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Multiple positive solutions of systems of Hammerstein integral
equations with applications to fractional differential equations

K. Q. Lan and W. Lin

Abstract

Positive solutions of systems of Hammerstein integral equations are studied by using the theory
of the fixed-point index for compact maps defined on cones in Banach spaces. Criteria for the
fixed-point index of the Hammerstein integral operators being 1 or 0 are given. These criteria are
generalizations of previous results on a single Hammerstein integral operator. Some of criteria
are new and involve the first eigenvalues of the corresponding systems of linear Hammerstein
operators. The existence and estimates of the first eigenvalues are given. Applications are given
to systems of fractional differential equations with two-point boundary conditions. The Green’s
functions of the boundary value problems are derived and their useful properties are provided.
As illustrations, the existence of nonzero positive solutions of two specific such boundary value
problems is studied.

1. Introduction

We study the existence of positive solutions of systems of Hammerstein integral equations of
the form

z(t) = (A1z(t), . . . , Anz(t)) := Az(t) for t ∈ [0, 1], (1.1)

where Aiz(t) =
∫1

0
k(t, s)gi(s)fi(s, z(s)) ds and i ∈ {1, . . . , n}. In applications, the kernels k are

the corresponding Green’s functions arising from the boundary value problems.
Equation (1.1) was studied in [2, 10] and the references therein. Agarwal, O’Regan and Wong

[2] studied the existence of one or multiple positive solutions of (1.1) when k = ki and fi or
−fi are positive and applied their results to a variety of integer-order boundary value problems
(BVPs). Franco, Infante and O’Regan [10] studied systems of perturbed Hammerstein integral
equations, where k = ki and fi are allowed to take negative values, and applied their results
to treat some second-order BVPs. The main tool used in [2, 10] is the standard theory of the
fixed-point index for compact maps defined on cones in the Banach space C([0, 1]; Rn); see [3,
11] for the index theory. Some suitable conditions imposed on fi are given to ensure that the
fixed-point index of the nonlinear operators involved is 1 or 0. None of these earlier results use
the first eigenvalues of the corresponding system of the linear Hammerstein integral operators,
denoted by Ln, and deal with the fractional differential equations.

It is known that, when n = 1, there are very good conditions imposed on f1 that ensure that
the fixed-point index of the Hammerstein integral operators is 1 or 0. In particular, some of
those involving the first eigenvalues of the linear operator L1 obtained recently by Webb and
Lan [40] are sharp conditions. Webb and Lan’s results are generalizations of those obtained by
Erbe [9] and Liu and Li [30], where k is required to be symmetric. Some of Webb and Lan’s
results on zero index require the uniqueness of the positive eigenvalues and are proved by the
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permanence property of the fixed-point index. The uniqueness of the positive eigenvalues can
be dropped using Nussbaum’s result on the continuity of radii of the spectra for compact linear
operators (see [37, Remark 1.4]). Lan [24] obtained results on the eigenvalue problems for semi-
positone Hammerstein integral equations, where the uniqueness of the positive eigenvalues and
the permanence property are not used, but the results on the index being 1 are obtained
only for some open subsets Kρ with ρ larger than some ρ0 > 0. Hence, some of results in [40]
cannot be generalized to the semi-positone cases. The first eigenvalue principles were also used
by Li [28], who worked in the space L2, and by Zhang and Sun [43], who treated m-point
BVPs.

In order to show that our results are generalizations of previous ones, we mention some of
the conditions used in [24, 40] below. For example, if f1 depends only on u, then some of these
conditions are

lim
u→0+

f1(u)/u > M1, lim
u→∞ f1(u)/u < m1, (1.2)

or

lim
u→0+

f1(u)/u > μ1, lim
u→∞ f1(u)/u < μ1, (1.3)

where μ1 = 1/r(L1) with r(L1) being the first eigenvalue of L1, and m1 and M1 are computable
constants related to k(t, s)g1(s) (precise definitions of the symbols in this section will be given
later). It is known [40] that

m1 � μ1 � M1. (1.4)

In this paper, we investigate the existence of positive solutions of system (1.1), where k and fi
are required to be positive. We first work on the existence of the first eigenvalues of the linear
operator Ln. We shall provide conditions on k that ensure that the first eigenvalues exist and
generalize (1.4). We shall show that μ1 is greater than some of the mi and smaller than some
of the Mi, but, in general, the inequalities mi � μ1 � Mi for all i ∈ {1, . . . , n} may not hold.

Next, we generalize the results on the fixed-point indices obtained in [40] to the case when
n > 1. Like in [24], we do not use the uniqueness of the positive eigenvalues and the permanence
property of the fixed-point index. It is worth pointing out that we shall see that, when n > 1,
the limits in (1.2) and the first inequality of (1.3) can be replaced by the more general limits
lim|z|→0+ fi(z)/|z| or lim|z|→∞ fi(z)/|z|, while, in general, there is difficulty in replacing the
second inequality of (1.3) by the weaker inequality lim|z|→∞ fi(z)/|z| < μ1, where z ∈ R

n
+.

However, in some superlinear cases, some suitable conditions related to the weaker inequality
apply; we refer to [36, 42, 46] for the study when n = 2. We shall provide stronger conditions
involving μ1 to replace such inequalities as the second inequality of (1.3) and show in our
applications that these stronger conditions are easily verified. Some similar conditions that are
stronger than ours in some cases were used in [5, 6], where only results on the existence of one
solution were obtained.

Finally, by combining our results on the fixed-point index of A with the theory of the fixed-
point index, we give results on the existence of one or multiple positive solutions of (1.1). These
results are generalizations of some earlier results obtained in [9, 20, 40] from n = 1 to n > 1.

As applications of our results on (1.1), we consider the existence of positive solutions of
systems of fractional differential equations

−Dαzi(t) = gi(t)fi(t, z(t)),
zi(0) = 0, γzi(1) + δz′i(1) = 0,

(1.5)

where i ∈ {1, . . . , n}, 1 < α < 2, δ > 0 and γ > (2 − α)δ.
When n = 1, equation (1.5) with δ = 0 or γ = 0 was studied in [4, 14] by using both Leggett–

William fixed-point theorems [27] and the fixed-point index. We refer to [7, 8, 13, 17, 18, 20,
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29, 35, 40, 41, 44, 45] and the references therein for other boundary conditions and other
order α.

We shall derive the Green’s functions k and prove that they satisfy the required upper and
lower bounds that will be found. These facts show that results on (1.1) can be applied to treat
(1.5). As illustrations, we shall consider the existence of positive solutions of (1.5) when gi ≡ 1
and

fi(s, z) =
n∑
j=1

aij(s)z
μij

j or fi(s, z) = λ(zαi
i + zβi

i )hi(ẑi).

When n = 1 and α = 2, such types of equations were studied in [12, 22, 31, 32].

2. Characteristic values of linear operators

In this section, we shall study the characteristic values of the linear Hammerstein integral
operator

Lu(t) =
(∫1

0

k(t, s)g1(s)u1(s) ds, . . . ,
∫1

0

k(t, s)gn(s)un(s) ds
)

on [0, 1], (2.1)

where u(t) = (u1(t), . . . , un(t)). When n = 1, the characteristic values of L were studied in [24,
40].

Let In = {1, . . . , n}. We list the following conditions.
(C1) The function k : [0, 1] × (0, 1) → R+ satisfies the following conditions:

(i) for each t ∈ [0, 1], we have that k(t, ·) : (0, 1) → R+ is measurable;
(ii) there exist a measurable function Φ : (0, 1) → R+ and a continuous function C :

[0, 1] → [0, 1] such that ‖C‖ ∈ (0, 1] and

C(t)Φ(s) � k(t, s) � Φ(s) for t ∈ [0, 1] and s ∈ (0, 1).

(C2) For each i ∈ In, we have that gi : [0, 1] → R+ is measurable and
∫1

0
k(t, s)gi(s) ds <∞

for t ∈ [0, 1].
(C3) For each i ∈ In and τ ∈ [0, 1], we have that limt→τ

∫1

0
|k(t, s) − k(τ, s)|gi(s) ds = 0.

(P ) There exist a, b ∈ [0, 1] with a < b such that

c := c(a, b) = min{C(t) : t ∈ [a, b]} > 0.

(P ∗) For any {am}, {bm} ⊂ (0, 1) with limm→∞ am = 0 and limm→∞ bm = 1, there exists
m0 ∈ N such that

cm := c(am, bm) = min{C(t) : t ∈ [am, bm]} > 0 for m � m0.

When n = 1, the above conditions were used, for example, in [19, 23, 24, 40].
We always use the norm |x| = max{|xi| : i ∈ In} in R

n. We denote by C([0, 1]; Rn) the
Banach space of continuous functions from [0, 1] into R

n with the norm ‖x‖ = max{‖xi‖ :
i ∈ In}, where

‖xi‖ = max{|xi(t)| : t ∈ [0, 1]}.
To study the characteristic values of L defined in (2.1), we need to consider a more general
operator Lα,β : C([0, 1]; Rn) → C([0, 1]; Rn) defined by

Lα,βu(t) :=

(∫β
α

k(t, s)g1(s)u1(s) ds, . . . ,
∫β
α

k(t, s)gn(s)un(s) ds

)
, (2.2)

where α, β ∈ [0, 1] with α < β.
Recall that a real number λ is called an eigenvalue of the linear operator L : C([0, 1]; Rn) →

C([0, 1]; Rn) if there exists a nonzero function ϕ ∈ C([0, 1]; Rn) such that λϕ = Lϕ. The
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reciprocals of eigenvalues are called characteristic values of L. The radius of the spectrum
of L, denoted by r(L), is given by the well-known spectral radius formula

r(L) = lim
m→∞

m
√

‖Lm‖,

where ‖L‖ is the norm of L. The well-known Krein–Rutman theorem (see [3, Theorem 3.1] or
[16, 34]) shows that, if K is a total cone in a real Banach space X, that is, X = K −K, and
L : X → X is a compact linear operator such that L(K) ⊂ K and r(L) > 0, then there exists
an eigenvector ϕ ∈ K \ {0} such that r(L)ϕ = Lϕ.

Let P = C([0, 1]; Rn+). Then P is a reproducing cone in C([0, 1]; Rn). We introduce a smaller
cone K than P defined by

K = {x ∈ P : xi(t) � C(t)‖xi‖ for t ∈ [0, 1] and i ∈ In}. (2.3)

This type of cone with n = 1 were used in [1, 21, 23, 24] to study semi-positone problems.
We note that, when n = 1, under the assumption (P ), the cone K defined in (2.3) is smaller
than those used, for example, in [11, 15, 19, 25, 40]. Solutions in smaller cones have better
properties.

When n = 1, it is shown in [24] that, if ‖C‖ < 1, then K is reproducing. The same technique
can be used to show that the conclusion holds for n � 1. In Section 4, we shall provide a cone
K with ‖C‖ < 1, and so it is reproducing. There is an example given in [24] that shows that,
if n = 1 and ‖C‖ = 1, then K need not be total.

Using Lemma 2.1 in [19] and the Krein–Rutman theorem mentioned above, we can show
the following result. Its proof is similar to that of Theorem 2.1 in [24] and is omitted.

Theorem 2.1. Under the hypotheses (C1)(i), (C2) and (C3), the operator Lα,β defined in
(2.2) maps C([0, 1]; Rn) into C([0, 1]; Rn) and is compact. In addition, if (C1)(ii) holds, then
Lα,β maps P into K and is compact. If we assume further that

γ := γ(α, β) = min

{∫β
α

Φ(s)gi(s)C(s) ds : i ∈ In

}
> 0, (2.4)

then r(Lα,β) � γ‖C‖ and there exists ϕ ∈ K \ {0} such that Lα,βϕ = r(Lα,β)ϕ.

Theorem 2.1 generalizes Theorem 2.1 in [24] from n = 1 to n > 1 and improves Lemma
1.2 in [5] with Ω = [α, β], where n = 2 and each ki is continuous. When n = 1, we refer to
[40, Lemma 2.5 and Theorem 2.6] for similar results, where the linear operator and the cone
involved are different.

Let m ∈ N with m � 2 and am, bm ∈ (0, 1) with am < bm satisfy am → 0 and bm → 1. We
write

μ1 = 1/r(L) and μm = 1/r(Lm) for m � 2, (2.5)

where L is defined in (2.1) and Lm = Lam,bm
.

It was proved by Nussbaum (see [33, Lemma 2]) that the radius of the spectrum is continuous,
that is, if L,Lm : X → X are compact linear operators and limm→∞ ‖Lm − L‖ = 0, then
limm→∞ r(Lm) = r(L). We use this result to prove the following result that will be used in
Section 3.

Theorem 2.2. Assume that (C1)–(C3) hold and γ(0, 1) > 0. Then there existsm0 > 1 such
that, for each m � m0, the value μm defined in (2.5) is a characteristic value of Lm. Moreover,
μm → μ1 as m→ ∞.
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Proof. Since γ(am, bm) → γ(0, 1) as m→ ∞ and γ(0, 1) > 0, there exists m0 ∈ N such that
γ(am, bm) > 0 for m � m0. It follows from Theorem 2.1 that μ1, μm ∈ (0,∞) and there exists
ϕm ∈ K \ {0} with ‖ϕm‖ = 1 such that ϕm = μmLmϕm for each m � m0. It is easy to see that
‖(Lm − L)u‖ � ‖u‖ξm for u ∈ C([0, 1]; Rn), where ξm = max{(ξm)i : i ∈ In} and

(ξm)i = max
0�t�1

∫am

0

k(t, s)gi(s) ds+ max
0�t�1

∫1

bm

k(t, s)gi(s) ds.

Since ξm → 0, we have limm→∞ ‖Lm − L‖ = 0. It follows from the continuity of the radius of
the spectrum mentioned above that μm → μ1 as m→ ∞.

Theorem 2.2 generalizes Theorem 2.2 in [24] from n = 1 to n > 1. When n = 1, we refer to
[37, Remark 1.4; 40, Theorem 3.7] for similar results.

Let a, b ∈ [0, 1] with a < b. For i ∈ In, let

mi =
(

max
t∈[0,1]

∫1

0

k(t, s)gi(s) ds
)−1

and Mi(a, b) =

(
min
t∈[a,b]

∫ b
a

k(t, s)gi(s) ds

)−1

.

The following result gives upper and lower bounds for μ1.

Theorem 2.3. Assume that (C1)–(C3) and (P ) hold and
∫b
a
Φ(s)gi(s) ds > 0 for i ∈ In.

Then the following assertions hold.
(i) We have that γ(0, 1) > 0, μ1 ∈ (0,∞) and there exists ϕ = (ϕ1, . . . , ϕn) ∈ K \ {0} such

that ϕ = μ1Lϕ.
(ii) Let I∗ = {i ∈ In : ϕi �= 0}. Then

m � μ1 � M(a, b), (2.6)

where m = max{mi : i ∈ I∗} and M(a, b) = min{Mi(a, b) : i ∈ I∗}.

Proof. (i) Let i ∈ In. By (C1)(ii) and (P ), we have, for t ∈ [a, b], that∫ b
a

k(t, s)gi(s) ds � C(t)
∫ b
a

Φ(s)gi(s) ds � c(a, b)
∫ b
a

Φ(s)gi(s) ds > 0.

It follows that Mi(a, b) and mi are well defined. Moreover, it is easy to show that γ(0, 1) > 0.
The result (i) follows from Theorem 2.1.

(ii) Let i ∈ I∗. Then ‖ϕi‖ > 0 and

σi := min{ϕi(s) : s ∈ [a, b]} � c(a, b)‖ϕi‖ > 0.

Since ϕ = μ1Lϕ, we have, for t ∈ [0, 1], that

ϕi(t) = μ1

∫1

0

k(t, s)gi(s)ϕi(s) ds � μ1‖ϕi‖/mi.

It follows that mi � μ1 for i ∈ I∗ and m � μ1. Let t ∈ [a, b]. Then

ϕi(t) � μ1σi

∫ b
a

k(t, s)gi(s) ds � μ1σi/Mi(a, b)

and σi � μ1σi/Mi(a, b). Hence, μ1 � Mi(a, b) for i ∈ I∗ and μ1 � M(a, b).

Theorem 2.3(ii) generalizes Theorem 2.8 in [40] from n = 1 to n > 1. It is possible that some
of the ϕi are zero although ϕ �= 0 and, in general, I∗ �= In. Hence, in Theorem 2.3(ii), one
cannot replace I∗ by In.
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3. Hammerstein integral equations

In this section, we study the existence of positive solutions of systems of Hammerstein integral
equations of the form

z(t) = (A1z(t), . . . , Anz(t)) := Az(t) for t ∈ [0, 1], (3.1)

where z(t) = (z1(t), . . . , zn(t)) and

Aiz(t) =
∫1

0

k(t, s)gi(s)fi(s, z(s)) ds for t ∈ [0, 1] and i ∈ In. (3.2)

Equation (3.1) was studied in [2], where k = ki and the fi or −fi are positive, and in [10],
where systems of perturbed Hammerstein integral equations are involved and k = ki and fi
are allowed to take negative values. None of these papers use the first eigenvalues of the
corresponding linear Hammerstein integral operators obtained in Section 2. Here, we shall
assume that k and fi are positive and employ the first eigenvalues.

We always assume that (C1)–(C3) and the following condition holds.

(C4) For each i ∈ In, we have that fi : [0, 1] × R
n
+ → R+ satisfies Carathéodory conditions

on [0, 1] × R
n
+, that is, fi(·, z) is measurable for each fixed z ∈ R

n
+ and fi(t, ·) is continuous on

R
n
+ for almost every (a.e.) t ∈ [0, 1], and for each r > 0 there exists (gr)i ∈ L∞(0, 1) such that

fi(s, z) � (gr)i(s) for a.e. s ∈ [0, 1] and all z ∈ R
n
+ with |z| � r.

The following result shows that A is compact from K to K, that is, A is continuous and
A(D) is compact for each bounded subset D ⊂ K. Its proof follows from Theorem 2.1 and is
omitted.

Lemma 3.1. Under the hypotheses (C1)–(C4), the map A defined in (3.1) maps K into K
and is compact.

We need some results from the theory of the fixed-point index for compact maps [3, 11]. Let
D be a bounded open set in a Banach space X and let K be a cone in X. We denote by D̄K

and ∂DK the closure and the boundary, respectively, of DK = D ∩K relative to K. We shall
use the following known results (see, for example, [23, Lemma 1] or [20, Lemma 2.4]).

Lemma 3.2. Assume that DK �= ∅ and A : D̄K → K is a compact map. Then the following
results hold.

(i) If x �= 
Ax for x ∈ ∂DK and 
 ∈ (0, 1], then iK(A,DK) = 1.
(ii) If there exists e ∈ K \ {0} such that x �= Ax+ νe for x ∈ ∂DK and ν � 0, then

iK(A,DK) = 0.
(iii) LetD1 be an open subset inX such thatD1

K ⊂ DK . If iK(A,DK) = 1 and iK(A,D1
K) =

0, then A has a fixed point in DK \D1
K . The same result holds if iK(A,DK) = 0 and

iK(A,D1
K) = 1.

Notation 3.3. For each i ∈ In, we make the following definitions:

mφ =
(

max
t∈[0,1]

∫1

0

k(t, s)gi(s)φ(s) ds
)−1

, Mψ =

(
min
t∈[a,b]

∫ b
a

k(t, s)gi(s)ψ(s) ds

)−1

.
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Let E be a fixed subset of [0, 1] of measure zero. Let

fi(z) = sup
s∈[0,1]\E

fi(s, z), fi(z) = inf
s∈[a,b]\E

fi(s, z),

f0
i = lim sup

|z|→0+

fi(z)/|z|, f∞i = lim sup
|z|→∞

fi(z)/|z|,

(fi)0 = lim inf
|z|→0+

fi(z)/|z|, (fi)∞ = lim inf
|z|→∞

fi(z)/|z|.

Let ρ > 0 and let Kρ = {x ∈ K : ‖x‖ < ρ}, ∂Kρ = {x ∈ K : ‖x‖ = ρ} and Kρ = {x ∈ K :
‖x‖ � ρ}.

The following result provides conditions that ensure that iK(A,Kρ) = 1 and generalizes
Lemma 2.6 in [19] and Lemma 2.8 in [20] from n = 1 to n > 1.

Theorem 3.4. Assume that there exists ρ > 0 such that z �= Az for z ∈ ∂Kρ and the
following condition holds.

(H1
�)φρ

For each i ∈ In, there exists a measurable function φiρ : [0, 1] → R+ such that∫1

0
Φ(s)gi(s)φiρ(s) ds > 0 and

fi(s, z) � φiρ(s)mφi
ρ
ρ for a.e. s ∈ [0, 1] and all z ∈ R

n
+ with |z| ∈ [0, ρ].

Then iK(A,Kρ) = 1.

Proof. By (H1
�)φρ

, we have, for each i ∈ In and z ∈ ∂Kρ, that

Aiz(t) � mφi
ρ
ρ

∫1

0

k(t, s)gi(s)φiρ(s) ds � ρ = ‖z‖.

This implies that ‖Aiz‖ � ‖z‖ for i ∈ In and ‖Az‖ � ‖z‖ for z ∈ ∂Kρ. By Lemma 3.2(i), we
have iK(A,Kρ) = 1.

The following condition implies that (H1
�)φρ

holds and that z �= Az for z ∈ ∂Kρ.
(H1

<)φρ
For each i ∈ In, there exist a measurable function φiρ : [0, 1] → R+ and τi ∈

(0,mφi
ρ
) such that

∫1

0
Φ(s)gi(s)φiρ(s) ds > 0 and

fi(s, z) � φiρ(s)τiρ for a.e. s ∈ [0, 1] and all z ∈ R
n
+ with |z| ∈ [0, ρ].

Corollary 3.5. Assume that
∫1

0
Φ(s)gi(s) ds > 0 for i ∈ In and the following condition

holds:

0 � f0
i < mi for i ∈ In. (3.3)

Then there exists ρ0 > 0 such that iK(A,Kρ) = 1 for ρ ∈ (0, ρ0).

Proof. By (3.3), there exist ε > 0 and ρ0 > 0 such that f0
i � mi − ε for i ∈ In and

fi(s, z) � (mi − ε)|z| for a.e. s ∈ [0, 1] and z ∈ R
n
+ with |z| � ρ0.

The result follows from Theorem 3.4 with φiρ ≡ 1.
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Corollary 3.6. Assume that the following condition holds.

(H1
<)∞φr

There exists r > 0 such that, for each i ∈ In, there exist a measurable function

φir : [0, 1] → R+ with
∫1

0
Φ(s)gi(s)φir(s) ds > 0 and τi ∈ (0,mφi

r
) such that

fi(s, z) � φir(s)τi|z| for a.e. s ∈ [0, 1] and all z ∈ R
n
+ with |z| � r.

Then there exists ρ0 � r such that iK(A,Kρ) = 1 for ρ > ρ0.

Proof. Let i ∈ In. By (C4), there exists (gr)i ∈ L∞(0, 1) such that

fi(s, z) � (gr)i(s) for a.e. s ∈ [0, 1] and all z ∈ R
n
+ with |z| ∈ [0, r].

This, together with (H1
<)∞φr

, implies that

fi(s, z) � φir(s)τi|z| + (gr)i(s) for a.e. s ∈ [0, 1] and all z ∈ R
n
+. (3.4)

Let ρ0 = max{r,max{mφi
r
/(mgi

r
(mφi

r
− τi)) : i ∈ In}}, ρ > ρ0 and

φiρ(s) = φir(s)τi +
(gr)i(s)

ρ
for s ∈ [0, 1].

Then

max
t∈[0,1]

∫1

0

k(t, s)gi(s)φiρ(s) ds � τi
mφi

r

+
1

mφi
r
ρ
< 1

and mi
φρ
> 1. Let ξi ∈ (1,mi

φρ
). By (3.4), we have

fi(s, z) � φiρ(s)ρ � φiρ(s)ξ
iρ for a.e. s ∈ [0, 1] and all z ∈ R

n
+ with |z| ∈ [0, ρ]

and (H1
<)φρ

holds. The result follows from Theorem 3.4.

By using Corollary 3.6 with φir ≡ 1, we obtain the following result.

Corollary 3.7. Assume that
∫1

0
Φ(s)gi(s) ds > 0 for i ∈ In and

0 � f∞i < mi for i ∈ In.

Then there exists ρ0 > 0 such that iK(A,Kρ) = 1 for ρ > ρ0.

By Theorem 2.3(ii), we see that μ1 is greater than or equal to some of the mi. In particular,
when n = 1, we have that μ1 is greater than or equal to m1. Therefore, replacing m1 by μ1

produces a weaker condition; see [40, Theorems 3.2 and 3.3]. However, when n > 1, it seems
difficult to prove that the fixed-point index of A is 1 under one of the following hypotheses:

0 � f0
i < μ1 or 0 � f∞i < μ1 for i ∈ In.

Hence, we give stronger conditions in the following two theorems that generalize Theorems 3.2
and 3.3 in [40] from n = 1 to n > 1.

Theorem 3.8. Assume that γ(0, 1) > 0 and the following condition holds.

(f0
i )μ1 There exist ε > 0 and ρ0 > 0 such that, for i ∈ In, we have

fi(s, z) � (μ1 − ε)zi for a.e. s ∈ [0, 1] and all z ∈ R
n
+ with |z| ∈ [0, ρ0].

Then iK(A,Kρ) = 1 for each ρ ∈ (0, ρ0].
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Proof. Let ρ ∈ (0, ρ0]. We prove that

z �= 
Az for z ∈ ∂Kρ and 
 ∈ [0, 1]. (3.5)

In fact, if (3.5) does not hold, then there exist z ∈ ∂Kρ and 
 ∈ [0, 1] such that z = 
Az. Hence,
we have, for i ∈ In and t ∈ [0, 1], that

zi(t) �
∫1

0

k(t, s)gi(s)fi(s, z(s)) ds � (μ1 − ε)
∫1

0

k(t, s)gi(s)zi(s) ds.

This implies that z(t) � (μ1 − ε)Lz(t), Lz(t) � (μ1 − ε)L2z(t) and

z(t) � (μ1 − ε)Lz(t) � (μ1 − ε)2L2z(t) for t ∈ [0, 1].

Repeating the process gives

z(t) � (μ1 − ε)mLmz(t) for t ∈ [0, 1] and m ∈ N

and 1 � (μ1 − ε)m‖Lm‖ for m ∈ N. Hence, we have

1 � (μ1 − ε) lim
m→∞ ‖Lm‖1/m = (μ1 − ε)

1
μ1

< 1,

which is a contradiction. It follows from (3.5) and Lemma 3.2(i) that iK(A,Kρ) = 1.

Theorem 3.9. Assume that γ(0, 1) > 0 and the following condition holds.
(f∞i )μ1 There exist ε > 0 and ρ0 > 0 such that, for each i ∈ In, we have

fi(s, z) � (μ1 − ε)zi for a.e. s ∈ [0, 1] and all z ∈ R
n
+ with |z| � ρ0.

Then iK(A,Kρ) = 1 for ρ > ρ0.

Proof. Since γ(0, 1) > 0, it follows from Theorem 2.1 that r(L) > 0 and μ1 ∈ (0,∞). By
(C4), for each i ∈ In, there exists (gρ0)i ∈ L∞(0, 1) such that

fi(s, z) � (gρ0)i(s) for a.e. s ∈ [0, 1] and all z ∈ R
n
+ with |z| � ρ0.

This, together with the hypothesis (f∞i )μ1 , implies that

fi(s, z) � (gρ0)i(s) + (μ1 − ε)zi for a.e. s ∈ [0, 1] and all z ∈ R
n
+. (3.6)

Since r((μ1 − ε)L) = (μ1 − ε)r(L) = (μ1 − ε)/μ1 < 1, we have that (I − (μ1 − ε)L)−1 exists,
is bounded and satisfies (I − (μ1 − ε)L)−1K ⊂ K. We define

ρ∗1(t) = (ρ1, . . . , ρ1) ∈ R
n for each t ∈ [0, 1],

where ρ1 = max{∫1

0
Φ(s)gi(s)(gρ0)i(s) ds : i ∈ In}. Then ρ∗1 ∈ K \ {0}. Let ρ∗ = ‖(I − (μ1 −

ε)L)−1ρ∗1‖. Then ρ∗ > 0. Let ρ > ρ∗. We prove that

z �= 
Az for z ∈ ∂Kρ and 
 ∈ [0, 1]. (3.7)

If not, then there exist z ∈ ∂Kρ and 
 ∈ [0, 1] such that z = 
Az. By (3.6) and (C1)(ii), we
have, for i ∈ In and t ∈ [0, 1], that

zi(t) � Aiz(t) �
∫1

0

k(t, s)gi(s)(gρ0)i(s) ds+
∫1

0

k(t, s)gi(s)(μ1 − ε)zi(s) ds

� ρ1 + (μ1 − ε)
∫1

0

k(t, s)gi(s)zi(s) ds

and z(t) � ρ∗1 + (μ1 − ε)Lz(t). This implies that (I − (μ1 − ε)L)z(t) � ρ∗1 for t ∈ [0, 1] and

z � (I − (μ1 − ε)L)−1ρ∗1.
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Hence, we have ρ = ‖z‖ � ρ∗ < ρ, which is a contradiction. The result follows from (3.7) and
Lemma 3.2(i).

In order to prove that the fixed-point index of A is zero, we need to generalize a relatively
open subset Ωρ, introduced in [20], from n = 1 to n > 1. Assume that (P ) holds. We define a
continuous function q : C([0, 1]; R+) → R+ by

q(x) = min{x(t) : t ∈ [a, b]}
and a continuous function qn : P → R+ by

qn(z) = max{q(zi) : i ∈ In}.
Let ρ > 0. With c given in (P ), we define a relatively open set by

Ωρ = {z ∈ K : qn(z) < cρ}.
A similar relatively open subset was introduced in [10], where a larger cone is used.

The following result gives properties of Ωρ and generalizes Lemma 2.3 in [23] or Lemma 3.3
in [24] from n = 1 to n > 1.

Lemma 3.10. The set Ωρ defined above has the following properties:
(i) Ωρ is open relative to K;
(ii) Kcρ ⊂ Ωρ ⊂ Kρ;
(iii) z ∈ ∂Ωρ if and only if z ∈ K and qn(z) = cρ, where ∂Ωρ denotes the boundary of Ωρ

relative to K;
(iv) if z ∈ ∂Ωρ, then there exists i ∈ In such that q(zi) = qn(z) = cρ and

cρ � zi(t) � ρ for t ∈ [a, b].

Proof. It is obvious that (a), (c) and the first inclusion of (b) hold. Let z ∈ Ωρ. Then
qn(z) < cρ and z ∈ K. By (2.3), we have c‖zi‖ � q(zi) < cρ for all i ∈ In and ‖z‖ < ρ. This
implies that the second inclusion of (b) holds. Let z ∈ ∂Ωρ. Then, by (c), qn(z) = cρ and there
exists i ∈ In such that cρ = q(zi) � zi(t) � ρ for t ∈ [a, b]. Hence, (d) holds.

For convenience, we write
z = (z1, . . . , zn) = (zi, ẑi), (3.8)

where ẑi = (z1, . . . , zi−1, zi+1, . . . , zn).
The following result gives conditions that ensure that iK(A,Ωρ) = 0 and generalizes Lemma

2.5 in [19] and Lemma 2.6 in [20] from n = 1 to n > 1.

Theorem 3.11. Assume that (P ) holds and there exists ρ > 0 such that z �= Az for z ∈ ∂Ωρ
and the following condition holds.

(H0
�)ψρ

For each i ∈ I, there exists a measurable function ψiρ : [a, b] → R+ such that∫b
a
Φ(s)gi(s)ψiρ(s) ds > 0 and

fi(s, z) � ψiρ(s)Mψi
ρ
cρ for a.e. s ∈ [a, b] and all z = (zi, ẑi) ∈ [cρ, ρ] × [0, ρ]n−1.

Then iK(A,Ωρ) = 0.

Proof. Let e(t) ≡ (1, . . . , 1) ∈ R
n for t ∈ [0, 1]. We prove that

z �= Az + μe for x ∈ ∂Ωρ and μ � 0. (3.9)
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In fact, if not, then there exist z = (z1, . . . , zn) ∈ ∂Ωρ and μ > 0 such that z = Az + νe. By
Lemma 3.10(iv), there exists i ∈ In such that q(zi) = qn(z) = cρ and cρ � zi(t) � ρ for t ∈ [a, b].
By (H0

�)ψρ
, we have, for t ∈ [a, b], that

zi(t) =
∫1

0

k(t, s)gi(s)fi(s, z(s)) ds+ ν �
∫ b
a

k(t, s)gi(s)fi(s, z(s)) ds+ ν

� cρMψi
ρ

∫ b
a

k(t, s)gi(s)ψiρ(s) ds+ ν � cρ+ ν.

This implies that q(zi) � cρ+ ν > cρ, which contradicts q(zi) = cρ. It follows from (3.9) and
Lemma 3.2(ii) that iK(A,Ωρ) = 0.

Similar to Theorems 3.8 and 3.9, the characteristic value μ1 can be employed to show that
the fixed-point index of A is zero.

Theorem 3.12. Assume that γ(0, 1) > 0 and the following condition holds.

((fi)0)μ1 There exist ε > 0 and ρ0 > 0 such that, for each i ∈ In, we have

fi(s, z) � (μ1 + ε)zi for a.e. s ∈ [0, 1] and all z ∈ R
n
+ with |z| ∈ [0, ρ0]. (3.10)

Then, for each ρ ∈ (0, ρ0], if z �= Az for z ∈ ∂Kρ, then iK(A,Kρ) = 0.

Proof. Let ρ ∈ (0, ρ0]. We prove that

z �= Az + νϕ1 for all z ∈ ∂Kρ and ν > 0, (3.11)

where ϕ1 ∈ K \ {0} with ‖ϕ1‖ = 1 and ϕ1 = μ1Lϕ1. In fact, if not, then there exist z ∈ ∂Kρ

and ν > 0 such that z = Az + νϕ1. This implies that z � νϕ1. Let τ1 = sup{ω > 0 : z � ωϕ1}.
Then 0 < ν � τ1 <∞ and

z � τ1ϕ1. (3.12)

By (3.10) and (3.12), we have, for i ∈ In and t ∈ [0, 1], that

zi(t) =
∫1

0

k(t, s)gi(s)fi(s, z(s)) ds+ ν(ϕ1)i(t) �
∫1

0

k(t, s)gi(s)fi(s, z(s)) ds

�
∫1

0

k(t, s)gi(s)(μ1 + ε)zi(s) ds � (μ1 + ε)τ1
∫1

0

k(t, s)gi(s)(ϕ1)i(s) ds

= ((μ1 + ε)τ1/μ1)(ϕ1)i(t)

and z � ((μ1 + ε)τ1/μ1)ϕ1. By (3.12), we have τ1 � (μ1 + ε)τ1/μ1 > τ1, which is a contradic-
tion. The result follows from (3.11) and Lemma 3.2(ii).

As a special case of Theorem 3.12, we obtain the following result that generalizes Theorem
3.4 in [40] from n = 1 to n > 1.

Corollary 3.13. Assume that γ(0, 1) > 0 and the following condition holds:

μ1 < (fi)0 � ∞ for each i ∈ In. (3.13)

Then there exists ρ0 > 0 such that, for each ρ ∈ (0, ρ0], if z �= Az for z ∈ ∂Kρ, then iK
(A,Kρ) = 0.
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Proof. Since μ1 < (fi)0 � ∞ for each i ∈ In, there exist ε > 0 and ρ0 > 0 such that, for
each i ∈ In and a.e. s ∈ [0, 1], we have

fi(s, z) � (μ1 + ε)|z| � (μ1 + ε)|zi| = (μ1 + ε)zi for all z ∈ R
n
+ with |z| ∈ [0, ρ0].

Hence, ((fi)0)μ1 holds. The result follows from Theorem 3.12.

We shall see that Theorem 4.6 of Section 4 shows that ((fi)0)μ1 holds, but (3.13) may not
hold.

To prove the following result, we need to use (P ∗) and Theorem 2.2.

Theorem 3.14. Assume that γ(0, 1) > 0, (P ∗) and the following condition holds.
((fi)∞)μ1 There exist ε > 0 and ρ0 > 0 such that, for each i ∈ In, we have

fi(s, z) � (μ1 + ε)zi for a.e. s ∈ [0, 1] and all z ∈ R
n
+ with |z| � ρ0. (3.14)

Then there exists ρ1 � ρ0 such that, for each ρ � ρ1, if z �= Az for z ∈ ∂Kρ, then iK(A,Kρ) = 0.

Proof. By Theorem 2.2, μ1 ∈ (0,∞) and there exist m∗ � 2 and ϕm ∈ K with ‖ϕm‖ = 1
such that μm ∈ (0,∞) for m � m∗, μmLmϕm = ϕm and μm → μ1. Moreover, there exist ε0 > 0
and m0 � m∗ such that, for each i ∈ In, we have

fi(s, z) � (μm0 + ε0)zi for a.e. s ∈ [0, 1] and all z ∈ R
n
+ with |z| � ρ0. (3.15)

By (P ∗), we have cm0 = c(am0 , bm0) > 0. Let ρ � ρ0/cm0 . We prove that

z �= Az + νϕm0 for z ∈ ∂Kρ and ν > 0. (3.16)

In fact, if not, then there exist z ∈ ∂Kρ and ν > 0 such that

z(t) = Az(t) + νϕm0(t) for t ∈ [0, 1]. (3.17)

Then z � νϕm0 . Let τ = sup{ω > 0 : z � ωϕm0}. Then τ � ν > 0 and

z � τϕm0 . (3.18)

Since z ∈ ∂Kρ, we have, for each i ∈ In and s ∈ [am0 , bm0 ], that

zi(s) � C(s)‖zi‖ � cm0‖zi‖.
Hence, we obtain

|z(s)| � cm0‖z‖ = cm0ρ � ρ0 for s ∈ [am0 , bm0 ].

This, together with (3.15), implies that

fi(s, z(s)) � (μm0 + ε0)zi(s) for a.e. s ∈ [am0 , bm0 ]. (3.19)

By (3.17)–(3.19), we have, for i ∈ In and t ∈ [0, 1], that

zi(t) �
∫ bm0

am0

k(t, s)gi(s)fi(s, z(s)) ds �
∫ bm0

am0

k(t, s)gi(s)(μm0 + ε0)zi(s) ds

� ((μm0 + ε0)τ/μm0)(ϕm0)i(t)

and z � ((μm0 + ε0)τ/μm0)ϕm. By (3.18), we have τ � (μm0 + ε0)τ/μm0 > τ , which is a
contradiction. The result follows from (3.16) and Lemma 3.2(ii).

As a special case of Theorem 3.14, the following result generalizes Theorem 3.8 in [40], which
uses the uniqueness of positive eigenvalues and the permanence property.
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Corollary 3.15. Assume that γ(0, 1) > 0 and (P ∗) hold and

μ1 < (fi)∞ � ∞ for i ∈ In.

Then there exists ρ1 > 0 such that, for each ρ � ρ1, if z �= Az for z ∈ ∂Kρ, then iK(A,Kρ) = 0.

Now, we are in a position to consider the existence of positive solutions of (3.1). Using
Lemma 3.2(iii), combining the results on the fixed-point index obtained above implies results
on the existence of one or several positive solutions of (3.1). Here we only state a few of these
results and omit the proofs. We refer to [19, 23, 24, 38–40] for some related results.

Theorem 3.16. (i) Assume that (P ) and one of the following conditions holds:
(H1) there exist ρ1, ρ2 > 0 with ρ1 < cρ2 such that (H1

�)φρ1
and (H0

�)ψρ2
hold;

(H2) there exist ρ1, ρ2 > 0 with ρ1 < ρ2 such that (H0
�)ψρ1

and (H1
�)φρ2

hold.

Then (3.1) has a solution x ∈ K with ρ1 � ‖x‖ � ρ2.
(ii) Assume that γ(0, 1) > 0 and one of the following conditions holds:
(H3) for i ∈ In, we have that ((fi)0)μ1 and ((fi)∞)μ1 hold;
(H4) for i ∈ In, we have that ((fi)0)μ1 , ((fi)∞)μ1 and (P ∗) hold.

Then (3.1) has a nonzero positive solution in K.

When n = 2, Theorem 3.16(H3) or (H4) improves Remarks 1.6 or 1.7 in [5], where ki is
symmetric and the superlinear or sublinear conditions are stronger than those of (H3) or (H4),
respectively.

Theorem 3.17. (i) Assume that (P ) and one of the following conditions holds:
(S1) there exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < cρ2 and ρ2 < ρ3 such that (H1

�)φρ1
, (H0

�)ψρ2
,

x �= Ax for x ∈ ∂Ωρ2 and (H1
�)φρ3

hold;
(S2) there exist ρ1, ρ2, ρ3 ∈ (0,∞) with ρ1 < ρ2 < cρ3 such that (H0

�)ψρ1
, (H1

�)φρ2
, x �= Ax

for x ∈ ∂Kρ2 and (H0
�)ψρ3

hold.

Then (3.1) has two nonzero solutions inK. Moreover, in (S1), if (H1
�)φρ1

is replaced by (H1
<)φρ1

,
then (3.1) has the third solution x0 ∈ Kρ1 .

(ii) Assume that γ(0, 1) > 0 and one of the following conditions holds:
(S3) assume that ((fi)0)μ1 , ((fi)∞)μ1 and (P ) hold and there exists ρ ∈ (0,∞) such that

(H0
�)ψρ

holds and x �= Ax for x ∈ ∂Ωρ;
(S4) assume that ((fi)0)μ1 , ((fi)∞)μ1 and (P ∗) hold and there exists ρ ∈ (0,∞) such that

(H1
�)φρ

holds and x �= Ax for x ∈ ∂Kρ;
(S5) assume that ((fi)0)μ1 and (P ) hold and there exist ρ2, ρ3 ∈ (0,∞) with ρ2 < cρ3 such

that (H1
�)φρ2

, x �= Ax for x ∈ ∂Kρ2 and (H0
�)ψρ3

hold.

Then (3.1) has two nonzero solutions in K.

4. Fractional differential equations

In this section, we apply the results obtained in Section 3 to study the existence of positive
solutions of systems of fractional differential equations of the form

−Dαzi(t) = gi(t)fi(t, z(t)) for a.e. t ∈ [0, 1] (4.1)

subject to the following two-point boundary condition:

zi(0) = 0, γzi(1) + δz′i(1) = 0, (4.2)
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where i ∈ In, z(t) = (z1(t), . . . , zn(t)), γ, δ � 0 with γ + δ > 0, 1 < α < 2 and Dα is the
Riemann–Liouville differential operator of order α, namely,

Dαw(t) =
1

Γ(2 − α)
d2

dt2

∫ t
0

w(s)
(t− s)α−1

ds. (4.3)

When n = 1, the existence of one or three positive solutions of (4.1) and (4.2) with δ = 0 or
γ = 0 was studied by Bai and Lü [4] and Kaufmann and Mboumi [14], respectively. We refer
to [7, 8, 17, 18, 29, 35, 41, 44, 45] and the references therein for other boundary conditions
and other order α.

The boundary condition (4.2) is a special case of the well-known general separated boundary
conditions that have been widely studied, for example, in [19, 20, 40]. Because there is difficulty
in deriving the Green’s function subject to the general separated boundary conditions, we work
only on (4.2).

The following new result provides the Green’s function subject to (4.2) that generalizes
Lemma 2.3 in [4], where δ = 0, and Lemma 2.3 in [14], where γ = 0.

Lemma 4.1. Let 1 < α < 2, γ, δ � 0 with γ + δ > 0 and β = (α− 1)δ/[γ + (α− 1)δ]. Let

y : (0, 1) → R be measurable such that
∫1

0
sα−1(1 − s)α−2(1 + βs− s)y(s) ds <∞. Then the

boundary value problem

−Dαw(t) = y(t),
w(0) = 0, γw(1) + δw′(1) = 0

has a unique solution

w(t) =
∫1

0

k(t, s)y(s) ds,

where k : [0, 1] × [0, 1) → R is defined by

k(t, s) =
1

Γ(α)

{
tα−1(1 − s)α−2(1 + βs− s) − (t− s)α−1 if s � t,
tα−1(1 − s)α−2(1 + βs− s) if t < s.

(4.4)

Proof. It is well known that, if −Dαw(t) = y(t), then we have, for t ∈ (0, 1], that

w(t) = − 1
Γ(α)

∫ t
0

(t− s)α−1y(s) ds− C1t
α−1 − C2t

α−2 for C1, C2 ∈ R; (4.5)

see, for example, [4, Lemma 2.2]. Since w(0) = 0, α− 1 > 0 and α− 2 < 0, it follows from (4.5)
that C2 = 0 and

w(t) = − 1
Γ(α)

∫ t
0

(t− s)α−1y(s) ds− C1t
α−1 for t ∈ [0, 1] and C1 ∈ R. (4.6)

Hence, we have

w(1) = − 1
Γ(α)

∫1

0

(1 − s)α−1y(s) ds− C1,

w′(t) = − (α− 1)
Γ(α)

∫ t
0

(t− s)α−2y(s) ds− (α− 1)C1t
α−2

and

w′(1) = − (α− 1)
Γ(α)

∫1

0

(1 − s)α−2y(s) ds− (α− 1)C1.
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Let ς = γ + (α− 1)δ. Since γw(1) + δw′(1) = 0, we obtain

C1 = − 1
ςΓ(α)

[
γ

∫1

0

(1 − s)α−1y(s) ds+ (α− 1)δ
∫1

0

(1 − s)α−2y(s) ds
]

= − 1
ςΓ(α)

∫1

0

[γ(1 − s)α−1 + (α− 1)δ(1 − s)α−2]y(s) ds

= − 1
ςΓ(α)

∫1

0

(1 − s)α−2[γ − γs+ (α− 1)δ]y(s) ds

= − 1
Γ(α)

∫1

0

(1 − s)α−2(1 + βs− s)y(s) ds.

This, together with (4.6), implies that, for t ∈ [0, 1], we have

w(t) =
1

Γ(α)

{∫ t
0

[tα−1(1 − s)α−2(1 + βs− s) − (t− s)α−1]y(s) ds

+
∫1

t

tα−1(1 − s)α−2(1 + βs− s)y(s) ds
}
.

The result follows.

It is obvious that k : [0, 1] × [0, 1) → R+ is continuous. To prove that k satisfies (C1)(ii)
under suitable conditions, we first give the following result.

Lemma 4.2. Let δ > 0, γ > (2 − α)δ and s0 = 1 − [(2 − α)δ/γ]. Then

g(s) :=
(1 − s)2−α

1 + βs− s
� g(s0) =

γ + (α− 1)δ
γ + (2α− 3)δ

[
(2 − α)δ

γ

]2−α
< 1 for s ∈ [0, 1].

Proof. It is easy to verify that, for s ∈ [0, 1), we have

g′(s) = − (1 − β)(α− 1)(1 − s)1−α

(1 + βs− s)2
(s− s∗) = − (1 − β)(α− 1)(1 − s)1−α

(1 + βs− s)2
(s− s0),

where s∗ = (α− β − 1)/(1 − β)(α− 1) = s0. Since α > 1 and γ > (2 − α)δ, it follows that s∗ >
0 and

1 − s∗ =
(2 − α)β

(1 − β)(α− 1)
> 0,

γ + (α− 1)δ
γ + (2α− 3)δ

< 1 and
[
(2 − α)δ

γ

]2−α
< 1.

Hence, g(s) � g(s∗) = g(s0) < 1 for s ∈ (0, 1).

Let

Φ(s) =
1

Γ(α)
sα−1(1 − s)α−2(1 + βs− s) for s ∈ [0, 1) (4.7)

and
C(t) = tα−1[1 − g(s0)] for t ∈ [0, 1], (4.8)

where g(s0) is the same as in Lemma 4.2.
The following new result shows that k, Φ and C defined in (4.4), (4.7) and (4.8) satisfy

(C1)(ii).

Lemma 4.3. The kernel k defined in (4.4) has the following properties:
(i) k(t, s) � Φ(s) for t ∈ [0, 1] and s ∈ [0, 1);
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(ii) If δ > 0 and γ > (2 − α)δ, then

k(t, s) � C(t)Φ(s) for t ∈ [0, 1] and s ∈ [0, 1). (4.9)

Proof. (i) It is obvious that k(t, s) � k(s, s) = Φ(s) for t � s. Let s ∈ [0, 1) and

h(t) = tα−1(1 − s)α−2(1 + βs− s) − (t− s)α−1 for t ∈ (s, 1).

We rewrite h as follows:

h(t) = tα−1[(1 − β)(1 − s)α−1 + β1 − s)α−2] − (t− s)α−1 for t ∈ (s, 1).

Then we have, for t ∈ (s, 1), that

h′(t) = (α− 1)tα−2[(1 − β)(1 − s)α−1 + β(1 − s)α−2] − (α− 1)(t− s)α−2

=
(α− 1)

(t− s)2−α

{
(1 − β)(1 − s)α−1(1 − s/t)2−α + β

[
t− s

t(1 − s)

]2−α
− 1

}

� (α− 1)
(t− s)2−α

[(1 − β) + β − 1] = 0.

Hence, h is decreasing on (s, 1) and h(t) � h(s) = Γ(α)Φ(s) for t ∈ (s, 1). It follows that
k(t, s) = (1/Γ(α))h(t) � Φ(s) for s � t.

(ii) If t < s, then, since sα−1 � 1 for s ∈ [0, 1], we have by (4.4) that

k(t, s) =
1

Γ(α)
tα−1(1 − s)α−2(1 + βs− s) � tα−1Φ(s) � C(t)Φ(s).

If s � t, then, by Lemma 4.2, we obtain

k(t, s) =
1

Γ(α)
[tα−1(1 − s)α−2(1 + βs− s) − (t− s)α−1]

� 1
Γ(α)

[tα−1(1 − s)α−2(1 + βs− s) − tα−1]

=
1

Γ(α)
tα−1(1 − s)α−2(1 + βs− s)[1 − g(s)]

� tα−1[1 − g(s0)]Φ(s) = C(t)Φ(s).

It follows that k(t, s) � C(t)Φ(s) for t ∈ [0, 1] and s ∈ [0, 1).

Even when δ = 0 or γ = 0, it seems difficult to find a suitable function C(t) such that (4.9)
holds.

In order to apply results in the above section, one needs to compute some of the following
three values:

mφi
ρ
, Mψi

ρ
and μ1.

When α = 2 and all of these functions φiρ, ψ
i
ρ and gi are 1, these constants have been widely

studied, for example, in [26, 40] and the references therein. If 1 < α < 2, then, even when these
functions are 1, it may not be easy to determine the second or third value or find formulas for
these values. However, when φiρ = gi ≡ 1, we can provide a formula for the first value and give
an upper bound for the second value under suitable assumptions. If γ(0, 1) > 0, then it follows
from Theorem 2.1 that μ1 exists. We do not know the exact value of μ1, even when δ = 0 or
γ = 0. When α = 2, we refer to [40] for the exact value of μ1 and its estimates.

Let

m∗ =
(

max
0�t�1

∫1

0

k(t, s) ds
)−1

and M∗(a, b) =

(
min
a�t�b

∫ b
a

k(t, s) ds

)−1

. (4.10)
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Lemma 4.4. (i) We have

m∗ =
αα+1Γ(α)
(α− 1)α−1

[
γ + (α− 1)δ
γ + αδ

]α
.

(ii) Let a ∈ (0, 1) and ω(a) =
∫1

a
(1 − s)α−2(1 + βs− s) ds. Then

M(a, 1) � Γ(a)

min
{
aα−1ω(a), ω(a) − (1 − a)α

α

} .

Proof. (i) Let h(t) = Γ(α)
∫1

0
k(t, s) ds for t ∈ [0, 1]. By (4.4), we have, for t ∈ [0, 1], that

h(t) =
∫1

0

tα−1(1 − s)α−2(1 + βs− s) ds−
∫ t
0

(t− s)α−1 ds

= tα−1

∫1

0

[(1 − β)(1 − s)α−1 + β(1 − s)α−2] ds−
∫ t
0

(t− s)α−1 ds

= tα−1

(
1 − β

α
+

β

α− 1

)
− tα

α
=
α+ β − 1
α(α− 1)

tα−1 − tα

α
.

Let t0 = (α+ β − 1)/α. Then t0 ∈ [0, 1] and h′(t0) = 0. Hence,

h(t) � h(t0) =
tα0

α(α− 1)
=

(α− 1)α−1

αα+1

[
γ + αδ

γ + (α− 1)δ

]α
for t ∈ [0, 1].

It follows that

max
0�t�1

∫1

0

k(t, s) ds =
1

Γ(α)
(α− 1)α−1

αα+1

[
γ + αδ

γ + (α− 1)δ

]α
,

and the result holds.
ii Let g(t) = Γ(α)

∫1

a
k(t, s) ds for t ∈ [a, 1]. Then we have, for t ∈ [a, 1], that

g(t) = tα−1ω(a) −
∫ t
a

(t− s)α−1 ds = tα−1ω(a) − (t− a)α

α

and

g′′(t) = −(α− 1)(2 − α)tα−3ω(a) − (α− 1)(t− a)α−2 � 0.

Hence, g is concave down on [a, 1] and

g(t) � min{g(a), g(1)} = min
{
aα−1ω(a), ω(a) − (1 − a)α

α

}
for t ∈ [a, 1].

The result follows.

In the following, we always assume that δ > 0 and γ > (2 − α)δ. By Lemma 4.3, (C1) in
Section 2 holds. By Lemma 4.2, g(s0) ∈ (0, 1). By (4.8), we have C(0) = 0, C(t) > 0 for t ∈ (0, 1]
and ‖C‖ ∈ (0, 1). Hence, for a, b ∈ (0, 1] with a < b, (P ) holds and thus (P ∗) holds.

We assume that {gi} and {fi} in (4.1) satisfy (C2) and (C3) with k defined in (4.4) and
(C4), respectively.

With C given by (4.8), the cone K defined in (2.3) is reproducing since ‖C‖ < 1. In this
section, we always use the cone K defined in (2.3) with C given in (4.8).

By Lemma 4.1, equations (4.1) and (4.2) can be written as in (3.1) with k defined in (4.4).
Hence, Theorems 3.16 and 3.17 hold for (4.1) and (4.2).
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As applications of our results, we consider a system of fractional differential equations of the
form

Dαzi(t) +
n∑
j=1

aij(t)(sgn zj)|zj |μij = 0 for a.e. t ∈ [0, 1] and i ∈ In (4.11)

subject to (4.2), where 1 < α < 2, δ > 0 and γ > (2 − α)δ.
When α = 2, the above system with Dirichlet boundary conditions (that is, δ = 0) was

studied in [12], where aij ∈ C([0, 1],R+). Moreover, some results on the conjugacy of a second-
order ordinary differential equation were employed to obtain a differential inequality that
implies that a suitable fixed-point index is 0. In the following, we use Theorem 3.16(H1),
which is different from that used in [12] and allows aij ∈ L1(0, 1).

Theorem 4.5. Let i, j ∈ In. Assume that the following conditions hold:
(i) μij > 1;
(ii) aij : (0, 1) → R+ is measurable and aijΦ ∈ L1(0, 1);
(iii) there exist a, b ∈ (0, 1] with a < b such that

∫b
a
Φ(s)aii(s) ds > 0.

Then (4.11) and (4.2) have a solution z ∈ K with ‖z‖ > 0.

Proof. For each i ∈ In, let gi ≡ 1 and define a function fi : [0, 1] × R
n
+ → R+ by

fi(s, z) =
n∑
j=1

aij(s)z
μij

j .

Let μ = min{μij : i, j ∈ In}, M = max{∑n
j=1

∫1

0
Φ(s)aij(s) ds : i ∈ In} and

0 < ρ1 < min

{
1,
(

1
M
)1/(μ−1)

}
.

Then ρμij−1
1 � ρμ−1

1 for i, j ∈ In. For each i ∈ In, we define φiρ1 : [0, 1] → R+ by

φiρ1(s) =
n∑
j=1

aij(s)ρ
μij−1
1 .

Then, by Lemma 4.3, we have, for t ∈ [0, 1], that
∫1

0

k(t, s)φiρ1(s) ds �
∫1

0

Φ(s)φiρ1(s) ds � ρμ−1
1

n∑
j=1

∫1

0

Φ(s)aij(s) ds

� ρμ−1
1 M < 1

and mφi
ρ1
> 1. Hence, for a.e. s ∈ [0, 1] and z ∈ R

n
+ with |z| � ρ1, we have

fi(s, z) �
n∑
j=1

aij(s)ρ
μij−1
1 ρ1 = φiρ1(s)ρ1 < φiρ1(s)mφi

ρ1
ρ1

and (H1
<)φρ1

holds.
Let μ∗ = min{μii : i ∈ In}, M∗ = min{∫b

a
Φ(s)aii(s) ds : i ∈ In} and c := c(a, b) > 0. Let

ρ2 > max{1
c
,
( 1
cμ∗M∗

) 1
μ∗−1 }.

For each i ∈ In, we define ψiρ2 : [0, 1] → R+ by

ψiρ2(s) = aii(s)(cρ2)μii−1.
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Then, for t ∈ [a, b], we have
∫ b
a

k(t, s)ψiρ2(s) ds � c(cρ2)μii−1

∫ b
a

Φ(s)aii(s) ds � c(cρ2)μ∗−1M∗ > 1

and Mψi
ρ2
> 1. Hence, for a.e. s ∈ [0, 1] and z = (zi, ẑi) ∈ [cρ2, ρ2] × [0, ρ2]n−1, we have

fi(s, z) � aii(s)z
μii−1
i zi � ψiρ2(s)(cρ2) > ψiρ2(s)Mψi

ρ2
(cρ2)

and (H0
�)ψρ2

holds. The result follows from Theorem 3.16(H1).

Now, we consider the existence of two positive solutions of systems of fractional differential
equations of the form

Dαzi(t) + λ(zαi
i (t) + zβi

i (t))hi(ẑi) = 0 for a.e. t ∈ [0, 1] and i ∈ In (4.12)

subject to (4.2), where 1 < α < 2, δ > 0 and γ > (2 − α)δ.
When n = 1 and α = 2, we refer to [22, 31, 32] for similar equations arising from the steady

flow of a power-law fluid over an impermeable, semi-infinite flat plane in boundary layer theory.

Theorem 4.6. Assume that the following conditions hold.
(i) For each i ∈ In, we have 1 < αi <∞ and 0 < βi < 1.
(ii) For each i ∈ In, we have that hi : R

n−1
+ → R+ is continuous and

ξ = min{hi(ẑi) : ẑi ∈ R
n−1
+ and i ∈ In} > 0.

Then there exists λ0 > 0 such that, for each λ ∈ (0, λ0), (4.12) and (4.2) have two nonzero
solutions in K.

Proof. Let ρ2 > 0 and ωi = max{hi(ẑi) : z ∈ R
n
+ with |z| ∈ [0, ρ2]}. Let m∗ be the same as

in Lemma 4.4 and

λ0 := λ0(ρ2) = min

{
m∗

ωi(ραi−1
2 + 1/ρ1−βi

2 )
: i ∈ In

}
.

Let λ ∈ (0, λ0), i ∈ In and gi ≡ 1. We define a function fi : [0, 1] × R
n
+ → R+ by

fi(s, z) = λ(zαi
i + zβi

i )hi(ẑi).

Since gi ≡ 1, we have γ(0, 1) =
∫1

0
Φ(s)C(s) ds > 0. Then, for z ∈ R

n
+ with |z| ∈ [0, ρ2], we have

that

fi(s, z) � λ(ραi
2 + ρβi

2 )ωi = λ(ραi−1
2 + 1/ρ1−βi

2 )ωiρ2 < m∗ρ2 for s ∈ [0, 1]

and (H1
<)φρ2

with φρ2 ≡ 1 holds.
Let η(x) = xαi−1 + 1/x1−βi for x > 0 and let ρi = ((1 − βi)/(αi − 1))1/(αi−βi) for i ∈ In.

Then η is decreasing on (0, ρi) and increasing on (ρi,∞) and satisfies limx→0+ η(x) =
limx→∞ η(x) = ∞. Let ρ∗ = min{ρi : i ∈ In} and ε > 0. Since η is decreasing on (0, ρ∗) and
limx→0+ η(x) = ∞, we can choose 0 < ρ1 < min{ρ2, ρ

∗} such that

η(ρ1) = ραi−1
1 + 1/ρ1−βi

1 � (μ1 + ε)/(λξ).

Then, for i ∈ In, s ∈ [0, 1] and z ∈ R
n
+ with |z| ∈ [0, ρ1], we have

fi(s, z) = λη(zi)hi(ẑi)zi � λη(ρ1)ξzi � (μ1 + ε)zi.

Hence, ((fi)0)μ1 holds. Since η is increasing on (ρ∗,∞) and limx→∞ η(x) = ∞, we choose
ρ3 > ρ∗/c satisfying λη(cρ3)ξ > M∗(a, b), where M∗(a, b) is the same as in (4.10). Let
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ψiρ3(s) ≡ λη(cρ3)ξ. Then
∫ b
a

k(t, s)ψiρ3(s) ds � λη(cρ3)ξ/M∗(a, b) > 1 for t ∈ [a, b]

and Mψi
ρ3
< 1 for i ∈ In. Hence, for s ∈ [a, b] and z = (zi, ẑi) ∈ [cρ3, ρ3] × [0, ρ3]n−1, we have

fi(s, z) = λη(zi)hi(ẑi)zi � λη(cρ3)ξ(cρ3) = ψiρ3(s)(cρ3) > ψiρ3(s)Mψi
ρ3

(cρ3)

and (H0
�)ψρ3

holds. The result follows from Theorem 3.17(S5).

In Theorem 4.6, we proved that ((fi)0)μ1 holds. It may not be easy to show that the stronger
condition (3.13) holds.
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