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Brief Paper

Least squares-based recursive and iterative
estimation for output error moving average
systems using data filtering
D.Q. Wang
College of Automation Engineering, Qingdao University, Qingdao 266071, Peoples’ Republic of China
E-mail: dqwang64@163.com

Abstract: For parameter estimation of output error moving average (OEMA) systems, this study combines the auxiliary model
identification idea with the filtering theory, transforms an OEMA system into two identification models and presents a filtering
and auxiliary model-based recursive least squares (F-AM-RLS) identification algorithm. Compared with the auxiliary model-
based recursive extended least squares algorithm, the proposed F-AM-RLS algorithm has a high computational efficiency.
Moreover, a filtering and auxiliary model-based least squares iterative (F-AM-LSI) identification algorithm is derived for
OEMA systems with finite measurement input–output data. Compared with the F-AM-RLS approach, the proposed F-AM-
LSI algorithm updates the parameter estimation using all the available data at each iteration, and thus can generate highly
accurate parameter estimates.
1 Introduction

Much work on the identification of output error (OE)-type
systems has been reported [1–9], including OE systems,
output error moving average (OEMA) systems and Box–
Jenkins systems etc. For example, Forssell and Ljung
estimated parameters of OE model structures of unstable
systems by reparameterising the OE model structures to
guarantee stability [1]; Söderström et al. statistically
analysed the estimation accuracy of the time-domain
maximum likelihood method and the sample maximum
likelihood method for OE models [2]; Rosenqvist and
Karlström derived a prediction-error minimisation method
for estimating parameters of piecewise-linear OE models [3];
Zheng used the bias compensation least squares algorithms
to identify OE systems [4, 5], and also Zhang and Cui
presented the bias compensation recursive least squares
identification algorithm for OE systems with coloured noises
[6]. Based on the uniformly and non-uniformly sampled
data, Gillberg and Ljung presented different approaches to
obtain the frequency-domain estimation of continuous-time
transfer functions by frequency function approximation and
B-spline output approximation [7, 8]; Zhu et al. proposed an
OE method to estimate the parameters of this kind of system
[9]; Ding and Ding developed a least squares parameter
estimation method with irregularly missing data [10].

This paper considers identification problems for a class of OE
systems – the OEMA systems [i.e. the OE system with moving
average (MA) noises]. In this literature, much early work exists,
for example, Dugard and Landau derived several recursive
1648
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parametric identification algorithms for OE models using the
model reference adaptive system techniques in detail and
analysed their performances in the deterministic and stochastic
environment using the equivalent feedback representation and
ordinary differential equation methods, respectively, [11];
Landau and Karimi studied the recursive OE identification for
closed-loop systems and made the stability and convergence
analysis in the deterministic and stochastic environments [12,
13]. Recently, based on the OE method, Ding and Chen
presented an auxiliary model idea and developed a recursive
combined parameter and intersample output estimation for
dual-rate systems [14, 15] and Ding et al. proposed the multi-
innovation least squares/stochastic gradient identification
methods using the auxiliary model [16–18]. The auxiliary
model identification idea is very useful in the identification of
OE-type systems. The auxiliary model-based least squares
algorithms have fast convergence rate but need computing the
covariance matrices, leading to a large computational burden.
The auxiliary model-based stochastic gradient algorithms
require less computational load but have slow convergence rate.

The filtering technique have been used in many fields, such
as fault detection [19], parameter estimation [20, 21], ground
target tracking [22], switched systems [23] etc. The objective
of this paper is to study data filtering and auxiliary model-
based least squares algorithms for OEMA systems by
combining the filtering technique [24] with the auxiliary
model identification idea [14, 15] to estimate the system
parameters from available input–output data and to evaluate
the accuracy of the parameter estimates by simulations on
computers.
IET Control Theory Appl., 2011, Vol. 5, Iss. 14, pp. 1648–1657
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This paper extends the identification algorithms [14, 15]
from a simple OE system with white noises to an OEMA
system with MA noises. The basic idea is, by means of
filtering input–output data of an OEMA system with a
linear filter and by the variable substitution, to obtain two
identification models: an OE model and a MA model, and
then to present a filtering and auxiliary model-based
recursive least squares (F-AM-RLS) identification algorithm
and a filtering and auxiliary model-based least squares
iterative (F-AM-LSI) identification algorithm for OEMA
systems. Compared with the auxiliary model-based
recursive extended least squares (AM-RELS) algorithm, the
proposed F-AM-RLS algorithm has a high computational
efficiency, because the dimensions of the covariance
matrices of the decomposed OE and MA models become
smaller than that of the original OEMA model. Compared
with the F-AM-RLS approach, the proposed F-AM-LSI
algorithm updates the parameter estimation using all the
available data at each iteration, and thus can produce highly
accurate parameter estimation.

The paper is organised as follows. Section 2 gives an
auxiliary model-based least squares algorithm for the
OEMA system. Section 3 derives a data filtering and
auxiliary model-based recursive least squares algorithm for
the OEMA system. Section 4 presents an F-AM-LSI
algorithm. Section 5 provides an illustrative example for the
results in this paper. Finally, concluding remarks are given
in Section 6.

2 Auxiliary model-based least squares
algorithm

Consider an OEMA system in Fig. 1 [25]

y(t) = B(z)

A(z)
u(t) + D(z)v(t) (1)

where u(t) and y(t) are the system input and output,
respectively, v(t) is a stochastic white noise with zero mean
and variance s2, A(z), B(z) and D(z) are polynomials in the
unit backward shift operator z21, and defined by

A(z) = 1 + a1z−1 + a2z−2 + · · · + ana
z−na

B(z) = b1z−1 + b2z−2 + · · · + bnb
z−nb

D(z) = 1 + d1z−1 + d2z−2 + · · · + dnd
z−nd

Assume that the degrees na, nb and nd are known, and
n: ¼ na + nb + nd, y(t) ¼ 0, u(t) ¼ 0 and v(t) ¼ 0 for t ≤ 0.
The disturbance e(t): ¼ D(z)v(t) is an MA process.

The objective of this paper is to present new identification
algorithms to estimate the parameters ai, bi and di from
available input–output data {u(t), y(t)}.

For comparison purposes, we simply give the auxiliary
model-based recursive least squares algorithm in this section.

Fig. 1 OE systems with coloured noises
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Define the intermediate variable

x(t) := B(z)

A(z)
u(t) (2)

and the parameter vector u and the information vector w (t) as

u := us

un

[ ]
[ Rna+nb+nd

us := [a1, a2, . . . , ana
, b1, b2, . . . , bnb

]T [ Rna+nb

un := [d1, d2, . . . , dnd
]T [ Rnd

w(t) := ws(t)
wn(t)

[ ]
[ Rna+nb+nd

ws(t) := [−x(t − 1), − x(t − 2), . . . , − x(t − na), u(t − 1),

u(t − 2), . . . , u(t − nb)]T [ Rna+nb

wn(t) := [v(t − 1), v(t − 2), . . . , v(t − nd)]T [ Rnd

Equations (2) and (1) can be written as

x(t) = wT
s (t)us (3)

y(t) = x(t) + D(z)v(t)

= wT
s (t)us + wT

n (t)un + v(t)

= [wT
s (t), wT

n (t)]
us

un

[ ]
+ v(t)

= wT(t)u+ v(t) (4)

Equation (4) is the identification model for the OEMA
system.

Let I be an identity matrix of appropriate size. Minimising
the cost function

J (u) :=
∑t

i=1

[y(i) − wT(i)u]2

gives the following recursive algorithm of estimating u [26]

û(t) = û(t − 1) + L(t)[y(t) − wT(t)û(t − 1)] (5)

L(t) = P(t − 1)w(t)

1 + wT(t)P(t − 1)w(t)
(6)

P(t) = [I − L(t)wT(t)]P(t − 1), P(0) = p0I (7)

However, the algorithm in (5)–(7) is impossible to realise
because the information vector w(t) on the right-hand sides
contains the unknown true outputs x(t– i) and noise terms
v(t– i). The solution here is based on the auxiliary model
identification idea [14, 15]: these unknown variables x(t– i)
and v(t– i) in w(t) are replaced with the outputs xa(t– i) of
an auxiliary model (or reference model) and estimated
1649
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residual v̂(t − i), respectively. Define

ŵs(t) := [−xa(t − 1), − xa(t − 2), . . . , − xa(t − na), u(t − 1),

u(t − 2), . . . , u(t − nb)]T [ Rna+nb

ŵn(t) := [v̂(t − 1), v̂(t − 2), . . . , v̂(t − nd)]T [ Rnd

ŵ(t) := [ŵT
s (t), ŵT

n (t)]T [ Rna+nb+nd

Let

û (t) := ûs(t)
ûn(t)

[ ]

be the estimate of

u = us

un

[ ]

at time t. If ws(t) and us in (3) are replaced with the estimates
ŵs(t) and ûs(t), respectively, then the outputs xa(t) of the
auxiliary model or estimated outputs can be computed by

xa(t) = ŵT
s (t)ûs(t)

Similarly, w (t) and u in (4) are replaced with the estimates
ŵ(t) and û(t), respectively, then the estimated residual v̂(t)
can be computed by

v̂(t) = y(t) − ŵT(t)û(t)

Note that ŵ(t) is known at time t. Replacing w(t) in (5)–(7)
with ŵ(t) leads to the following AM-RELS algorithm for
identifying u in (4) [27]

û(t) = û(t − 1) + L(t)[y(t) − ŵT(t)û(t − 1)] (8)

L(t) = P(t − 1)ŵ(t)

1 + ŵT(t)P(t − 1)ŵ(t)
(9)

P(t) = [I − L(t)ŵT(t)]P(t − 1), P(0) = p0I (10)

û(t) = ûs(t)
ûn(t)

[ ]
, ŵ(t) = ŵs(t)

ŵn(t)

[ ]
(11)

ŵs(t) = [−xa(t − 1), −xa(t − 2), . . . , −xa(t − na), u(t − 1),

u(t − 2), . . . , u(t − nb)]T (12)

ŵn(t) = [v̂(t − 1), v̂(t − 2), . . . , v̂(t − nd)]T (13)

xa(t) = ŵT
s (t)ûs(t) (14)

v̂(t) = y(t) − ŵT(t)û(t) (15)

3 Data filtering-based least squares
algorithm

For the OEMA model in (1), if the input–output data {u(t),
y(t)} are filtrated by an estimated rational function D̂−1(t, z)
a (an estimated linear filter), then the model in (1) will
become an ‘output error model’. By using the auxiliary
model identification idea [14, 15], the unknown filtered and
1650
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no-filtered true outputs are replaced with the outputs of
auxiliary models, and then the recursive least squares
algorithm can be applied.

Multiplying both sides of (1) and (2) by [1/D(z)] gives

1

D(z)
y(t) = B(z)

A(z)

1

D(z)
u(t) + v(t) (16)

1

D(z)
x(t) = B(z)

A(z)

1

D(z)
u(t) (17)

Define the filtered input uf(t), the filtered true output xf(t) and
the filtered output yf(t) as

uf (t) := 1

D(z)
u(t), xf (t) := 1

D(z)
x(t), yf (t) := 1

D(z)
y(t)

(18)

Then we have

yf (t) = B(z)

A(z)
uf (t) + v(t) (19)

xf (t) = B(z)

A(z)
uf (t) (20)

Define the related information vector

wf (t) := [−xf (t − 1), − xf (t − 2), . . . , − xf (t − na),

uf (t − 1), uf (t − 2), . . . , uf (t − nb)]T [ Rna+nb

Equation (20) can be written as

xf (t) = wT
f (t)us (21)

Define the inner variable

e(t) := D(z)v(t) (22)

then we have

e(t) = wT
n (t)un + v(t) (23)

From (1)–(3) and (19)–(23), we have

y(t) = x(t) + e(t)

= wT
s (t)us + e(t)

(24)

= wT
s (t)us + wT

n (t)un + v(t) (25)

yf (t) = xf (t) + v(t) = wT
f (t)us + v(t) (26)

Applying the least squares principle to (23) and (26) gives the
two least squares algorithms for estimating us and un as
IET Control Theory Appl., 2011, Vol. 5, Iss. 14, pp. 1648–1657
doi: 10.1049/iet-cta.2010.0416
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follows

ûs(t) = ûs(t − 1) + Lf (t)[yf (t) − wT
f (t)ûs(t − 1)] (27)

Lf (t) = Pf (t − 1)wf (t)

1 + wT
f (t)Pf (t − 1)wf (t)

(28)

Pf (t) = [I − Lf (t)wT
f (t)]Pf (t − 1) (29)

ûn(t) = ûn(t − 1) + Ln(t)[e(t) − wT
n (t)ûn(t − 1)] (30)

Ln(t) = Pn(t − 1)wn(t)

1 + wT
n (t)Pn(t − 1)wn(t)

(31)

Pn(t) = [I − Ln(t)wT
n (t)]Pn(t − 1) (32)

The polynomial D(z) is unknown, and so the filtered variables
uf(t 2 i) and xf(t 2 i) in wf(t), and yf(t) are unknown, and
x(t – i) in ws(t), v(t– i) in wn(t) and e(t) are also unknown.
Here, we adopt the idea of replacing the unknown x(t– i)
and xf(t– i) with the outputs of auxiliary models, and
unknown uf(t– i), yf(t), v(t– i) and e(t) with their estimates,
to derive a filtering-based identification algorithm.

Since the transfer function relating u(t) to x(t) is the same
as that from uf(t) to xf(t), that is

uf (t) := 1

D(z)
u(t), xf (t) := 1

D(z)
x(t)

we use an identity auxiliary model Pa(z) to generate the
estimates x̂f (t) and xa(t) in the following. Construct two
identical auxiliary models to obtain the estimates xa(t) of
x(t) and x̂f (t) of xf(t) from u(t) and uf(t), respectively,
shown in Fig. 2, where Pa(z): ¼ {Ba(z)/Aa(z)} is the transfer
function of auxiliary models [Aa(z) and Ba(z) are the
polynomials of same orders as A(z) and B(z)], x̂f (t) and
xa(t) are the outputs of the auxiliary models with and
without filtering, respectively. The unknown xf(t 2 i) in
wf(t) and x(t– i) in ws(t) are replaced with the outputs
x̂f (t − i) and xa(t 2 i) of the auxiliary models, respectively,
and the unmeasurable term uf(t 2 i) in wf(t) is replaced with
its estimate ûf (t − i), v(t 2 i) and e(t) are replaced with
their estimates v̂(t − i) and ê(t), respectively. Define the
information vectors

ŵf (t) := [−x̂f (t − 1), −x̂f (t − 2), . . . , −x̂f (t − na),

ûf (t − 1),ûf (t − 2), . . . , ûf (t − nb)]T

ŵs(t) := [−xa(t − 1), −xa(t − 2), . . . , −xa(t − na),

u(t − 1), u(t − 2), . . . , u(t − nb)]T

ŵn(t) := [v̂(t − 1), v̂(t − 2), . . . , v̂(t − nd)]T

Fig. 2 Stochastic system with auxiliary models
IET Control Theory Appl., 2011, Vol. 5, Iss. 14, pp. 1648–1657
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From Fig. 2, we obtain

xa(t) = Ba(z)

Aa(z)
u(t), x̂f (t) =

Ba(z)

Aa(z)
uf (t)

xa(t) = wT
a (t)ua, x̂f (t) = wT

fa(t)ua

where wa(t) and wfa(t) are the no-filtered and filtered
information vectors, and ua is the parameter vector of the
auxiliary models. There are several ways of choosing the
information vectors and the parameter vector of the
auxiliary models [14, 15]. Here, we take ŵs(t) and ŵf (t) as
the information vectors wa(t) and wfa(t) of the auxiliary
models, and ûs(t) as the parameter vector ua of the auxiliary
models, and thus we have

xa(t) := ŵT
s (t)ûs(t) (33)

x̂f (t) := ŵT
f (t)ûs(t) (34)

Using ŵs(t) at instant t and ûs(t − 1) at instant t–1 to replace
ws(t) and us. From (24), we obtain

ê(t) = y(t) − ŵT
s (t)ûs(t − 1)

Using ŵf (t), ŵn(t) and ŷf (t) to replace wf(t), wn(t) and yf(t);
Let ûs(t) and ûn(t) be the estimates of us and un. From (23)
and (26), we obtain

v̂(t) = ê(t) − ŵT
n (t)ûn(t), or v̂(t) = ŷf (t) − ŵT

f (t)ûs(t)

Using the parameter estimates of the noise model

ûn(t) = [d̂1(t), d̂2(t), . . . , d̂nd
(t)]T

to construct the estimate of D(z)

D̂(t, z) = 1 + d̂1(t)z−1 + d̂2(t)z−2 + · · · + d̂nd
(t)z−nd

Filtering u(t) and y(t) with D̂−1(t, z) to obtain the estimates of
uf(t) and yf(t) as follows

ûf (t) := D̂−1(t, z)u(t)

ŷf (t) := D̂−1(t, z)y(t)

From the above equations, we can recursively compute
ûf (t) and ŷf (t) by the following equations

ûf (t) = u(t) − d̂1(t)ûf (t − 1) − d̂2(t)ûf (t − 2) − · · ·
− d̂nd

(t)ûf (t − nd)

ŷf (t) = y(t) − d̂1(t)ŷf (t − 1) − d̂2(t)ŷf (t − 2) − · · ·
− d̂nd

(t)ŷf (t − nd)

Replacing the unknown information vector wf(t) in (27)–(29)
with its estimate ŵf (t), wn(t) in (30)–(32) with ŵn(t), and the
unknown filtered output yf(t) in (27) and the noise term e(t) in
(30) with their estimates ŷf (t) and ê(t), respectively, we
obtain the F-AM-RLS algorithm of estimating the
1651
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parameter vectors us and un for the OEMA system

ûs(t) = ûs(t − 1) + Lf (t)[ŷf (t) − ŵT
f (t)ûs(t − 1)] (35)

Lf (t) = Pf (t − 1)ŵf (t)

1 + ŵT
f (t)Pf (t − 1)ŵf (t)

(36)

Pf (t) = [I − Lf (t)ŵT
f (t)]Pf (t − 1), Pf (0) = p0I (37)

ŵf (t) = [−x̂f (t − 1), −x̂f (t − 2), . . . , −x̂f (t − na), ûf (t − 1),

ûf (t − 2), . . . , ûf (t − nb)]T (38)

x̂f (t) = ŵT
f (t)ûs(t) (39)

ŷf (t) = y(t) − d̂1(t)ŷf (t − 1) − d̂2(t)ŷf (t − 2) − · · ·
− d̂nd

(t)ŷf (t − nd) (40)

ûf (t) = u(t) − d̂1(t)ûf (t − 1) − d̂2(t)ûf (t − 2) − · · ·
− d̂nd

(t)ûf (t − nd) (41)

ûn(t) = ûn(t − 1) + Ln(t)[ê(t) − ŵT
n (t)ûn(t − 1)] (42)

Ln(t) = Pn(t − 1)ŵn(t)

1 + ŵT
n (t)Pn(t − 1)ŵn(t)

(43)

Pn(t) = [I − Ln(t)ŵT
n (t)]Pn(t − 1), Pn(0) = p0I (44)

ŵs(t) = [−xa(t − 1), −xa(t − 2), . . . , −xa(t − na),

u(t − 1), u(t − 2), . . . , u(t − nb)]T
(45)

ŵn(t) = [v̂(t − 1), v̂(t − 2), . . . , v̂(t − nd)]T (46)

ê(t) = y(t) − ŵT
s (t)ûs(t − 1) (47)

xa(t) = ŵT
s (t)ûs(t) (48)

v̂(t) = ŷf (t) − ŵT
f (t)ûs(t) (49)

ûs(t) = [â1(t), â2(t), . . . , âna
(t), b̂1(t), b̂2(t), . . . , b̂nb

(t)]T

(50)

ûn(t) = [d̂1(t), d̂2(t), . . . , d̂nd
(t)]T (51)

To initialise the F-AM-RLS algorithm, we take

ûs(i) = 1na+nb
/p0, ûn(i) = 1nd

/p0, i ≤ 0 (52)

Pf (0) = p0Ina+nb
, Pn(0) = p0Ind

, p0 = 106 (53)

where 1n represents an n-dimensional column vector whose
entries are all 1.

The proposed algorithm named F-AM-RLS can be
summarised as
1652
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1. Let t ¼ 1, set the initial values of the parameter estimation
vectors and covariance matrices according to (52) and (53),
and ŷf (i) = 1/p0, x̂f (i) = 1/p0, ûf (i) = 1/p0, xa(i) ¼ 1/p0,
ê(i) = 1/p0 and v̂(i) = 1/p0 for i ≤ 0.
2. Collect the input–output data u(t) and y(t), construct
information vectors ŵs(t) by (45), ŵf (t) by (38) and ŵn(t)
by (46).
3. Compute ê(t) by (47), the gain vector Ln(t) by (43), the
covariance matrix Pn(t) by (44).
4. Update the parameter estimate ûn(t) by (42).
5. Compute ŷf (t) by (40) and ûf (t) by (41).
6. Compute the gain vector Lf(t) by (36) and the covariance
matrix Pf(t) by (37).
7. Update the parameter estimate ûs(t) by (35).
8. Compute x̂f (t) by (39), xa(t) by (48) and v̂(t) by (49).
9. Compare

û(t) = ûs(t)
ûn(t)

[ ]

with û(t − 1), until a specified fitting threshold of 1 . 0 is
satisfied with ‖û(t) − û(t − 1)‖ ≤ 1, terminate the
procedure, and obtain the parameter estimates û(t);
otherwise, increase t by 1, go to step 2.

Table 1 lists the computation cost of the AM-RELS and
F-AM-RLS algorithms at each recursion, where the
numbers in the brackets denote the computation cost for
na ¼ 5, nb ¼ 5 and nd ¼ 5. From Table 1, we can see that
the F-AM-RLS algorithm requires less computation than the
AM-RELS algorithm because the dimensions of the
covariance matrices Pf (t) [ R(na+nb)×(na+nb) and Pn(t) [
Rnd×nd in the F-AM-RLS algorithm are smaller than those
of the covariance matrix P(t) [ R(na+nb+nd )×(na+nb+nd ).

4 Least squares-based iterative algorithm

The F-AM-RLS algorithm can generate the parameter
estimation of the OEMA model; however, when computing
the parameter estimation vectors ûs(t) and ûn(t) at time t
(1 ≤ t ≤ L), the F-AM-RLS algorithm uses only the
measured data {u(i), y(i):i ¼ 0, 1, 2, . . ., t} up to time t, not
including the data {u(i), y(i):i ¼ t + 1, t + 2, . . ., L}. That
is, the F-AM-RLS algorithm fails to make sufficient use of
all the measured information {u(i), y(t):i ¼ 1, 2, 3, . . ., L}.
In contrast, an iterative algorithm is able to make full use of
all the measured data in each iteration so that the parameter
estimation accuracy can be greatly improved. Hence, we
will investigate the iterative identification approach for the
OEMA system.

Suppose that the data length L ≫ na + nb + nd. Define the
stacked filtered output vector Yf(L), the inner vector E(L), the
noise vector V (L), the information matrices Ff(L) and Fn(L)
Table 1 Comparison of computational efficiency (n :¼ na + nb + nd)

Algorithms Number of multiplications Number of additions

AM-RELS 2n2 + 4n + na + nb 2n2 + 3n + na + nb 2 1

[520] [504]

F-AM-RLS 2(na + nb )2 + 2n2
d + 8(na + nb ) + 6nd 2(na + nb)2 + 2n2

d + 5(na + nb ) + 3nd − 2

[360] [313]
IET Control Theory Appl., 2011, Vol. 5, Iss. 14, pp. 1648–1657
doi: 10.1049/iet-cta.2010.0416



www.ietdl.org
as

Y f (L) =

yf (1)

yf (2)

..

.

yf (L)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ [ RL, E(L) =

e(1)

e(2)

..

.

e(L)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ [ RL

V (L) =

v(1)

v(2)

..

.

v(L)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ [ RL

(54)

Ff (L) =

wT
f (1)

wT
f (2)

..

.

wT
f (L)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ [ RL×(na+nb),

Fn(L) =

wT
n (1)

wT
n (2)

..

.

wT
n (L)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ [ RL×nd

(55)

From (23) and (26), we have

Y f (L) = Ff (L)us + V (L) (56)

E(L) = Fn(L)un + V (L) (57)

Notice that V (L) is a white noise vector with zero mean and
define two quadratic criterion functions

J (us) = ‖Y f (L) −Ff (L)us‖2 (58)

J (un) = ‖E(L) −Fn(L)un‖2 (59)

Let k ¼ 1, 2, 3, . . . be an iterative variable and ûs,k and ûn,k
denote the estimates of us and un at iteration k, respectively.
Provided that wf(t) and wn(t) are persistently exciting,
minimising J(us) and J(un) in (58) and (59) gives the least
squares estimates of us and un

ûs,k = [FT
f (L)Ff (L)]−1FT

f (L)Y f (L) (60)

ûn,k = [FT
n (L)Fn(L)]−1FT

n (L)E(L) (61)

A problem arises, that is: the polynomial D(z) is unknown, the
filtered variables uf(t 2 i), xf(t 2 i) and yf(t), and variables
x(t– i), v(t– i) and e(t) are unknown, and then wf(t) in Ff(L)
and wn(t) in Fn(L) are unknown, and so the iterative
solution ûs,k and ûn,k at iteration k are impossible to compute.

The approach here is based on the interactive estimation
theory [28].

Let x̂a,k(t − i) be the estimate of x(t– i) at iteration k,
replacing the unknown ws(t) and us in (3) with the
estimates ŵs,k(t) and ûs,k , the estimate x̂a,k(t) [or x̂a,k (t − i)]
can be computed by

x̂a,k(t) = ŵT
s,k(t)ûs,k , x̂a,k (t − i) = ŵT

s,k(t − i)ûs,k (62)

where ŵs,k(t) denotes the estimate of the information vector
IET Control Theory Appl., 2011, Vol. 5, Iss. 14, pp. 1648–1657
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ws(t) obtained by replacing x(t– i) in ws(t) with
x̂a,k−1(t − i), that is

ŵs,k(t) = [−x̂a,k−1(t − 1), . . . , − x̂a,k−1(t − na),

u(t − 1), . . . , u(t − nb)]T [ Rna+nb (63)

Let êk (t) and v̂k(t) be the estimates of e(t) and v(t) at iteration
k, replacing the unknown ws(t) and us in (24) with the
estimates ŵs,k(t) at iteration k and ûs,k−1 at iteration k–1,
the estimate êk(t) can be computed by

êk (t) = y(t) − ŵT
s,k(t)ûs,k−1 (64)

Replacing yf(t), wf(t) and us in (26) with ŷf ,k (t),
ŵf ,k(t) and ûs,k , the estimate v̂k (t) [or v̂k(t − i)] can be
computed by

v̂k(t) = ŷf ,k(t) − ŵT
f ,k (t)ûs,k ,

v̂k (t − i) = ŷf ,k (t − i) − ŵT
f ,k(t − i)ûs,k (65)

Let ŵn,k (t) denotes the estimate of the information vector
wn(t) obtained by replacing v(t– i) in wn(t) with v̂k−1(t − i),
that is

ŵn,k(t) = [v̂k−1(t − 1), . . . , v̂k−1(t − nd)]T (66)

Using the parameter estimates of the noise model

ûn,k = [d̂1,k , d̂2,k , . . . , d̂nd ,k]T

to construct the estimate of D(z)

D̂k (t, z) = 1 + d̂1,kz−1 + d̂2,kz−2 + · · · + d̂nd ,kz−nd

Filtering u(t) and y(t) with D̂−1
k (t, z) to obtain the estimates of

uf(t) and yf(t) as follows

ûf ,k(t) = D̂−1
k (t, z)u(t), ŷf ,k(t) = D̂−1

k (t, z)y(t)

Then ûf ,k (t) and ŷf ,k (t) can be recursively computed by

ûf ,k(t) = u(t) − d̂1,k ûf ,k(t − 1) − d̂2,k ûf ,k(t − 2) − · · ·
− d̂nd ,k ûf ,k(t − nd) (67)

ŷf ,k(t) = y(t) − d̂1,k ŷf ,k (t − 1) − d̂2,k ŷf ,k(t − 2) − · · ·
− d̂nd ,k ŷf ,k(t − nd) (68)

Let x̂f ,k(t − i) be the estimate of xf(t 2 i) at iteration k,
replacing the unknown wf(t) and us in (21) with their
estimates ŵf ,k (t) and ûs,k at iteration k, the estimate x̂f ,k (t)
[or x̂f ,k (t − i)] can be computed by

x̂f ,k(t) = ŵT
f ,k(t)ûs,k , x̂f ,k (t − i) = ŵT

f ,k(t − i)ûs,k (69)

where ŵf ,k(t) denotes the the estimate of information vector
wf(t) obtained by replacing xf(t– i) and uf(t– i) in wf(t) with
x̂f ,k−1(t − i) at iteration k–1 and ûf ,k(t − i) at iteration k,
1653
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that is

ŵf ,k(t) = [−x̂f ,k−1(t − 1), · · · , − x̂f ,k−1(t − na),

ûf ,k (t − 1), . . . , ûf ,k(t − nb)]T (70)

Define the following stacked vectors and matrices (at iteration
k) as

Ŷf ,k (L) =

ŷf ,k (1)
ŷf ,k (2)

..

.

ŷf ,k (L)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, Êk(L) =

êk(1)
êk(2)

..

.

êk(L)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦ (71)

F̂f ,k (L) =

ŵT
f ,k(1)

ŵT
f ,k(2)

..

.

ŵT
f ,k(L)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦, F̂n,k (L) =

ŵT
n,k (1)

ŵT
n,k (2)

..

.

ŵT
n,k(L)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (72)

Replacing the unknown information vector Ff(L) and Yf(L) in
(60) with F̂f ,k (L) and Ŷf ,k (L), and Fn(L) and E(L) in (61)
with F̂n,k (L) and Êk (L), we obtain the F-AM-LSI algorithm
of estimating the parameter vectors us and un for the
OEMA system

ûs,k = [F̂T
f ,k(L)F̂f ,k(L)]−1F̂T

f ,k(L)Ŷf ,k (L) (73)

ûn,k = [F̂T
n,k(L)F̂n,k(L)]−1F̂T

n,k(L)Êk (L) (74)

From (62)–(74), we can summarise the F-AM-LSI algorithm
as follows

ûs,k = [F̂T
f ,k(L)F̂f ,k(L)]−1F̂T

f ,k(L)Ŷf ,k (L) (75)

Ŷf ,k (L) =

ŷf ,k(1)
ŷf ,k(2)

..

.

ŷf ,k (L)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, F̂f ,k(L) =

ŵT
f ,k (1)

ŵT
f ,k (2)

..

.

ŵT
f ,k(L)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (76)

ŵf ,k (t) = [−x̂f ,k−1(t − 1), . . . , −x̂f ,k−1(t − na),

ûf ,k(t − 1), . . . , ûf ,k (t − nb)]T

t = 1, 2, . . . , L

(77)

ûf ,k(t) = u(t) − d̂1,k ûf ,k(t − 1) − d̂2,k ûf ,k(t − 2) − · · ·
− d̂nd ,k ûf ,k(t − nd) (78)
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ŷf ,k(t) = y(t) − d̂1,k ŷf ,k (t − 1) − d̂2,k ŷf ,k(t − 2) − · · ·
− d̂nd ,k ŷf ,k(t − nd) (79)

x̂f ,k(t) = ŵT
f ,k(t)ûs,k (80)

ûn,k = [F̂T
n,k(L)F̂n,k(L)]−1F̂T

n,k(L)Êk (L) (81)

Êk(L) =

êk(1)
êk(2)

..

.

êk (L)

⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦, F̂n,k(L) =

ŵT
n,k(1)

ŵT
n,k(2)

..

.

ŵT
n,k(L)

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦ (82)

ŵn,k(t) = [v̂k−1(t − 1), . . . , v̂k−1(t − nd)]T (83)

ŵs,k(t) = [−x̂a,k−1(t − 1), . . . , −x̂a,k−1(t − na),

u(t − 1), . . . , u(t − nb)]T
(84)

x̂a,k(t) = ŵT
s,k(t)ûs,k (85)

êk (t) = y(t) − ŵT
s,k(t)ûs,k−1 (86)

v̂k (t) = ŷf ,k (t) − ŵT
f ,k(t)ûs,k (87)

ûs,k = [â1,k , â2,k , . . . , âna,k , b̂1,k , b̂2,k , . . . , b̂nb,k ]T (88)

ûn,k = [d̂1,k , d̂2,k , . . . , d̂nd ,k]T (89)

In order to obtain highly accurate parameter estimates, the
data length L should be large and is at least far greater that
the number of the parameters.

To summarise, we list the steps involved in the F-AM-LSI
algorithm to compute ûs,k and ûn,k as k increases

1. To initialise, let k ¼ 1, ûs,0 = 1n/p0, ûn,0 = 1n/p0,
ŷf ,0(t) = 1/p0, x̂f ,0(t) = 1/p0, ûf ,0(t) = 1/p0, x̂a,0(t) ¼ 1/p0,

ê0(t) = 1/p0, v̂0(t) = 1/p0, p0 ¼ 106.
2. Collect the input/output data {u(i), y(i): i ¼ 1, 2, . . ., L},
form ŵs,k(t) by (84), ŵn,k(t) by (83) and F̂n,k(L) by (82).
Compute êk(t) by (86), and form Êk (L) by (82).
3. Update the parameter estimate ûn,k by (81).
4. Compute ûf ,k (t) and ŷf ,k(t) by (78) and (79), form ŵf ,k (t)
by (77), Ŷf ,k (L) and F̂f ,k (L) by (76).
5. Update the parameter estimate ûs,k by (75).
6. Compute x̂a,k(t) by (85), x̂f ,k (t) by (80), and v̂k(t) by (87).
7. Compare

ûk =
ûs,k

ûn,k

[ ]

with ûk−1: if they are sufficiently close, or for some pre-set
small 1, if

‖ûk − ûk−1‖ ≤ 1

then terminate the procedure and obtain the iterative times k
and estimate ûk ; otherwise, increment k by 1 and go to step 2.

Like the identification approaches for OE systems in [11],
the proposed recursive and iterative algorithms for OEMA
systems with coloured noises are convergent under certain
conditions which are difficult to find, for example, the
positive reality assumptions [26]. The iterative algorithm
IET Control Theory Appl., 2011, Vol. 5, Iss. 14, pp. 1648–1657
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Table 2 AM-RELS and F-AM-RLS estimates and their errors (s2 ¼ 0.402, dns ¼ 50.48%)

Algorithms t â1 (t) â2 (t) b̂1 (t) b̂2 (t) d̂1 (t) d (%)

AM-RELS 100 0.61056 0.27102 0.37097 20.54178 20.74116 9.95379

200 0.52384 0.26909 0.43163 20.57088 20.73660 10.26228

500 0.57169 0.34867 0.46827 20.56241 20.68327 9.57333

1000 0.56809 0.32953 0.45643 20.56005 20.73773 5.79080

2000 0.57312 0.34168 0.45749 20.56900 20.76409 3.91788

F-AM-RLS 100 0.56921 0.31505 0.43924 20.56372 20.76931 4.58094

200 0.55912 0.33073 0.45043 20.57322 20.76002 5.06792

500 0.57110 0.33764 0.46012 20.57485 20.70070 8.43092

1000 0.57269 0.33001 0.45421 20.56456 20.74214 5.38721

2000 0.58180 0.33957 0.45369 20.56384 20.76707 3.25982

true values 0.60000 0.35000 0.45000 20.55000 20.80000 –
uses the finite data length for parameter estimation, and the
estimation errors cannot converge to zero as k increases. A
large number of simulations indicate that the estimation
errors of the iterative algorithm converge to a constant for
large data length and the fluctuation of the estimation errors
is caused for large k mainly owing to the stationarity of noise.

5 Example

An example is given to demonstrate the effectiveness of the
proposed algorithm. Consider an OEMA system

y(t) = B(z)

A(z)
u(t) + D(z)v(t)

A(z) = 1 + a1z−1 + a2z−2 = 1 + 0.60z−1 + 0.35z−2

B(z) = b1z−1 + b2z−2 = 0.45z−1 − 0.55z−2

D(z) = 1 + d1z−1 = 1 − 0.80z−1

u = [a1, a2, b1, b2, d1]T

= [0.60, 0.35, 0.45, −0.55, −0.80]T

The input {u(t)} is taken as an uncorrelated persistent
excitation signal sequence with zero mean and unit
variance, and {v(t)} as a white noise sequence with zero
mean and variance s2 ¼ 0.402, and the noise-to-signal ratio
IET Control Theory Appl., 2011, Vol. 5, Iss. 14, pp. 1648–1657
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is dns ¼ 50.48%. Applying the AM-RELS and the F-AM-
RLS algorithms to estimate the parameters of the system,
the parameter estimates and their errors are shown in
Table 2 and the estimation errors d :=‖ û (t) − u ‖ / ‖ u ‖
against t are shown in Fig. 3. Applying the F-AM-LSI
algorithms to estimate the parameters of the system, the
parameter estimates and their errors are shown in Table 3
and the estimation errors dk :=‖ ûk − u ‖ / ‖ u ‖ against k
with different lengths are shown in Fig. 4. The data length
L depends on the number of the gathered data and is
generally far greater than the number of the parameters of
the system. Here, we take L ¼ 1000 and L ¼ 2000 for the
iterative algorithms, respectively.

Fig. 3 AM-RELS and F-AM-RLS estimation errors d against t
(s2 ¼ 0.402)
Table 3 F-AM-LSI estimates and their errors (s2 ¼ 0.402, dns ¼ 50.48%)

Data length k â1,k â2,k b̂1,k b̂2,k d̂1,k dk (%)

L ¼ 1000 1 20.03247 0.18246 0.44914 20.85840 0.03600 86.65453

2 0.41982 20.00620 0.45826 20.64587 20.30296 50.53624

5 0.58445 0.33321 0.45968 20.55886 20.79125 2.17830

10 0.58869 0.33474 0.45901 20.55392 20.78622 1.99434

20 0.58870 0.33476 0.45900 20.55389 20.78620 1.99271

30 0.58870 0.33476 0.45900 20.55389 20.78620 1.99271

L ¼ 2000 1 20.06836 0.22739 0.45397 20.82308 20.00142 84.93439

2 0.43155 20.03136 0.45312 20.63245 20.34056 49.05898

5 0.59488 0.35310 0.45396 20.55569 20.81461 1.35175

10 0.59927 0.35307 0.45392 20.54952 20.81071 0.92833

20 0.59934 0.35319 0.45392 20.54944 20.81070 0.93023

30 0.59934 0.35319 0.45392 20.54944 20.81070 0.93023

true values 0.60000 0.35000 0.45000 20.55000 20.80000 –
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From Tables 2 and 3, and Figs. 3 and 4, we can draw the
following conclusions:

† The parameter estimates of the F-AM-LSI algorithm
converge fast compared with the AM-RELS and F-AM-
RLS algorithms, and only needs about five iterations so as
to obtain high accurate estimates see Tables 2 and 3. The
fast convergence rates partly compensate for the
computational load.
† The parameter estimation errors become (generally)
smaller and smaller with the data length t increasing. This
shows that the proposed F-AM-RLS algorithm is effective.

6 Conclusions

Combining the auxiliary model identification idea with the
filtering technique, this paper derives the F-AM-RLS
algorithm and the F-AM-LSI algorithm for OEMA systems.
Compared with the the AM-RELS algorithm, the F-AM-
RLS algorithm requires less computational effort and the
F-AM-LSI algorithm has a fast convergence rate and only
needs about five iterations so as to obtain highly accurate
estimates. The proposed methods can be extended to dual-
rate or multirate systems [29–35], non-stationary or non-
uniformly sampled-data systems [36–39] and non-linear
systems [33, 40, 41].
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