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Abstract

A class of more general HIV infection models with time delay is proposed based on some important biological mean-
ings. The effect of time delay on stability of the equilibria of the infection model has been studied. And the sufficient criteria
for stability switch of the infected equilibrium and the local and global asymptotic stability of the viral-free equilibrium are
given. Using the normal form theory and center manifold argument, the explicit formulaes which determine the stability,
the direction and the periodic of bifurcating period solutions are derived. Numerical simulations are carried out to explain
the mathematical conclusions.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

HIV (human immunodeficiency virus) has become a global problem. The human suffering due to HIV and
AIDS (acquired immunodeficiency syndrome) is enormous. For example, AIDS is now the leading cause of
death in Sub-Saharan Africa. Many countries in this region have failed to bring the epidemic under control.
It is said that nearly two thirds of the world‘s HIV positive pepple live in Sub-Saharan Africa. So, in the last
decades the infection by HIV, which caused AIDS, has been the subject of most intense studies that encompass
diverse fields of scientific research. Although major progress has been achieved by medical and biological
researchers in understanding different aspects of the virus-host interaction, the mechanisms by which HIV
causes AIDS still remain unexplained.

Mathematical models have been proven to be valuable in understanding the dynamics of HIV infection.
Most of them use ordinary (or partial) differential equations to describe different aspects of the dynamics

* This work is supported by the National Natural Science Foundation of China (No. 10771179), the Henan Innovation Project for
University Prominent Research Talents (No. 2005KYCXO017) and the Scientific Research Foundation for the Returned Overseas Chinese
Scholars, State Education Ministry.

* Corresponding author.

E-mail addresses: xysong88@163.com (X. Song), xueyongzhou@126.com (X. Shi).

0096-3003/$ - see front matter © 2007 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2007.09.030


mailto:xysong88@163.com
mailto:xueyongzhou@126.com

24 X. Zhou et al. | Applied Mathematics and Computation 199 (2008) 23-38

of the host—parasite interaction [1-5]. And these models typically consider the dynamics of the CD4" and virus
populations as well as the effects of drug therapy [6]. There are also some models which include an intracellular
delay [7-10]. The first model that included this type “intracellular’ delay was developed by Herz et al. [11] and
assumed that cells became productively infected time units after of HIV initial infection. Patrick et al. extend
the development of delay models of HIV infection and treatment to the general case of combination antiviral
therapy that is less than completely efficacious. Recently, Xinyu Song et al. [12] had investigated the following
viral model with delay:

T=s—dl +aT(1 —75) - b1V,

I=be™T(t—1)V(t—1)—0l, (L.1)
V =pl—cV,

where T is the number of target cells, 7 is the number of infected cells, V is the viral load of the virous, s
represents the rate at which new T cells are created from sources, a is the maximum proliferation rate of target
cells. Thax 1s the T population density at which proliferation shuts off. In model (1.1), d is death rate of the
T cells, b is the infection rate constant, the term e ™" accounts for cells that are infected at time ¢ but die
before becoming productively infected t time units later. o is the death rate of the infective cells, p is the
reproductively rate of the infected cells, and £ is the total number of virions produced by a productively in-
fected cell during its lifetime, ¢ is the clearance rate constant of virions. All the parameters are positive
constants.

Xinyu Song et al. had studied the effect of the time delay on the stability of the endemically infected equi-
librium, criteria were given to ensure that the infected equilibrium was asymptotically stable for all delay. They
also obtained the condition for existence of an orbitally asymptotically stable periodic solutions. All the results
were under the case m = 0 in system (1.1). And they presented the model (1.1) at last of their paper when
m # 0. But they did not study the model in detail. In this paper, we shall also study the model (1.1). We will
analyze the stability of equilibria and Hopf bifurcation. And we will show that when the delay t passes
through a critical value, the endemic equilibrium loses it stability and Hopf bifurcation occurs. Since the coef-
ficients of the corresponding characteristic equation dependent on the delay 7, there are stability switch, and
all roots of the characteristic equation have negative real parts when 7 large enough. And the direction of Hopf
bifurcation and the stability and period of bifurcating periodic solutions on the center manifold are
determined.

This paper is organized as follows. In the next section, we give some useful preliminaries. In Section 3, the
local and global stability of the viral-free equilibrium are studied. The existence of Hopf bifurcation at the
endemic equilibrium are presented in Section 4. In Section 5, the direction of Hopf bifurcation and the stabil-
ity and period of bifurcating periodic solutions on the center manifold are determined. In Section 6, some
numerical simulations are performed to illustrate the analytical results found.

2. Preliminaries

We denote by C the Banach space of continuous functions ¢ : [~7,0] — R*® with norm
loll = sup {|oi(0)], [@2(0)], |03 (0)[},
<0<0

where ¢ = (¢4, ¢,, ¢5). Further, let

C.={op=(0,,02,05) €C:¢0;, 20 forall € [-1,0], i=1,23}.
The initial condition for system (1.1) is given as

T(0) = @:1(0), 1(0) = @5(0), V(0) = 3(0), —t<0<0, 2.1
where ¢ = (¢4, @y, ©5).

Lemma 2.1. Suppose that (T(t),1(t),V(t)) is a solution of system (1.1) with initial conditions (2.1) then T(t) = 0,
I(t) = 0, V() = 0 forallt = 0.
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The equilibria of system (1.1) are as follows: E(T,0,0) and E(T,1,V), where

= Tmax 2 das
T = - -
% la d+/(a—d) + 7|
T— co 7
pbefm'r
_ e e . o T
I = —dT T1-—
spoemear(-0)]

o pefmr o _ T
V= —dT TI1-— .
co {S ta < TmaX)}

The basic reproductive number is given as

Ry =

NI~

It is easy to prove the following theorem.

Theorem 2.1. When Ry < 1, then system (1.1) only has the viral-free equilibrium E and when Ry > 1, the system
(1.1) has the endemic equilibrium E except for E and E is unique.

~

Proof. From 7 = T {a —d+/(a—d)’ +-|, wecan get s = —(a —d)T 7L Hence,

2 Tmax
a(T +T)
Tmax

aT?  aT?

Tmax Tmax

:(?—T)[d—a—i—

s—dTJraT(l— T ) — (a—d) T+ (a—d)T +

max

Then7 >0,V >0 when R, >1. O

As is obvious for system (1.1), we have the following useful lemma.

Lemma 2.2. For any solution (T(¢),1(t),V(t)) of (1.1), we have that

~ T
li T(tH) < T ===
im sup 7T(¢) %

t—+00

,  das

[a—d—}— (a—d) +Tmax .

3. Stability of the viral-free equilibrium E

In this section, we shall consider the stability for the viral-free equilibrium E of system (1.1). We have the
following main results.
Theorem 3.1. (1) If Ry < 1, E is locally asymptotically stable for any time delay © = 0. (2) If Ry > 1, E is
unstable for any time delay © = 0. (3) If Ry = 1, it is a critical case.

Proof. By the transformation 7 = T — T,1=1,V =V, and omitting the tilde (~), system (1.1) is written as

T=(a—d—20T-bTV,

I=be™TV(t—1)—0l, 3.1
V =pl—cV,
whose characteristic equation is
, das |\, ., IR
A+yfla—d) + (A + (c+0)A+bpe™™ Te ™) =0. (3.2)
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It is clear that (3.2) has the characteristic root 2 = —/(a — d)* + % < 0. Next, we shall consider the tran-
scendental polynomial
P4 (c+8)A+cd—bpe ™ Te ™ =0. (3.3)

For 1 =0, we have thatc +d > 0, ¢ — bp?’ > 0 since Ry < 1. This shows that the roots of (3.2) have negative

real parts for T = 0. If (3.3) has pure imaginary roots 1 = i (w > 0) for some o > 0 and t > 0, we have from
(3.3) that

{ —w* + ¢ = bpe ™ T cos wr,

~ . (3.4)
—w(c+ 0) = bpe ™ T sin wr,

which implies that

2

by Ry < 1. The contradiction shows that any root of (3.3) must have negative real part. Hence the viral-free
equilibrium E is locally asymptotically stable for any time delay t > 0.

If Ry>1, let f(1) =22+ (¢ +0)A+cd —bpe™Te* =0. Note that f(0) =cd—bpe ™ Te ** <0 by
Ro > 1 and lim;_, /(1) = +o0o. It follows from the continuity of the function f (1) on (—oo,+0o0) that the
equation f(4) = 0 has at least one positive root. Hence, the characteristic Eq. (3.2) has at least one positive
real root. Hence, E is unstable.

If Ry = 1, the transcendental polynomial (3.3) becomes

g(A) =2+ (c+8)A—+cd—cde ™ =0. (3.5)

It is clear that 2 = 0 is a simple root of (3.5). We further show that any root of (3.5) must have negative real
part except 4 = 0.
In fact, if (3.5) has imaginary roots 4 = u + iw for some u > 0, ® = 0 and 7 > 0, we have from (3.5) that

{ W — @ + (¢ + 0)u = cde™ cos wr,

2uw + (¢ + 6)w = —cde " sin wt

1 =
(1)2 ——— |:_(CZ +d2) + \/(cz +d2)2 _ 4(0252 _ (bpe‘””T)z) < 07

(3.6)

which, together with u > 0, implies that
(U — @ + (c 4 0)u)” + Quw + (a + d)w)’ = 5% 2 < 25

However, it is easy to check that the above inequality is not true. Hence, it shows that any root of (3.5) has
negative real part except 4 = 0, which implies that the trivial solution of the linearised system (3.1) is stable for
any time delay t > 0. Therefore our results in this theorem are proved. O

Theorem 3.2

(1) If Ry < 1, l:? is globally asymptotically stable for any time delay © = 0.
(2) If Ry = 1, E is globally attractive for any time delay © = 0.

Proof. Define

G=1{0=(01,05,03) €C,|T = ¢, = 0,9, = 0,95 > 0}.

From Lemma 2.2, we see that G attracts all solutions of (1.1). For any ¢ = (¢, ¢,,¢;) € G, let
(T(#),1(2),V(#)) be the solution of (1.1) with the initial function (2.1). We claim that for any ¢ > 0,
T(¢) < T. In fact, if there is #; > 0 such that T(#;) > T and 7(¢;) > 0, then we have that

. T(t
T(t) =s—dT(t) +aT(t) (1 _K ')> —bT(t)V(ty) < =bT(t,)V (1) < 0.
Here we have used T(#;) > 7. This is a contradiction to 7'(¢,) > 0. The claim is proved. Hence, G is a positively
invariant with respect to (1.1). If Ry < 1, let us define a functional W on G as follows:
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0
p
W0 =50:0)+ 030 +k [ o0t (37
here k£ > 0 is a constant to be chosen later. It is clear that W () is continuous on the subset G in C... From the
invariance of G, for any ¢ € G, the solution (7'(¢),(¢), V() of (1.1) with the initial function (2.1) satisfies
T(¢) < T for any ¢ > 0. It follows from (1.1) and (3.7) that

W((P)|(1.1) :g[be_m%(_f)%(_f) = 00,(0)] + p,(0) — c3(0) + k[3(0) — 5 (—17)]

J L
05Ok = )+ (1) B e (1) — .
By Ry < 1, we can choose k such that %be’”" < k < c. Hence, we have that

W (@)1 < 93(0)(k —¢) (3-8)

for any ¢ € G. This show that W(¢) is a Liapunov function on the subset G in C,. Define
E={¢¢€ G\{W((p)|(1‘1)} = 0}. From (3.8), we have that £ C {¢ € G|p;(0) = 0}. Let M be the largest set in
E which is invariant with respect to (1.1). Clearly, M is not empty since (7,0,0) € M. For any ¢ € M, let
(T(2),1(z), V() be the solution of (1.1) with the initial function (2.1). From the invariance of M, we have that
(T, 1,,V,) € M C E for any ¢ € R. Thus V(¢) — 0 for any ¢ € R. From the second equation of (1.1), we further
have that I(¢) = 0 as t — 4o00. From the first equation of (1.1) and ¥ (¢) = 0 for any ¢ € R, we can also show
that T(r) — T as t — +oo. Hence, the invariance of M implies that I(r) =0 and T(rf) — T for any ¢ € R.
Therefore, M = {(T,0,0)}. The classical Liapunov-LaSalle invariance principal shows that (T,0,0) is glob-
ally attractive. Since it has been shown that, if Ry < 1, (T 0,0) is locally asymptotically stable for any time
delay T > 0. Hence, (T,0,0) is global asymptotic stabihty for any time delay t > 0. This proves the conclu-
sion (1).
If Ry = 1, let us consider the following functional on G:

0
(0 =20,0)+ 0,0+ 2T [ o0t (39

Clearly W (o) is also continuous on subset G in C,. From the invariance of G, for any ¢ € G, the solution
(T(1),1(t),V(t)) of (1.1) with the initial function (2.1) satisfies 7(¢) < T for all £ > 0. From (1.1) and (3.9),
we also have that

. b ~
Wl :%[ e "y (=1) — T]ps(—1).

Hence, () is also a Liapunov function on the subset G in C,.. Define £ = {¢ € G| W\ 1.1y = 0}, and we have
that E C {¢ € G|g3(—1) = 0 or ¢,(—1) = T}. Let M be the largest set in E which is 1nvarlant with respect to
(1.1). M is not empty. For any ¢ € M, let (T(¢),1(¢), V(z)) be the solution of (1.1) with the initial function (1.1).

From the invariance of M, we have that (7,,1;,V,) € M C E for any t € R. Thus, for each ¢ € R, we have that if
T(t —t) = T for some ¢, we must have that V'(t — 1) =0 or T(t — 1) = 0 0 by T(1) < T and the differentiability

of T(¢). Hence, the first equation of (1.1) implies that s — d7 + aT(1— —) bTV(t—1)=—bTV(t—1) =0.

We must have that V(z) = 0. Therefore, we have that V' (¢) = 0 for any 7 € R. By a completely similar proof as
for the case Ry < 1, we can shown that M = {(T',0,0)}. Therefore, it follows from Liapunov—LaSalle invari-
ance principal that (T 0,0) is globally attractive for any time delay t > 0. This proves the conclusion (2), and
completes the proof of the Theorem 3.2. [

4. Stability and Hopf bifurcation at the endemic equilibrium E

In this section we shall regard t as a parameter to study the stability of the endemic equilibrium £ and the
existence of Hopf bifurcations.
Firstly, we present the following lemma from [12].
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Lemma4.1. Ift=0,Ro > | and (c + ) (% +
asymptotically stable. B
The characteristic of the linearization of system (1.1) near the endemic equilibrium E is given by

al
max

7 ) (% + T‘ITT‘X +c+ 5) > pb*TV, then the positive equilibrium E is

P(2, 1)+ Q(4, t)e =0, (4.1
where
P(),7) = 2 4+ by (1)2* + by(1) 4 + b3(1), 42)
O(4,7) = ba(v) A+ bs(1),
and
bi(t)=c+d—a+d+ 24T +bV,

max

bz(‘c):cé—(c+5)(a—d— 2“7—197),

max

2aT

b3(‘5):cé<d—a+ —|—b7),

by(1) = —pbe ™ T — be "V,

max

2aT  — _ __
bs(t) = (a —d— T" - bV> pbe™™ T — pb*e ™™ TV

max

2aT _
_ (a—d— T“ )pbe"”T.

max

When 7 = 0, the Eq. (4.1) becomes
224 b1(0)2% + (b2(0) + b4(0))2 + b3(0) + bs(0) = 0.

From Lemma 4.1, we know that the positive equilibrium E(T,I,V) of (1.1) is asymptotically stable.

In the following, we investigate the existence of purely imaginary roots 4 = iw(w > 0) to Eq. (1.1). Eq. (1.1)
takes the form of a third-degree exponential polynomial in A, which all the coefficients of P and Q depending
on 7. Beretta and Kuang [13] established a geometrical criterion which gives the existence of purely imaginary
of a characteristic equation with delay dependent coefficients.

In order to apply the criterion due to Beretta and Kuang [13], we need to verify the following properties for
all t € [0, Tyax ), Where T,y is the maximum value which E exists.

(a) P(0,7) +0(0,7) # 0;
(b) P(im, 1) + O(iw, ) # 0;
(c) limsup{|giii;| 1A = oo, Red = 0} < 1

(d) F(w, 1) = |P(iw,7)|* — |Qio, 7)|* has a finite number of zeros;

(e) Each positive root w(t) of F(w,1) = 0 is continuous and differentiable in t whenever it exists.

Here, P(4,7) and Q(/,7) are defined as in (4.2).
Let 7 € [0, Tmax)- It is easy to see that

P(0,7) + 0(0,17) = b3(t) + bs(t) = cobV > 0.
This implies that (4.2) is satisfied. And (b) is obviously true because

P(iw, ) + O(io, 1) = —iw® — by (t)w* + by (t)w + b3(7) + ibs(t)w + bs(7)
= [b3(1) + bs(t) — b1 (1)@?] + iw[bs(t) + ba(1) — *] # 0.
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From (4.2) we know that

Q()HT) —
P(4,7)
Therefore (c) follows.

Let F be defined as in (d). From

P00, 7) = (~0" + ba(t))’ + (~bi (1) + by(x))?
= 0 4 (<202(1) + (D)o + (B3(1) — 2b1(2)ba()) o0’ + B3(2),

|A] =00

and

|0, ) = b(x) 0 + b3(),
we have

F(w,1) = 0° + a;(t1)o* 4+ ay(t)0* + a3(1),
where

ai(1) = bi(1) = 2b2(1),

ay(1) = b3(1) = 2b2(1)b1 (1) = b3 (0),

a3(1) = b3(1) = b3(0).

It is obvious that property (d) is satisfied, and by implicit function theorem, (e) is also satisfied.
Now let A =iw (w > 0) be a root of Eq. (4.1). Substituting it into Eq. (4.1) and separating the real and
imaginary parts yields

— b3(1) + b (1)@* = bs(1) sin wt + by(t)w cos wr,

3 . (4.3)
@ — by(1)w = by(1)w sin wt — bs(7) cos wr.
From (4.3) it follows that
sinoop — 21(D)ba(x) - bs(r)2]w2 + [bz(z)bs(f) - b3(r)b4(‘c)}w7 (4.42)
b (1)w? + bi(t)w
cosor = BB+ 2O — b(bs(a)]e? ~ b aab)
by(r)w? + b3(1)o
By the definitions of P(4,1), O(4,7) as in (4.2), and applying the property (a), (4.4) can be written as
sinwt = Im IQ)((llch: 3 (4.5a)
and
B P(iw, 1)
coswt = —Re O, 7) , (4-5b)

which yields
IP(io, 7)[* = |Q(io, 7)[.
Assume that 7 € R, is the set where w(7) is a positive root of
F(o,7) = [P(io, ) — |Q(io, )]
and for t ¢ I, w(z) is not definite. Then for all 7 in I, w(z) satisfied
F(w,7) =0. (4.6)

The polynomial function F can be written as F(w,t) = h(w?, 1), where & is a third degree polynomial, defined
by
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h(z,7) =2 + @12 + arz + as. (4.7
Depending on the determinant of equation
h(z,7) =2 + a\2% + ayz + a3 = 0, (4.8)
2 2

M= (%)2 + (§)3, where r = a, — %al, q= ﬁaf — %alaz + as, there are three cases for the solutions of Eq. (4.8).

(1) If M > 0, Eq. (4.8) has a real root and a pair of conjugate complex roots. The real root is positive and is
given by

3 3 1
o = ¢-§+m+ - La

(i1) If M = 0, Eq. (3.9) has three real roots, of which two are equal. In particular, if @; > 0, there exists only
one positive root, pu; =2{/—1—9; If a; <0, there exists a positive root pu; =2¢/—%—-% for
7

3

—%>-%, and there exist three positive roots for L </—1<-%, pu=2{-9-1%,

3/_ 4 a
‘uzf,u3— B 3-
‘rl aj

(iii) If M <0, there are three distinct real roots, u; =24/ cos(§) =%, u, =2 @ cos($+%) -4, =

Irl @y dny _a —__q ; : s
24/5 cos(3 +%) — 5, where cos ¢ = 2\/@. Furthermore, if a; > 0, there exists only one positive root.
Otherwise, if a; < 0, there may exist either one or three positive real roots. If there is only one positive
real root, it is equal to max(p, ), 13)-

Clearly, the number of positive real roots of Eq. (4.8) depends on the sign of ;. When a; > 0, Eq. (4.8) has
only one positive real root. Otherwise, there may exist three positive real roots.
It is easy to know that

2aT

2
a1:bi(z)—2b2(1)=c2+52+<a—d— —b7> > 0.

Hence, Eq. (4.8) has only one positive real root. We denote by z, this positive real root. Thus, Eq. (4.6) has

only one positive real root @ = ,/z;. And the critical values of 7 and w(t) are impossible to solve explicitly, so

we shall use the procedure described in Beretta and Kuang [13]. According to this procedure, we define

0(t) € [0,2x) such that sin 0(t) and cos 0(t) are given by the right hand sides of (4.4a) and (4.4b), respectively,

with 6(7) given by (4.8). This define 6(7) in a form suitable for numerical evaluation using standard software.
And the relation between the argument 6 and wt in (4.7) for T > 0 must be

wt=0+2nn, n=012,... (4.9)
Hence we can define the maps: 7, : I — R, given by
0(t) + 2nn
=_— =0,1,2,... 4.1
7,(7) o 7, >0, n=0,1,2,..., (4.10)

where a positive root w(t) of (4.6) exists in I.
Let us introduce the functions S,(t) : / — R,
0 2
S0 = B2 o (4.11)
(1)
that are continuous and differentiable in 7. Thus, we give the following theorem which is due to Beretta and
Kuang [13].

Theorem 4.1. Assume that w(t) is a positive root of (4.2) defined for v € 1,1 C Ry, and at some t° € I,
Su(t*) = 0 for some n € Ny. Then a pair of simple conjugate pure imaginary roots 2 = +iw exists at t = t* which
crosses the imaginary axis from left to right if 6(t*) > 0 and crosses the imaginary axis from right to left if
o(t*) < 0, where
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. } (4.12)

Applying Lemma 4.1 and the Hopf bifurcation theorem for functional differential equation [14], we can
conclude the existence of a Hopf bifurcation as stated in the following theorem.

o(t*) = sign{F (wt", r*)}sign{—dsé'ir)

Theorem 4.2. For system (1.1), there exists t* € I, such that the equilibrium E is asymptotically stable for
0 <1< 1" and becomes unstable for t staying in some right neighborhood of t*, with a Hopf bifurcation
occurring when T = 1*,

5. Direction and stability of the Hopf bifurcation

In the above section, we have obtained some conditions which guarantee that the delay differential equation
model of HIV infection of CD4" T-cells undergoes the Hopf bifurcation at some value of t = 7*. In this sec-
tion, we shall study the direction, stability and the period of the bifurcating periodic solutions. The approach
we used here is based on the normal form approach and the center manifold theory introduced by Hassard
et al. [15]. Throughout this section, we always assume that system (1.1) undergoes Hopf bifurcation at the
positive equilibrium E(7,1, V) for t = t*, and then +iw is corresponding purely imaginary roots of the char-
acteristic equation at the positive equilibrium E(7,1,V).

Let u;(t) = T(t) = T, ua(t) = 1(t) — I, us(t) = V() =V, xi(t) = wi(2t), (i=1,2,3), t=1"+ p, system (1.1)
is transformed into an functional differential equation (FDE) in C = C([—1,0],R?) as

= L) + /) (5.1)
where x(¢) = (x;(1),x,(¢),x3(¢))" € R and Lu: C — R f : R x C — R, are given respectively by
a—d—bV - sz_f
LH(¢) = (" +p) 0
0 —c
0 0 0 b1(— 1
+ (T +| be™V 0 be™ T || dr(=1) |, (5.2)
0 0 0 ¢3(=1)
*rmaﬁﬁ (0) — b, (0)5(0)
S @) = (7" +p) e P (=) ps(—=1) |- (5.3)
0

Clearly, L, is a linear continuous operator from C to R*. By the Riesz representation theorem, there exists a
matrix components are bounded variation function #(0, x) in 0 € [—1,0], such that

0
Lub = / 40,0060 (5.4)
for ¢ € C.

In fact, we can choose

a—d—bV —2T 0 —pT\ [ ¢:(0)

Tmax

n(0, 1) = (v + p) 0 -5 0 $,(0) ]0(0)
0 p —c $5(0)
0 0 0
— (| be™V 0 be™ T |5(0+1), (5.5)

0 0 0
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where
1, 0=o0,
N
0, 040
For ¢ € C'([-1,0],R?), define
460 0 1,0
A(u)d):{ @ <o
Jo dn(u,s)p(s), 0=0,
and
Oa 0 € [_150)7
R -
(e {f(u, $), 0=0.

Then system (5.1) is equivalent to
X, = A(Wx, + R(w)x,, (5.6)

where x,(0) = x(¢ + 6) for 6 € [-1,0].
For y € C'([~1,0], (R*)"), define

_%(5)7 é S (Oa 1])
f?l d]’]T(l, O)l//(_t)a &: = 07

and a bilinear inner product

AY(S) = {

W& 90) =930 ~ [ [ B(c = 0an)s(0)az. (57)

where 1(0) = 5(0,0). Then A4(0) and 4" are adjoint operators. By the discussion in Section 4, we know that
+iw*t* are eigenvalues of 4(0). Thus, they are also eigenvalues of 4*. We first need to compute the eigenvector
of 4(0) and 4" corresponding to +iw*t* and —iw*t*, respectively.

Suppose that ¢(0) = (1,a, ) e 7 is the eigenvector of A(0) corresponding to +iw*t*, then 4(0)g(0) =
iw*t*q(60). It follows from the definition of 4(0) and (5.2), (5.4) and (5.5) that

iw* +d—a+bV+T2ii 0 bT 0
T 0 iw* + 6 0 q(0)=10
0 -p  iw*+c 0

Thus, we can easﬂy obtain ¢(0) = (1,0, )", where o=l e e % Similarly, let

q" (&) = D(1,a*, B)e "¢ is the eigenvector of A correspondmg to —iw*t*. By the definition of 4* and
(5.2)(5.4), we can compute o* = _lfﬂw " = In order to assure < ¢*(¢),¢(0) >= 1, we need to deter-
mine the value of D. From (5.7), we have

¢ (©@.a0) =207 P )~ [ [ BOE R )15 e

= 0{1 o+ - / (1,5, F )06 Udn(0)(1, 2, ﬁ)T}

:E{l +O€W+ﬁ?+( 7erO(* +be mTT,[),OC*) % _iw*t* }
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Thus, we can choose D as
1
D= — — — p—— - .
1+ oo + pf° + (be™ Vo + be="" T o) el™™

In the remainder of this section, we use the same notations as in [15], we first compute the coordinates to
describe the center manifold Cy at u = 0. Let x, be the solution of (5.6) when u = 0. Define

z(t) = (¢", %), W(w,0) =x,0) —2Re{z(t)q(0)}. (5.8)
On the center manifold C, we have
W(t,0)=Ww(z(t),z(t),0),

where
2 =2 3

W(z,%,0) = W(0) % + W11(0)22 + Wea(0) % + Wa(0) % oo (5.9)

z and Z are local coordinates for center manifold Cy in the direction of ¢* and ¢*. Note that W is real if x, is
real. We only consider real solutions. For solution x, € Cy of (5.6), since u = 0, we have

z(t) = 1wtz 4+ ¢*(0)£(0, W(z,z,0) + 2Re{zq(0)}) = iw"t"z + ¢*(0) fo(z, Z).
We rewrite this equation as

z(t) = iw't°z(t) + g(z,2),
where

2 52 ZZ z

J— Z Z
g(z,2) = q*(0)fo(z,2) = g205+g1122+g025+g21 5 T+ (5.10)
It follows from (5.8) and (5.9) that
xi(0) = W(1,0) — 2Re{z(1)q(1)}

2 52

= Wzo(e)%Jr Wi (0)zz + Woz(e)% + (L, B) e 0z (1,5, p) e 0z 4 ... (5.11)
It follows together with (5.3) that

ax2
B e (U ()

8(2,2) = ¢7(0)fo(2,2) = ¢°(0)f(0,x) = TD(1,2%, f) | e x;,(— 1)x3,(—1)
0

_ 2
—1*D,
——— + W (0)z + Wé?(0>z+o(<272)3|)]

Tmax

2
2
2

2

{z +z4+ Wi (0) 5

52
—bt'D {z +z24 Wy (0)5 + Wi (0)zz + W (0) % + 0(|(z,2)|3)]
O N e
7 T Wi (0)zz + Wey (0) =+ o(|(z,2)])

X [ﬁz + Bz + W5 (0) 5

- " Ckok P z2 z2
+ T*Da*befmr |:em) T Z—|— ew) T §+ W(Zl())(_l)§+ WE]I)(_1>Z§+ WE)]2)<_1)E+ 0(|<Z7Z)|3):|
ZZ
2

+ W)z + W(()32>(—1)Z—2—|—0((z,z)|3)]. (5.12)

% [ﬂei(/)*r*z T Beiw*r*z + W;’))(_l) 3
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Comparing the coefficients with (5.10), we have

B — a bﬁ &*bﬁefmr*efﬁw*r*
&2 = 2t D< 2Tmax - 7 2 >7
g = 2f*z_)(— T“ — bRe{B} + oZ*be"”*Re{ﬁ}),

max
_ a bB o Bbe—mf* eZiw* *

=2"D| — - -

802 T < Mom 2 ) > )
— a W(l)(o) W(3)(0) B (5.13)

g1 = TD| = @ (0) + =22) = bV (0) + ===+ 5 W5 (0)

P
ot
(S

O+ e (e W 1)+ S W )

Beiw* *
2

+ W%)(—l) + W(lll)(_l) + ﬁeirt)*r*ei(u*r*)] )

Since there are Wy (0) and W,(0) in g,,, we still need to compute them. From (5.6) and (5.8), we have

oo = i AW—ZRe{F(O)qu(e)}v 96 [_170)7 y _
Vs = {AW— 2ReAT(0)foq(0)} + fo, 0=0, —AW + Hz.56), G149
where
2 52
H(z,2,0) = Hx(0) 5 + Hu(0)22 + Hun(60) S + - (5.15)

Substituting the corresponding series into (5.14) and comparing the coefficients, we obtain

(4 = 210" T )W (0) = —Hay, AW (0) = —Hyy,--- (5.16)
From (5.14), we know that for 0 € [—1,0),

H(z,2,0) = —¢7(0)f0q(0) — ¢"(0)f0q(0) = —g(z,2)9(0) — g(2,2)g(0). (5.17)
Comparing the coefficients with (5.15) gives that

H(0) = —£24(0) — 802q(0), (5.18)
and

H1(0) = —£119(0) — 8114(0). (5.19)

From (5.16), (5.18), it follows from the definition of A, we get
W20 = 2iw*t" Wz()(@) — Hz()(@) = 2iw*t" Wzo(@) + gon(H) + gOQZ](Q)
Notice that ¢(0) = (1,a, §) e, hence

i io*T* ig P —iw*t* iw*t*
Wi (0) = wgzlf’ g(0)e ™0 4 %q(O)e 0 4 Fdor o, (5.20)

where E; = (Eﬁl),E(lz),E?)) € R® is a constant vector. Similarly, from (5.16) and (5.19), we obtain

i . ig -
W“(O) - _ gll q(o)elw 0 _"_ﬂq(o)efu:)r 9+E2, (521>

w*T* w*T*

where E, = (E" | EY) E) € R is also a three-dimensional constant vector.
In what follows, we shall seek appropriate £ and E,. From the definition of A and (5.16), we can get

[1 dn(@) Wz()(@) =2iw't* W20(9) — Hz()(g), (522)
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and
/_ dn(0)W11(0) = ~Hu(0)

where 1(0) = 5(0,0). By (5.14), we have

—_a _ 0
2T max 2

H(0) = ~£209(0) — g204(0) +2¢" | spee e ],

0

and

— 7 — bRe{f}

T'max

Hy1(0) = —£119(0) — 11g(0) + 2" | be " Re{p}
0

Substituting (5.20) and (5.24) into (5.22), we obtain

__a _ Db
0 2T max 2

(21(})* - / eZiw*r*O d]’[(G))El =2 bﬁefm*ze—zim*r* ,
-1
0

which leads to

_ — — a bRe{p
i +d—a+ bV + 2 0 bT — - B

Tmax

0 dwor+s 0 |Ei=2| merewe

0 —p 2im* + ¢ 0

It follows that
— a8 0 bT

2T max 2

(1> _ 2 —mt* —2iw**
E; A bpe ™ e T ;2 2iw* + 6 0 )

0 —p 2iw* + ¢
2iw* +d —a+ bV + g;i -4 bT

2
E(2> — bp —mt* —2iw*t*
T 0 e o

0 0 2iw* + ¢

Qiw* +d —a+ bV + 2L 0 — a5
T'max 2T max 2
bﬁe—mr* e~ 2iw* "

2
(3) _ .
£y A 0 '+ a1
0 —p 0

i +d—a+bV+#L 0 bT

A= 0 2iw* + 0 0
0 —p 2iw* + ¢

Similarly, substituting (5.21) and (5.25) into (5.23), we can get
d—a+bV+2L 0 bT — -4 _ bRe{p}

Tmax

_bhe T 5 —be ™' T |E2=2[ be ™ Re{f} J
0 - 0

35

(5.23)

(5.24)

(5.25)
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1
0 —p c
_ .74 2aT __a _ T
Y 2 d—a+bV+35- 7—— bRe{f} bT
= — —-mt* 7 —mt* —mt*
E; A —be "V be " Re{f}  —be " T|
0 0 ¢
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_[* T*’t
0 ;G 7 15 : \ !
1
24
Fig. 1. The distribution of zeros of s,(t)(n = 0) corresponding to the equilibrium point E of system (1.1).
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Fig. 2. For the following parameter values, s =5, d =0.01, a =0.8, 5 =0.0002, Tpax = 1200, 6 = 0.4, p = 1000, c =8, m = 1.4 and
© = 0.4, the positive equilibrium £(28.01076001,37.99315970,4749.144962) of system (1.1) is asymptotically stable when t = 0.4. Here
T(0) =50, 1(6) = 80, V(6) =100, 0 € [—1,0].
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d—a+bV +2L 0 -2 — bRe{p}
BV =3l —bem V6 be R} |
0 —p 0
where
d—a+bV+%L 0 BT
A= —be™'V 5 —be™'T|
0 —p c

Thus, we can determine Wy (0) and W,,(0) from (5.20) and (5.21). Furthermore, g,, in (5.13) can be
expressed by the parameters and delay. Based on the above analysis, we can see that each g;; can be determined
by the parameters. Thus we can compute the following quantities:

2
2 |80 821
<g20g11 —2|gy| _—> + =

«(0) 3 2

20t
o RelrO)
? Re{J/ ()}’
B, = 2Re{c(0)},
_Im{ei(0)} + Im{2'(7)}

(5.26)

2= w*T*
a0 . . . ‘ ‘ . . 80
a0t .
0F -
70} -
60 1
B0
— 50F — &0
a0t
40
30
30 H
20
10 . . . ‘ ‘ ‘ ‘ 0 . . . . . . .
a 50 100 150 200 250 300 350 400 0 50 100 150 200 250 300 350 400
t t
9000
8000 4
10000 -
7000 _
| ! 000
6000
6000
5000
>
> 4000
4000
2000 4
3000 H .
2000 - -
1000 4
0 50 100 150 200 250 300 350 400

t

Fig. 3. The time histories and the phase trajectories of the system (1.1) after Hopf bifurcation occurs for the following parameter values:
s=15,d=0.01,a=0.8,5=0.0002, T = 1200, 6 = 0.4, p = 1000, ¢ = 8, m = 1.4 and = = 0.6. Here T(0) = 50, 7(0) = 80, V(0) = 100,
0 € [-1,0].
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Hence we have the following theorem by the result of Hassard et al. [15].

Theorem 5.1. In (5.26), the sign of u, determined the direction of Hopf bifurcation: if 1, > 0(u, < 0), then the
Hopf bifurcation is supercritical (subcritical) and the bifurcating periodic solution exist for T > t*(t < ). f3,
determines the stability of the bifurcating periodic solution: the bifurcating periodic solution is stable (unstable) if
Py < 0(P, > 0) and T, determines the period of the bifurcating periodic solution: the period increase (decrease) if
T) > 0(T2 < 0)

6. Numerical simulations

In order to check our computation for Theorem 5.1, we perform some numerical simulations. We choose a
set of parameters as follows: s =5, d = 0.01, @ = 0.8, b = 0.0002, Ty,.,x = 1200, 6 = 0.4, p = 1000, ¢ = 8 and
m=1.4.

For the above parameters, we draw the graph of Sy versus 7 on 7 in Fig. 1. One can see that there are two
critical values of the delay 7, denoted by t* and 7™, and t* ~ 0.5327. Simple examination shows that the ende-
mic equilibrium is asymptotically stable for 7 € [0,1*) (see Fig. 2), and is unstable for = € (%, 7).

By using Theorem 4.2, we know that, under the set parameters, when t = t*, Hopf bifurcation occurs. Fur-
thermore, we can obtain Re(c;(0)) < 0. Therefore, the Hopf bifurcation of system (1.1) at the endemic equi-
librium is supercritical and the bifurcating periodic solutions are orbitally asymptotically stable (see Fig. 3).
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