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Abstract1 

Due to the requirement of dealing with the uncer-
tainty and random disturbance in the real-time ap-
plications, a framework of adaptive type-2 fuzzy con-
trol system is designed. Since most of existed stability 
analysis results can not be used for the proposed sys-
tem, by transferring the interval membership degrees 
into the constrained typical membership degrees, the 
closed-loop stability of proposed control system is 
analyzed. The necessary stability conditions are de-
duced. All stability analysis results are summarized 
into a Theorem. Comparing with other stability 
analysis results, the proposed method need less con-
strains and is easy to be used for controller design 
issue.  

Keywords: Interval Type-2 fuzzy system, stability 
analysis, adaptive control. 
 

1. Introduction 
 

Recently, fuzzy type-2 methods, which were intro-
duced by Zadeh[1], have been further developed to im-
prove the fuzzy logic controllers (FLCs) performance for 
handling the high level uncertainty [2, 3]. Fuzzy type-2 
method is that its fuzzy set is further defined by a typical 
fuzzy membership function, i.e., the membership degree 
of belonging for each element of this set is a fuzzy set in 
(0, 1), not a crisp number [4-6]. In comparison with the-
type-1 fuzzy logic system (FLS), a type-2 FLS has the 
two-fold advantages as follows. Firstly, it has the capa-
bility of directly handling the uncertain factors of fuzzy 
rules caused by expert experience or linguistic descrip-
tion. Secondly, it is efficient to employ a type-2 FLS to 
cope with scenarios in which it is difficult or impossible 
to determine an exact membership function and related 
measurement of uncertainties. These strengths have 
made researchers consider type-2 FLS as the preference 
for real-world applications [7-9]. 
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About the type-2 FLS, some researches have been 
done to study the set theoretic operations, properties of 
membership grades and the uncertainty bounds of type-2 
fuzzy sets [10]. From the viewpoint of real-time applica-
tion, interval type-2 fuzzy logic system has been widely 
studied and utilized in many research fields, such as 
autonomous mobile robots control, adaptive control of 
non-linear system, noise cancellation, quality control and 
wireless communications, etc. That is mainly due to the 
interval type-2FLS's simple computing methods and less 
computational expense on type reduction which is still a 
bottleneck for other type-2 FLS to be used in real-time 
applications. 

Because of the difficulties of building proper crisp 
membership functions from the uncertainty of expert 
knowledge or experience for some complex non-linear 
systems (i.e., active suspension system), inspired by the 
idea of type-2 fuzzy methods, an adaptive fuzzy logic 
controller with interval type-2 fuzzy membership func-
tions was proposed in our previous research [11]. With 
the designed feedback structure, the optimization algo-
rithms can be integrated to adaptively tune the interval 
reasoning results which have been successfully verified 
in the vehicle active suspension system. However, the 
closed-loop stability of proposed adaptive fuzzy control 
system need to be analyzed and the stability conditions 
need to be deduced for its practical applications. 

Stability is one of the most important issues in analy-
sis and design of control systems. Stability analysis of 
fuzzy control system has been more difficult because the 
system is essentially non-linear. Reviewing the existing 
stability analysis results of typical fuzzy control systems, 
T-S fuzzy-model-based control systems provided great 
development of systematic approaches to stability analy-
sis and controller design of fuzzy control systems in 
view of powerful conventional control theory and tech-
niques [12]. The major techniques that have been used 
include quadratic stabilization, LMI, Lyapunov stability 
theory, bilinear matrix inequalities. Inspired from the 
above stability analysis approaches, in this paper, for the 
previous proposed framework of adaptive interval type-2 
FLC [11], its closed-loop stability is analyzed. 

The rest of the paper is organized as follows. Firstly, 
with the proposed framework of control system, the in-
terval type-2 FLC system is demonstrated in Section 2. 
Secondly, Section 3 represents the general formulation 
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of the adaptive FLC system. In Section 4, the stability of 
proposed fuzzy control system is analyzed and the suffi-
cient stability conditions are obtained. Concluding re-
marks, perspectives and challenges are discussed in Sec-
tion 5. 
 

2. The Framework of Adaptive Interval 
Type-2 FLC 

 
In this section, a framework for adaptive interval 

type-2 FLC is designed to deal with the uncertainty and 
imprecision in the real-time applications. With the de-
signed feedback structure, optimal algorithms are used to 
adaptively tune the interval region and to obtain a crisp 
output which can bring the better control performance. 
The framework of proposed method is represented for 
control the non-linear and uncertain systems. 

The framework of adaptive interval type-2 FLC is 
shown in Fig.1. In comparison with the conventional 
interval type-2 FLS [13], the proposed structure builds a 
more general framework to represent the type-reduction 
and defuzzification process. If an optimal goal of the 
proposed FLC can be described, the convergence of the 
optimization method is guaranteed, the proposed frame-
work is shrunk to the same form as the conventional in-
terval type-2 FLC. 

Among the different kinds of type-reduction methods, 
Karnik-Mendel algorithms and Wu-Mendel algorithms 
are considered in this adaptive control system [5]. The 
first type of method calculate the exact solutions mono-
tonically and super-exponentially fast with simple for-
mula and they can be run in parallel, but the time delay 
caused by algorithmic iteration is the bottleneck for 
real-time applications. On the other hand, the second 
type of method replaces the type-reduction by four un-
certainty bounds. These bounds only depend on the 
lower and upper firing levels of each rule and the cen-
troid of each rule's consequent set. For the purpose of 
computational efficiency, the proposed method uses the 
second type-reduction method to calculate the end-points 
of reasoning results. 

Furthermore, under the proposed structure, the crisp 
output of the proposed FLC represents twofold informa-
tion. One is the fuzzy reasoning result which is based on 
fuzzy rules extracted from expert knowledge or indus-
trial experience, the other is the further optimal goal 
which is required by practical issues (e.g., saving energy) 
or is impossible to be combined into the fuzzy rules. 

Optimization algorithms can be selected in terms of 
domain-dependent goals and practical requirements. 
Here, for real-time control, two optimization algorithms 
are used, one is the least-mean-square (LMS) method 
which is a gradient-based method and the other is the 
particle swarm optimization (PSO) method which is a 

recently invented high-performance non-linear optimizer 
and requires less computational cost in real-time appli-
cations. 
 

3. The General Formulation of Proposed Con-
trol System 

 
A brief introduction on typical T-S fuzzy control sys-

tems and the interval type-2 T-S fuzzy system is firstly 
presented in this section, then the type-2 reasoning 
methods and proposed adaptive structure are demon-
strated, finally the section is concluded with the general 
formulation of proposed adaptive interval type-2 fuzzy 
control system. 

A. Typical T-S Fuzzy Control Systems 
T-S fuzzy model was proposed by Takagi and Sugeno 

[14]. This model is based on using a set of fuzzy rules to 
describe a global non-linear system in terms of a set of 
local linear models which are smoothly connected by 
fuzzy membership functions. A lot of theoretical results 
on function approximation, stability analysis, and con-
troller synthesis have been developed for T-S fuzzy 
model during recent decades [15-21]. The research re-
sults have shown that T-S fuzzy model is able to ap-
proximate any smooth non-linear functions to any degree 
of accuracy in any convex compact region [22]. In this 
section, the T-S fuzzy model is represented and the T-S 
model-based fuzzy controller by parallel distributed 
compensation (PDC) method is rebuilt. 

The T-S fuzzy dynamic model is described by fuzzy 
IF-THEN rules, which represent local linear input-output 
relations of non-linear systems. The ith rule of T-S fuzzy 
model is shown as follows. 

:)(iR  IF 1z is iM1  and 2z is ,,2
iM and gz is 

i
gM  THEN ),,2,1).(()()1( mituBtxAtx ii =+=+  

where M is the typical fuzzy set, 
[ ]Tn txtxtxtx )(,),(),()( 21= denotes the state vector, 

u(t) denotes the input vector, m denotes the number of 
fuzzy rules, and gzzz ,,, 21 denote measurable vari-
ables. 
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Fig.1. The framework of adaptive interval type-2 fuzzy control system. 
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))((
1

txM jij

n

j
i

=
∏=ω            (3) 

∑
=

=
m

i
i

i
ih

1
ω

ω
 

here, ))(( txM jij  is the membership grade of 
)(tx j  in the fuzzy set ijM . For general, the nor-

malized form of iω  and ih  are defined as: 
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  The T-S fuzzy controller can be designed by the 
method PDC. The ith control rule is described as: 

:)(iR  IF 1z is iM1  and 2z is ,,2
iM and nz is 

i
nM  THEN ),,2,1).(()( mitxKtu i == . 
The control rules have linear state feedback con-

trol laws in its consequent parts. The final output 
of this fuzzy controller is: 

mitxKhtu i

m

i
i ,,2,1),()(

1
== ∑

=

       (5) 

Substitute equation 5 into equation 2, the closed 
-loop T-S fuzzy control system is presented as fol-
lows. 

    )()()1(
1 1

txKBAhhtx jii

m

i

m

j
ji −=+ ∑∑

= =

   (6) 

B. Interval Type-2 T-S Fuzzy System 

Considering an interval type-2 T-S fuzzy model with 
m rules represented ad the general form:  

:)(lR  IF 1z is lF1
~

 and 2z is ,,~
2
lF and vz is l

vF~  

THEN )1( +tx  is ( , ).lg X U  ( : 1, 2, , ).l L m∈ =  
where )(lR  denotes the lth fuzzy inference rule, m 
denotes the number of fuzzy rules, ),,2,1(~

1 vjF l =  
denote the interval type-2 fuzzy sets, 

[ ]vzzztz ,,,:)( 21=  denote measurable variables, 
ntx ℜ∈)(  denotes the state vector, ptu ℜ∈)( denotes 

the input vector, and the T-S consequent terms lg is 
defined in equation 7. 

 
mLl

atuBtxAUXg lll
ll
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    (7) 

where ll BA ,  and la  are the parameter matrices of 
the lth local model. 

Its firing strength of the lth rule belongs to the fol-
lowing interval set: 

 [ ] mlxxx lll ,,2,1;)(),()( =∈ ωωω        (8) 
where  
      )()()()(
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in which, )(
1

xlF
μ  and )(

1
xlF

μ  denote the lower 

and upper membership grades, respectively. Then 
the inferred interval type-2 T-S fuzzy model is de-
fined as  

1
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where  
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Herein, the values of α  and β  are both de-
pend on the uncertainty which potentially existed 
in parameters and fuzzy rules. 
 
C. Interval Type-2 T-S Fuzzy Control System 

In order to control the non-linear system based on 
the T-S fuzzy model described by equation 11, and 
adaptive T-S fuzzy controller is represented and its 
fuzzy rules are given as below, 

:)(rR  IF 1z is rF1
~

 and 2z is ,,~
2
rF and vz is r

vF~ , 

THEN )(tu  is ).,,2,1:).((~ mLltxKr =∈  

where rK~  stands for the rth local linear control gain. 
The output of this controller is defined as 
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rω  are satisfied with 
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and the value of ))(),(( xxf U
r

L
r ωω  depends on the 

type reduction methods and belongs to an interval. 
In the recent research of [23], with the normal-

ized central method ( i.e., 
=))(),(( xxf U

r
L
r ωω ),2/))()(( xx U

r
L
r ωω +  

the stability of interval type-2 T-S fuzzy control 
system was studied and the stability condition was 
conducted. However, it can not work on the pro-
posed interval type-2 FLC in this paper because 
the type reduction method is different. That is, 
based on the proposed framework of adaptive in-
terval type-2 FLC system, the interval fuzzy out-
puts were optimized by the optimization algo-
rithms, such as LMS and PSO methods. Then re-
lated with the equation 13, a general formula for 
the control output of proposed method is written 
as: 

xKxxtu r
U
r

L
r

m

r

⋅+= ∑
=

~))(~)(~()(
1

ωβωα     (17) 

For general, the coefficients α~  and β~ should be 

satisfied with the condition: .1~~ =+ βα  Since the 
stability analysis methods for typical fuzzy systems 
will require the crisp or precise value of )(xlω , these 
approaches cannot be directly used to analyze the sta-
bility of interval type-2 fuzzy control systems. So in 
next section, the stability analysis approach will be re-
structured by integrating the lower and upper member-
ship grades. 
 

4. Stability Analysis of the Proposed Fuzzy 
Control System 

 
In this section, the stability of the proposed 

closed-loop interval type-2 T-S fuzzy control sys-
tem is analyzed. For easily understanding the sta-
bility theory of T-S fuzzy systems, the main ex-
isted approaches of stability analysis and their sta-
bility conditions for typical T-S fuzzy control sys-
tems are reviewed in Section 4.1. Then the stabil-
ity analysis of proposed adaptive interval type-2 
T-S fuzzy control system is deduced in Section 
4.2. 
A. Stability Conditions with Lyapunov Stability The-

ory 
As mentioned by [12], based on the above T-S fuzzy 

control system in equation 6, the existing main methods 
for stability analysis include quadratic stabilization, 
linear matrix inequalities and bilinear matrix inequali-
ties, and so on. Most of these methods will require a 
Lyapunov function PxxxV T=)(  (e.g., common 
quadratic Lyapunov function, piecewise quadratic 
Lyapunov function and fuzzy Lyapunov function). The 
basic stability condition for the open-loop T-S fuzzy 
system can be presented by the following Lemma 1. 
Lemma 1: The equilibrium of system in 2 (with 0=u ) 
is asymptotically stable in the large if there exists a 
common positive definite matrix P such that 

             0<+ i
T
i PAPA            (18) 

for all subsystems, that is , .,,2,1 mi =  
A common Lyapunov function in equation 18 can be 
solved numerically by convex programming algorithms 
(e.g., LMI method). More details can be found in the 
book by [18]. For the further stability analysis of T-S 
fuzzy control system, several stability conditions were 
summarized by [24]. These stability conditions are re-
arranged by using the general T-S fuzzy control system 
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in the equation 6. 
Firstly, the T-S fuzzy control system 6 can be repre-

sented in a general form as follows. 
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here,                                    
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Q and S are unitary matrix, and 
rnW ×ℜ∈ , ,)( rrt ×ℜ∈Δ nrZ ×ℜ∈ , 

,2/)]1([ +××= mmnγ  the matrices W, Z are as fol-
lows:  
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Based on the equation 22, the matrices M and N are 
defined as follows: 
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Lemma 2: The equilibrium of a general T-S fuzzy con-
trol system as given in equation 6 is quadratically sta-
ble in the large if and only if one of the following con-
ditions is satisfied. 
C1) There exists a positive definite matrix P such that 
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C5) There exists a positive definite matrix P such that 
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Remark 1: The condition C1 is obtained by using the 
common quadratic method which finds the positive 
definite solution P from Riccati equation. The condi-
tion C2 connects the global stability with the ∞H  
control performance. By the research of [25], the con-
ditions C3-C5 are equivalent to C1 and C2, howev1er 
they are described by LMI methods. There have been 
some efficient algorithms to check the global stability 
by LMI methods [18, 26]. 
Remark 2: All these conditions can be fitted for the 
deterministic T-S fuzzy systems, but not for the sto-
chastic T-S fuzzy systems [12]. That is means, if the 
membership grades are not crisp values ( e.g., uncertain 
or interval variables), these above conditions can not 
directly work. Several authors have made attempt to 
address these issues [27, 28].However, the existing re-
sults are not enough for stability analysis of the pro-
posed adaptive interval type-2 FLC in this paper. 
 
B. Stability Conditions of the Proposed Fuzzy Control 

System 
With the interval type-2 T-S fuzzy model in equation 

11 and the proposed controller in equation 17, the 
closed-loop interval type-2 T-S fuzzy control system 
can be described as follows, 

)()()1(
1 1

txKBAGtx jii

m

i

m

j
ij +=+ ∑∑

= =

   (26) 

where, jiG ,  denotes the fixed membership grade from 
the interval type-2 antecedents and T-S consequent, it 
is described as, 
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     [ ] jij
U
r

L
rij xxG ωωωωβωα ~~)(~)(~ =+=     (27) 

where )(),( xx U
r

L
r ωω  and jω~  are defined in equa-

tion 14,15 and 12. 
With the closed-loop interval type-2 T-S fuzzy con-

trol system in equation 26, a Lyapunov function candi-
date is defined as: 

)()()( tPxtxtV T=            (28) 
here, the matrix is positive definite, and this function 
satisfies the following proper-
ties: 0))((,0)0( >= txVV  for 0)( ≠tx  and 

))(( txV  approaches infinity as ∞→)(tx . 
Then 
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Substituting the equation 26 into the equation29, we 
have  
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For using the general formulations by [29, 23], the 

equation 30 can be rewritten as 
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Based on the Lyapunov stability theory, if the condition 
0)( ≤tV  is satisfied, the related interval type-2 fuzzy 

control system is asymptotic stable. From equation 31, 
0≤Ψ  should be satisfied. Considering the 

well-known expression of stability analysis [14, 29, 30, 
31], let Ψ−=Ξ and ijij QQ −=

~
. If the following 

condition is proved, 
0)()()()()( ≥Ξ=Ψ−=− tZtZtZtZtV TT  (32) 

0)( ≤tV  can be obtained. 
Most of existing stability analysis results for typical 

T-S fuzzy control system considered the ijQ~ in t1he 
case of same membership grades of fuzzy controller 
and fuzzy model (i.e., ii ημ = here, iμ is one of mem-
bership grade of fuzzy model and iη  is one of mem-
bership grade of fuzzy controller). However, in the 

proposed interval type-2 fuzzy control system, the 
membership grades of fuzzy model iω

~ are not same as 
the membership grades of fuzzy controller 

)(~)(~ xx U
j

L
j ωβωα + . So some new conditions must be 

reconsidered. 
Since the interval type-2 fuzzy membership grades 

belong to an interval, there will be some constraints 
between these membership grades of fuzzy model and 
fuzzy controller. 
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The conditions in equation 33 and 34 can be written as, 
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The position definite matrices ( 1, 2)k kΓ =  are de-
fined as: 
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Multiplying the first condition in equation 35 by 1Γ , 
we get a negative- semidefinite matrix: 
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Multiplying the second condition in equation 35 by 2Γ , 
we get another negative-semidefinite matrix:          

0)ˆ~~~~ˆ~~~~( 2222
1 1

2

≤++−−

=

∑∑
= =

jjiijjiijjijj

m

i

m

j
i TbTbTT

H

ημμμηημη
 

                                         (38) 
Subsequently, it is evident that if 01 ≥+Ξ H  and 

02 ≥+Ξ H  can be proved, then 0≥Ξ  is satisfied. 
That is, 
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                                        (40) 
  Defining the matrices mjiXX T

jiij ,,1,, == , it 
is satisfied with the conditions as follows. 

jiijijji XXRaRa +≥+ 11        (41) 

))(())((11
ˆˆ

mimjmjmiji XXRR ++++ +≥+     (42) 

imjmjijiiij XXRaRQ )()(11
ˆ~

++ +≥++    (43) 

jiijijji XXTbTb +≥+ 22        (44) 

))(())((22
ˆˆ

mimjmjmiji XXTT ++++ +≥−−    (45) 
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With the conditions in equation 41-43, the equation 39 
can be extended  
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(48) 
With the different conditions in equation 44-46, the 

equation 40 can be extended as the formula as equation 
48. 

Hence, with the equation 48, 0≥+Ξ H . Then 

0≥Ξ . And based on the condition 32, .0)( ≤tV The 
proposed interval type-2 fuzzy control system is as-
ymptotic stable. 

Furthermore, the conditions of equations 41-46 can 
be rewritten as: 

jiijijjiijji XXTbTbRaRa +≥+++ 2211   (49) 

))(())((2211
ˆˆˆˆ

mimjmjmijiji XXTTRR ++++≥−−+  (50) 

imjmjijiijiiij XXTbTRaRQ )()(2211
ˆˆ~

++ +≥+−++ (51) 
The stability analysis result is summarized in the fol-
lowing theorem. 
Theorem 1: With the known conditions of equations 33 
and 34, if there exist matrices ,1,, == jiXX T

jiij  

2, , 2m and symmetric definite positive matrices 

211 ,ˆ, jjj TRR  and 2
ˆ

jT  for all ,,,1 rj = which sat-
isfy the conditions in equations 49-51 and equation 47, 
the proposed interval type-2 fuzzy control system in 
equation 26 is asymptotic stable. 
Remark 3: When all the membership functions in fuzzy 
control system are typical membership functions, the 
closed-loop system is reduced to a typical T-S fuzzy 
control system. The constraints of membership grades 
in equations 33 and 34 will be changed to ji ημ ~~ = . 
The process of stability analysis in this section will be 
shrunk to the general formulation for typical T-S fuzzy 
system. So this stability analysis method is an exten-
sion of existing typical stability results to consider the 
interval membership grades in type-2 fuzzy system. 
Furthermore, the stability analysis can not only be util-
ized for proposed adaptive interval type-2 fuzzy control 
system, but also for the general interval type-2 fuzzy 
systems. 
Remark 4: Since the stability result in this section is 
deducted from Lyapunov stability theory, a common 
quadratic Lyapunov function need to be found for all 
the local subsystems in T-S fuzzy model. And this sta-
bility conditions are sufficient conditions. Less conser-
vative methods about interval type-2 T-S fuzzy control 
system will be studied in future. 
 

5. Summary 
 

With the proposed framework of adaptive interval 
type-2 FLC in Section 2, a closed-loop model of inter-
val type-2 fuzzy control system was presented. Its 
closed-loop stability has been investigated by quadratic 
Lyapunov stability theory. Under the constraints of in-
terval membership grades in the T-S fuzzy model, the 
proposed control system has been proved to be asymp-
totic stable. And the stability conditions have been car-
ried out to guarantee its stability. 
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According to the analysis results, since the proposed 
control method has been guaranteed to be stable with 
required conditions, it provides a theoretical foundation 
for further experimental study and industrial applica-
tion development. 
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