
mogeneous. As we know, power grids are homogeneous 
networks. 

5  Simulation result 

To test our new model, we do the simulation to obtain the 
degree distribution of our model and compare it with the 
West South Power Grid (WSPG). WSPG is composed of 
4941 nodes and 6594 lines. In the simulation, we set α =0.9, 
K=2 and the size of network N=4941.  

In our model, the average degree of network is m. 
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From eq. (15), it is seen that the edges count is m times of 
nodes count.  

Table 1 reports the topography property of some Chinese 
Power Grids and the US West Power Grid (WSPG) [20]. 
From Table 1, we can see that power grids are highly sparse 
networks, the average degree is between 2 and 3, the ratio 
of L/N is between 1 and 2. Since L/N=m, in power grids  

1<L/N<2, we assume m=2. 
Figures 4 and 5 describe the degree distributions of our 

new model and the BA model. Power network falls some-
where in between scale-free network and uncertain network, 
because uncertainty of evolution of power network has been 
considered in our model, the degree distribution of our new 
model agrees better with WSPG. Therefore in order to give 
more satisfactory description of network characteristic of 
power system, uncertainty of evolution of power grid must 
be considered. The value of K represents the part of uncer-
tainty of power network, the bigger it is, the network is 
more closed to uncertain network, the number of hub buses 
turns smaller, the scale-free characteristic is weakened. 

6  Conclusion 

This paper has proposed a new evolving model for power 
grid. Using the mean-field theory, we get the analytical ex-
pression of degree distribution with the exponent 

(3, ).γ ∈ ∞  Simulation results show that power network is 

neither scale-free network nor totally uncertain network, but 
in between them, the new model can provide a more satis-
factory description for empirical characteristics of power 
networks. 

Table 1  Topography property of some Chinese power grids and the West US Power Grid 

Item Nodes count (N) Edges count (L) Average degree L/N 

North Chinese Power Grid 8092 9018 2.23 1.11 

Northeast Chinese Power Grid 1144 1309 2.29 1.14 

Northern Chinese Power Grid 3706 4045 2.18 1.09 

Sichuan-Chongqing Power Grid 853 898 2.11 1.05 

Center Chinese Power Grid 2379 2756 2.32 1.16 

WSPG 4941 6594 2.67 1.33 

 
 

 

Figure 4  Distribution of degrees of our model and WSPG. 

 

Figure 5  Distribution of degrees of BA model and WSPG. 
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