Weak Hopf Algebras Corresponding to Borcherds-Cartan Matrices

Li Xia YE
Department of Computer Science, Zhejiang Education Institute, Hangzhou 310012, P. R. China
and
Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China
E-mail: douzibm@sohu.com

Zhi Xiang WU
Department of Mathematics, Zhejiang University, Hangzhou 310027, P. R. China
E-mail: wzx@zju.edu.cn
Xue Feng MEI
Department of Mathematics, Zhejiang Education Institute, Hangzhou 310012, P. R. China
E-mail: mxf6561@sina.com

Abstract

Let \mathscr{G} be a generalized Kac-Moody algebra with an integral Borcherds-Cartan matrix. In this paper, we define a d-type weak quantum generalized Kac-Moody algebra $w U_{q}^{d}(\mathscr{G})$, which is a weak Hopf algebra. We also study the highest weight module over the weak quantum algebra $w U_{q}^{d}(\mathscr{G})$ and weak A-forms of $w U_{q}^{d}(\mathscr{G})$.

Keywords weak Hopf algebra, weak quantum generalized Kac-Moody algebra, highest weight module, weak A-form

MR(2000) Subject Classification 16W30, O153.3

1 Introduction

The concept of a weak Hopf algebra was first introduced by Li in [1]. A bialgebra H over a field k is called a weak Hopf algebra if there exists $T \in \operatorname{Hom}_{k}(H, H)$ such that $T * i d * T=T$ and $i d * T * i d=i d$, where T is called a weak antipode of H. Much work has been done on such weak Hopf algebras, see [1-6]. As is known, two typical examples of such weak Hopf algebras are the monoid algebra $k S$ of a regular monoid $S[1]$ and the almost quantum algebra $w s l_{q}(2)$ [2] (see also [5] for weak Hopf algebras corresponding to $U_{q}\left[s l_{n}\right]$). Recently, Yang has given a more nontrivial weak Hopf algebra $m_{q}^{d}(\mathscr{G})$ in [6], where \mathscr{G} is a semi-simple Lie algebra. Following this idea, we will construct the more general weak Hopf algebra $w U_{q}^{d}(\mathscr{G})$, where \mathscr{G} is a generalized Kac-Moody algebra. The main aim of the present paper is to study the structure and representation of $w U_{q}^{d}(\mathscr{G})$. The detailed outline of this paper is as follows.

In Section 2, we shortly review some basic concepts of the generalized Kac-Moody algebra, then we will focus on the generalization of $w U_{q}^{d}(\mathscr{G})$ by weakening the generators k_{i} and p_{i} $(i \in I)$, that is, exchanging their invertibility $k_{i} k_{i}^{-1}=p_{i} p_{i}^{-1}=1$ to the regularity $K_{i} \bar{K}_{i} K_{i}=K_{i}$,

[^0]$\bar{K}_{i} K_{i} \bar{K}_{i}=\bar{K}_{i}, D_{i} \bar{D}_{i} D_{i}=D_{i}, \bar{D}_{i} D_{i} \bar{D}_{i}=\bar{D}_{i}$. This leads to a weak Hopf algebra structure of $w U_{q}^{d}(\mathscr{G})$, which is studied in detail in Section 3. In Section 4 we will discuss the basis of $w U_{q}^{d}(\mathscr{G})$. In Section 5, we will define the highest weight module and Verma module over the weak quantum generalized Kac-Moody algebra $w U_{q}^{d}(\mathscr{G})$. Moreover, we study the corresponding weak A-form in Section 6. At the same time, we obtain some results, which are the natural generalization of the respective convention on the quantum enveloping algebra $U_{q}(\mathscr{G})$ (see [7]).

2 Weak Quantum Generalized Kac-Moody Algebra $w U_{q}^{d}(\mathscr{G})$

Throughout the paper, some notations and definitions unexplained here can be found in [7-9]. We assume the basic field is the complex number field \mathbf{C}. All algebras, modules and vector spaces are over \mathbf{C} without being specified.

Let $I=\{1,2, \ldots, n\}$, or $I=\mathbf{N}$, the natural number set. A real square matrix $A=\left(a_{i j}\right)_{i, j \in I}$ is a Borcherds-Cartan matrix if it satisfies:
(1) $a_{i i}=2$ or $a_{i i} \leq 0$ for all $i \in I$;
(2) $a_{i j} \leq 0$ if $i \neq j$;
(3) $a_{i j} \in \mathbf{Z}$ if $a_{i i}=2$;
(4) $a_{i j}=0$ if and only if $a_{j i}=0$.

In this paper, we assume that all the entries of A are integers and the diagonal entries are even. Furthermore, we assume that A is symmetrizable, that is, there exists a diagonal matrix $D=\operatorname{diag}\left(s_{i} \in \mathbf{N}_{>0} \mid i \in I\right)$ such that $D A$ is symmetric.

Let us introduce some useful concepts associated with generalized Kac-Moody algebras. Suppose $P^{v}=\left(\oplus_{i \in I} \mathbf{Z} h_{i}\right) \oplus\left(\oplus_{i \in I} \mathbf{Z} d_{i}\right)$, and let $\mathscr{H}=\mathbf{C} \otimes_{\mathbf{z}} P^{v}$ be the complex vector space with basis $\left\{h_{i}, d_{i}\right\}_{i \in I}$. For $i \in I$, we define $\alpha_{i} \in \mathscr{H}^{*}$ by setting $\alpha_{i}\left(h_{j}\right)=a_{j i}$ and $\alpha_{i}\left(d_{j}\right)=\delta_{j i}$, where \mathscr{H}^{*} is the dual space of \mathscr{H}. Furthermore, the weight lattice is defined to be

$$
P=\left\{\lambda \in \mathscr{H}^{*} \mid \lambda\left(P^{v}\right) \subset \mathbf{Z}\right\} .
$$

The quantum enveloping algebra $U_{q}(\mathscr{G})$ of a generalized Kac-Moody algebra \mathscr{G} with a Borcherds-Cartan datum $\left(A, P^{v}, P, \Pi, \Pi^{v}\right)$ is defined in [7, 9]. $U_{q}(\mathscr{G})$ is an associated algebra with unit 1 generated by the generators $e_{i}, f_{i}(i \in I)$ and $q^{h}\left(h \in P^{v}\right)$ with the relations:

$$
\begin{align*}
& q^{0}=1, q^{h_{1}} q^{h_{2}}=q^{h_{1}+h_{2}}, \quad h_{1}, h_{2} \in P^{v}, \tag{2.1}\\
& q^{h} e_{i} q^{-h}=q^{\alpha_{i}(h)} e_{i}, q^{h} f_{i} q^{-h}=q^{-\alpha_{i}(h)} f_{i}, \tag{2.2}\\
& e_{i} f_{j}-f_{j} e_{i}=\delta_{i j} \frac{k_{i}-k_{i}^{-1}}{q_{i}-q_{i}^{-1}}, \text { where } k_{i}=q^{s_{i} h_{i}}, \tag{2.3}\\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} e_{i}^{1-a_{i j}-r} e_{j} e_{i}^{r}=0, \text { if } a_{i i}=2, i \neq j, \tag{2.4}\\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} f_{i}^{1-a_{i j}-r} f_{j} f_{i}^{r}=0, \text { if } a_{i i}=2, i \neq j, \tag{2.5}\\
& e_{i} e_{j}-e_{j} e_{i}=0, \quad f_{i} f_{j}-f_{j} f_{i}=0, \text { if } a_{i j}=0, \tag{2.6}
\end{align*}
$$

where $q_{i}=q^{s_{i}}$ and

$$
\left[\begin{array}{c}
m \\
n
\end{array}\right]_{q_{i}}=\frac{\left(q_{i}^{m}-q_{i}^{-m}\right)\left(q_{i}^{m-1}-q_{i}^{-(m-1)}\right) \cdots\left(q_{i}^{m-n+1}-q_{i}^{-(m-n+1)}\right)}{\left(q_{i}-q_{i}^{-1}\right)\left(q_{i}^{2}-q_{i}^{-2}\right) \cdots\left(q_{i}^{n}-q_{i}^{-n}\right)}, m>n>0
$$

Since the basis of \mathscr{H} is $\left\{h_{i}, d_{i}\right\}_{i \in I}$, then the generators of $U_{q}(\mathscr{G})$ can be written as $e_{i}, f_{i}, k_{i}^{ \pm 1}$ and $p_{i}^{ \pm 1}$, where $k_{i}=q^{s_{i} h_{i}}$ and $p_{i}=q^{s_{i} d_{i}}$. To generalize the invertibility condition (2.1), we introduce a projector J to weaken the invertibility to regularity, replacing $\left\{k_{i}, k_{i}^{-1}\right\}$ (resp. $\left\{p_{i}, p_{i}^{-1}\right\}$) by a pair $\left\{K_{i}, \bar{K}_{i}\right\}$ (resp. $\left\{D_{i}, \bar{D}_{i}\right\}$) for all $i \in I$ subject to some relations:

$$
\begin{gather*}
J=K_{i} \bar{K}_{i}=\bar{K}_{i} K_{i}=D_{i} \bar{D}_{i}=\bar{D}_{i} D_{i}, \tag{2.7}\\
J K_{i}=K_{i} J=K_{i}, \quad J \bar{K}_{i}=\bar{K}_{i} J=\bar{K}_{i}, \tag{2.8}\\
J D_{i}=D_{i} J=D_{i}, \quad J \bar{D}_{i}=\bar{D}_{i} J=\bar{D}_{i} . \tag{2.9}
\end{gather*}
$$

To generalize other relations of the definition of $U_{q}(\mathscr{G})$, we need some terminology. If E_{i} satisfies

$$
\begin{equation*}
K_{j} E_{i}=q_{i}^{a_{i j}} E_{i} K_{j}, \quad E_{i} \bar{K}_{j}=q_{i}^{a_{i j}} \bar{K}_{j} E_{i}, \quad D_{j} E_{i}=q_{i}^{\delta_{i j}} E_{i} D_{j}, \quad E_{i} \bar{D}_{j}=q_{i}^{\delta_{i j}} \bar{D}_{j} E_{i} \tag{2.10}
\end{equation*}
$$

for all $j \in I$, we say E_{i} is of type 1 . However, if E_{i} satisfies

$$
\begin{equation*}
K_{j} E_{i} \bar{K}_{j}=q_{i}^{a_{i j}} E_{i}, \quad D_{j} E_{i} \bar{D}_{j}=q_{i}^{\delta_{i j}} E_{i}, \tag{2.11}
\end{equation*}
$$

for all $j \in I$, we say E_{i} is of type 2 . The same convention holds for F_{i} by replacing E_{i} with F_{i} and $a_{i j}$ (resp. $\delta_{i j}$) with $-a_{i j}$ (resp. $-\delta_{i j}$) in the above relations.

We borrow some notions from [5-6], E_{i} and $F_{i}(i \in I)$ are listed by starting with E_{i} followed by F_{i}, where a 1 indicates the use of a type 1 generator and a 0 indicates the use of a type 2 generator. Then write d in terms of its binary expansion,

$$
d=\left(\left\{c_{i}\right\}_{i \in I} \mid\left\{\bar{c}_{i}\right\}_{i \in I}\right),
$$

where the bar seperates the values representing the E_{i} and F_{i}, and where the c_{i} and \bar{c}_{i} have values of either 0 or 1 . Accordingly, we say E_{i} and F_{i} are of type d in an obvious sense.
Definition 2.1 The algebra $w U_{q}^{d}(\mathscr{G})$ is generated by the generators $E_{i}, F_{i}, K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}$ and J satisfying (2.7)-(2.9) along with the relations: For all $i, j \in I$,

$$
\begin{align*}
& K_{i} K_{j}=K_{j} K_{i}, \quad K_{i} \bar{K}_{j}=\bar{K}_{j} K_{i}, \quad \bar{K}_{i} \bar{K}_{j}=\bar{K}_{j} \bar{K}_{i}, \tag{2.12}\\
& D_{i} D_{j}=D_{j} D_{i}, \quad D_{i} \bar{D}_{j}=\bar{D}_{j} D_{i}, \quad \bar{D}_{i} \bar{D}_{j}=\bar{D}_{j} \bar{D}_{i}, \tag{2.13}\\
& D_{i} K_{j}=K_{j} D_{i}, \quad D_{i} \bar{K}_{j}=\bar{K}_{j} D_{i}, \quad \bar{D}_{i} K_{j}=K_{j} \bar{D}_{i}, \quad \bar{D}_{i} \bar{K}_{j}=\bar{K}_{j} \bar{D}_{i}, \tag{2.14}\\
& E_{i}, F_{i} \text { are type } d, \tag{2.15}\\
& E_{i} F_{j}-F_{j} E_{i}=\delta_{i j} \frac{K_{i}-\bar{K}_{i}}{q_{i}-q_{i}^{-1}}, \tag{2.16}\\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} E_{i}^{1-a_{i j}-r} E_{j} E_{i}^{r}=0, \text { if } a_{i i}=2, i \neq j, \tag{2.17}\\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} F_{i}^{1-a_{i j}-r} F_{j} F_{i}^{r}=0, \text { if } a_{i i}=2, i \neq j, \tag{2.18}
\end{align*}
$$

$$
\begin{equation*}
E_{i} E_{j}=E_{j} E_{i}, \quad F_{i} F_{j}=F_{j} F_{i}, \text { if } a_{i j}=0 \tag{2.19}
\end{equation*}
$$

The algebra $w U_{q}^{d}(\mathscr{G})$ is called a d-type weak quantum generalized Kac-Moody algebra.
There are some properties for $w U_{q}^{d}(\mathscr{G})$ which will be used later.
Proposition 2.2 The idempotent J satisfies $a J=J a$, for any $a \in w U_{q}^{d}(\mathscr{G})$.
Proof It is obvious that $a J=J a$ for $a=K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}$ or J.
If E_{i} is of type 1 , then we obtain, from (2.10),

$$
J E_{i}=\left(\bar{K}_{j} K_{j}\right) E_{i}=\bar{K}_{j}\left(q_{i}^{a_{i j}} E_{i} K_{j}\right)=\left(q_{i}^{a_{i j}} \bar{K}_{j} E_{i}\right) K_{j}=\left(E_{i} \bar{K}_{j}\right) K_{j}=E_{i} J .
$$

If E_{i} is of type 2, then we obtain, from (2.11),

$$
J E_{i}=\left(K_{j} \bar{K}_{j}\right) E_{i}=\left(K_{j} \bar{K}_{j}\right)\left(q_{i}^{-a_{i j}} K_{j} E_{i} \bar{K}_{j}\right)=q_{i}^{-a_{i j}}\left(K_{j} E_{i} \bar{K}_{j}\right) J=E_{i} J
$$

Hence, $J E_{i}=E_{i} J$ for all $i \in I$. A similar calculation is performed for F_{i}.
In particular, if E_{i} and F_{i} are of type 2, then $E_{i} J=J E_{i}=E_{i}, F_{i} J=J F_{i}=F_{i}$.
Also note that, due to the relation (2.15), the following relations hold:

$$
\begin{aligned}
K_{j}^{n} E_{i}^{m}=q_{i}^{m n a_{i j}} E_{i}^{m} K_{j}^{n}, & E_{i}^{m} \bar{K}_{j}^{n}=q_{i}^{m n a_{i j}} \bar{K}_{j}^{n} E_{i}^{m}, \\
D_{j}^{n} E_{i}^{m}=q_{i}^{m n \delta_{i j}} E_{i}^{m} D_{j}^{n}, & E_{i}^{m} \bar{D}_{j}^{n}=q_{i}^{m n \delta_{i j}} \bar{D}_{j}^{n} E_{i}^{m},
\end{aligned}
$$

for all $m, n \in \mathbf{Z}_{>0}$. The respective relations hold for F_{i} by replacing E_{i} with F_{i} and $a_{i j}$ (resp. $\delta_{i j}$) with $-a_{i j}$ (resp. $-\delta_{i j}$) in the above relations.

3 The Weak Hopf Algebra Structure of $w U_{q}^{d}(\mathscr{G})$

Let us define three maps

$$
\begin{aligned}
& \Delta: w U_{q}^{d}(\mathscr{G}) \longrightarrow w U_{q}^{d}(\mathscr{G}) \otimes w U_{q}^{d}(\mathscr{G}), \\
& \varepsilon: w U_{q}^{d}(\mathscr{G}) \longrightarrow \mathbf{C} \\
& T: w U_{q}^{d}(\mathscr{G}) \longrightarrow w U_{q}^{d}(\mathscr{G})
\end{aligned}
$$

as follows:

$$
\begin{align*}
& \Delta(J)=J \otimes J, \tag{3.1}\\
& \Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \Delta\left(\bar{K}_{i}\right)=\bar{K}_{i} \otimes \bar{K}_{i}, \tag{3.2}\\
& \Delta\left(D_{i}\right)=D_{i} \otimes D_{i}, \quad \Delta\left(\bar{D}_{i}\right)=\bar{D}_{i} \otimes \bar{D}_{i}, \tag{3.3}\\
& \Delta\left(E_{i}\right)= \begin{cases}E_{i} \otimes \bar{K}_{i}+1 \otimes E_{i}, & \text { if } E_{i} \text { is type 1; } \\
E_{i} \otimes \bar{K}_{i}+J \otimes E_{i}, & \text { if } E_{i} \text { is type 2, }\end{cases} \tag{3.4}\\
& \Delta\left(F_{i}\right)= \begin{cases}F_{i} \otimes 1+K_{i} \otimes F_{i}, & \text { if } F_{i} \text { is type 1; } \\
F_{i} \otimes J+K_{i} \otimes F_{i}, & \text { if } F_{i} \text { is type 2, }\end{cases} \tag{3.5}\\
& \varepsilon\left(D_{i}\right)=\varepsilon\left(\bar{D}_{i}\right)=\varepsilon\left(K_{i}\right)=\varepsilon\left(\bar{K}_{i}\right)=\varepsilon(J)=1, \quad \varepsilon\left(E_{i}\right)=\varepsilon\left(F_{i}\right)=0, \tag{3.6}\\
& T(1)=1, T(J)=J, T\left(K_{i}\right)=\bar{K}_{i}, T\left(\bar{K}_{i}\right)=K_{i}, T\left(D_{i}\right)=\bar{D}_{i}, T\left(\bar{D}_{i}\right)=D_{i}, \tag{3.7}\\
& T\left(E_{i}\right)=-E_{i} K_{i}, \quad T\left(F_{i}\right)=-\bar{K}_{i} F_{i}, i \in I . \tag{3.8}
\end{align*}
$$

Let μ and η be the product and the unit of $w U_{q}^{d}(\mathscr{G})$, respectively. Then we have the following lemma:

Lemma $3.1 \quad\left(w U_{q}^{d}(\mathscr{G}), \mu, \eta, \Delta, \varepsilon\right)$ is a bialgebra.
Proof It is easy to check that $\left(w U_{q}^{d}(\mathscr{G}), \Delta, \varepsilon\right)$ is a coalgebra and ε is an algebra morphism. To show that Δ is an algebra morphism, we shall check that it preserves the relations (2.7)-(2.19). All of these are straightforward, saving the calculations involving relations (2.7)-(2.15) and (2.19). We will illustrate the arguments in these cases.

For (2.16), we should examine the identity

$$
\Delta\left(E_{i}\right) \Delta\left(F_{j}\right)-\Delta\left(F_{j}\right) \Delta\left(E_{i}\right)=\delta_{i j} \frac{\Delta\left(K_{i}\right)-\Delta\left(\bar{K}_{i}\right)}{q_{i}-q_{i}^{-1}}
$$

The following cases should be considered:
(1) Both E_{i} and F_{j} are of type 1 ;
(2) E_{i} is of type 1 and F_{j} is of type 2;
(3) E_{i} is of type 2 and F_{j} is of type 1 ;
(4) Both E_{i} and F_{j} are of type 2.

For the case (3), using the facts, which are $E_{i} K_{j}=q_{i}^{-a_{i j}} K_{j} E_{i}$ and $F_{j} \bar{K}_{i}=q_{i}^{-a_{i j}} \bar{K}_{i} F_{j}$, it is obvious that

$$
\begin{aligned}
\Delta\left(E_{i}\right) \Delta\left(F_{j}\right)-\Delta\left(F_{j}\right) \Delta\left(E_{i}\right) & =\left(E_{i} F_{j}-F_{j} E_{i}\right) \otimes K_{i}+K_{i} J \otimes\left(E_{i} F_{j}-F_{j} E_{i}\right) \\
& =\delta_{i j} \frac{\left(K_{i}-\bar{K}_{i}\right) \otimes \bar{K}_{i}+K_{i} \otimes\left(K_{i}-\bar{K}_{i}\right)}{q_{i}-q_{i}^{-1}} \\
& =\delta_{i j} \frac{K_{i} \otimes K_{i}-\bar{K}_{i} \otimes \bar{K}_{i}}{q_{i}-q_{i}^{-1}} \\
& =\delta_{i j} \frac{\Delta\left(K_{i}\right)-\Delta\left(\bar{K}_{i}\right)}{q_{i}-q_{i}^{-1}} .
\end{aligned}
$$

For the other cases, the proof is similar. For (2.17) and (2.18), we should consider several cases according to the type of $\left\{E_{i}, E_{j}\right\}$ or $\left\{F_{i}, F_{j}\right\}, i \neq j$. In fact, the argument is more or less the same as the discussion in [10, pp. 67-68].
Lemma 3.2 T is an antimorphism from $w U_{q}^{d}(\mathscr{G})$ to $w U_{q}^{d}(\mathscr{G})$.
Proof It is trivial that T keeps the antirelations of (2.7)-(2.16) and (2.19).
For (2.17), it can be proved as follows:

$$
\begin{aligned}
\sum_{r=0}^{1-a_{i j}}(& -1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} T\left(E_{i}\right)^{r} T\left(E_{j}\right) T\left(E_{i}\right)^{1-a_{i j}-r} \\
& =-\left(\sum_{r=0}^{1-a_{i j}}(-1)^{1-a_{i j}-r}\left[\begin{array}{c}
1-a_{i j} \\
1-a_{i j}-r
\end{array}\right]_{q_{i}} E_{i}^{r} E_{j} E_{i}^{1-a_{i j}-r}\right) K_{i}^{1-a_{i j}} K_{j} \\
& =-\left(\sum_{s=0}^{1-a_{i j}}(-1)^{s}\left[\begin{array}{c}
1-a_{i j} \\
s
\end{array}\right]_{q_{i}} E_{i}^{1-a_{i j}-s} E_{j} E_{i}^{s}\right) K_{i}^{1-a_{i j}} K_{j} \\
& =0 .
\end{aligned}
$$

The argument for (2.18) is similar. Hence T can be extended to an antimorphism from $w U_{q}^{d}(\mathscr{G})$ to $w U_{q}^{d}(\mathscr{G})$.
Lemma 3.3 Let X be $E_{i}, F_{i}, K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}$ or J. Then

$$
(i d * T * i d)(X)=X, \quad(T * i d * T)(X)=T(X)
$$

Proof For $X=K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}$ or J, the calculations are trivial.
If E_{i} is of type 1 , then

$$
(\Delta \otimes i d) \Delta\left(E_{i}\right)=E_{i} \otimes \bar{K}_{i} \otimes \bar{K}_{i}+1 \otimes E_{i} \otimes \bar{K}_{i}+1 \otimes 1 \otimes E_{i} .
$$

It follows that

$$
\begin{aligned}
& (i d * T * i d)\left(E_{i}\right)=E_{i} K_{i} \bar{K}_{i}+\left(-E_{i} K_{i}\right) \bar{K}_{i}+E_{i}=E_{i}=i d\left(E_{i}\right), \\
& (T * i d * T)\left(E_{i}\right)=\left(-E_{i} K_{i}\right) \bar{K}_{i} K_{i}+E_{i} K_{i}+\left(-E_{i} K_{i}\right)=-E_{i} K_{i}=T\left(E_{i}\right)
\end{aligned}
$$

If E_{i} is of type 2, then

$$
(\Delta \otimes i d) \Delta\left(E_{i}\right)=E_{i} \otimes \bar{K}_{i} \otimes \bar{K}_{i}+J \otimes E_{i} \otimes \bar{K}_{i}+J \otimes J \otimes E_{i}
$$

We also deduces that

$$
\begin{aligned}
& (i d * T * i d)\left(E_{i}\right)=E_{i} K_{i} \bar{K}_{i}+J\left(-E_{i} K_{i}\right) \bar{K}_{i}+J E_{i}=J E_{i}=E_{i}=i d\left(E_{i}\right) \\
& (T * i d * T)\left(E_{i}\right)=\left(-E_{i} K_{i}\right) \bar{K}_{i} K_{i}+J E_{i} K_{i}+J\left(-E_{i} K_{i}\right)=-J E_{i} K_{i}=E_{i} K_{i}=T\left(E_{i}\right) .
\end{aligned}
$$

As for F_{i}, the argument is similar.
Notice that the following two facts hold:
(1) The coproducts of the generators are bilinear expressions of generators;
(2) One of $i d * T(X)$ and $T * i d(X)$ is a central element of $w U_{q}^{d}(\mathscr{G})$ for X being E_{i}, F_{i}, $K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}$ or J.

From the above facts we can show that, if

$$
\begin{array}{ll}
(i d * T * i d)(x)=x, & (T * i d * T)(x)=T(x) \\
(i d * T * i d)(y)=y, & (T * i d * T)(y)=T(y),
\end{array}
$$

for x and y being $E_{i}, F_{i}, K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}$ or J, then

$$
(i d * T * i d)(x y)=x y, \quad(T * i d * T)(x y)=T(x y) .
$$

Hence, the antipode axioms hold on arbitrary elements by induction, and T is a weak antipode.
From the above lemmas, we have the following theorem:
Theorem 3.4 $\left(w U_{q}^{d}(\mathscr{G}), \mu, \eta, \Delta, \varepsilon, T\right)$ is a weak Hopf algebra.

4 The Basis of $w U_{q}^{d}(\mathscr{G})$

Similarly to $[2,5-6]$, we can establish the relationship between $w U_{q}^{d}(\mathscr{G})$ and the quantum enveloping algebra $U_{q}(\mathscr{G})$ as follows.
Proposition $4.1 \quad w U_{q}^{d}(\mathscr{G})=w_{q} \oplus \bar{w}_{q}$, where $w_{q}=w U_{q}^{d}(\mathscr{G}) J, \bar{w}_{q}=w U_{q}^{d}(\mathscr{G})(1-J)$. Moreover, $w_{q} \cong U_{q}(\mathscr{G})$ as Hopf algebras.

Proof Due to $J^{2}=J, w_{q}$ and \bar{w}_{q} are ideals of $w U_{q}^{d}(\mathscr{G})$. Consequently, $w U_{q}^{d}(\mathscr{G})=w_{q} \oplus \bar{w}_{q}$ as algebras. Moreover, it is obvious to see that w_{q} is generated by $E_{i} J, F_{i} J, K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}$ and J subject to the relations (2.7)-(2.9) and

$$
\begin{align*}
& K_{j}\left(E_{i} J\right)=q_{i}^{a_{i j}}\left(E_{i} J\right) K_{j}, \quad\left(E_{i} J\right) \bar{K}_{j}=q_{i}^{a_{i j}} \bar{K}_{j}\left(E_{i} J\right), \tag{4.1}\\
& D_{j}\left(E_{i} J\right)=q_{i}^{\delta_{i j}}\left(E_{i} J\right) D_{j}, \quad\left(E_{i} J\right) \bar{D}_{j}=q_{i}^{\delta_{i j}} \bar{D}_{j}\left(E_{i} J\right), \tag{4.2}\\
& K_{j}\left(F_{i} J\right)=q_{i}^{-a_{i j}}\left(F_{i} J\right) K_{j}, \quad\left(F_{i} J\right) \bar{K}_{j}=q_{i}^{-a_{i j}} \bar{K}_{j}\left(F_{i} J\right), \tag{4.3}\\
& D_{j}\left(F_{i} J\right)=q_{i}^{-\delta_{i j}}\left(F_{i} J\right) D_{j}, \quad\left(F_{i} J\right) \bar{D}_{j}=q_{i}^{-\delta_{i j}} \bar{D}_{j}\left(F_{i} J\right), \tag{4.4}\\
& \left(E_{i} J\right)\left(F_{j} J\right)-\left(F_{j} J\right)\left(E_{i} J\right)=\delta_{i j} \frac{K_{i}-\bar{K}_{i}}{q_{i}-q_{i}^{-1}}, \tag{4.5}\\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}}\left(E_{i} J\right)^{1-a_{i j}-r}\left(E_{j} J\right)\left(E_{i} J\right)^{r}=0, \text { if } a_{i i}=2, i \neq j, \tag{4.6}\\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}}\left(F_{i} J\right)^{1-a_{i j}-r}\left(F_{j} J\right)\left(F_{i} J\right)^{r}=0, \text { if } a_{i i}=2, i \neq j, \tag{4.7}\\
& \left(E_{i} J\right)\left(E_{j} J\right)=\left(E_{j} J\right)\left(E_{i} J\right), \quad\left(F_{i} J\right)\left(F_{j} J\right)=\left(F_{j} J\right)\left(F_{i} J\right), \text { if } a_{i j}=0 . \tag{4.8}
\end{align*}
$$

Here J can be viewed as the identity of w_{q}. From this point of view w_{q} becomes a weak Hopf algebra, where the coproduct Δ is

$$
\begin{aligned}
& \Delta(J)=J \otimes J, \quad \Delta\left(K_{i}\right)=K_{i} \otimes K_{i}, \quad \Delta\left(\bar{K}_{i}\right)=\bar{K}_{i} \otimes \bar{K}_{i}, \\
& \Delta\left(D_{i}\right)=D_{i} \otimes D_{i}, \quad \Delta\left(\bar{D}_{i}\right)=\bar{D}_{i} \otimes \bar{D}_{i}, \\
& \Delta\left(E_{i} J\right)=E_{i} J \otimes \bar{K}_{i}+J \otimes\left(E_{i} J\right), \\
& \Delta\left(F_{i} J\right)=F_{i} J \otimes J+K_{i} \otimes\left(F_{i} J\right), \quad i \in I .
\end{aligned}
$$

The counit is

$$
\begin{aligned}
& \varepsilon\left(D_{i}\right)=\varepsilon\left(\bar{D}_{i}\right)=\varepsilon\left(K_{i}\right)=\varepsilon\left(\bar{K}_{i}\right)=\varepsilon(J)=1, \\
& \varepsilon\left(E_{i} J\right)=\varepsilon\left(F_{i} J\right)=0, \quad i \in I .
\end{aligned}
$$

The antipode S is

$$
\begin{array}{ll}
S\left(K_{i}\right)=\bar{K}_{i}, & S\left(\bar{K}_{i}\right)=K_{i}, \quad S\left(D_{i}\right)=\bar{D}_{i} \\
S\left(\bar{D}_{i}\right)=D_{i}, & S\left(E_{i} J\right)=-\left(E_{i} J\right) K_{i}, \quad S\left(F_{i}\right)=-\bar{K}_{i}\left(F_{i} J\right), \quad i \in I
\end{array}
$$

Let ρ be the algebra morphism from $U_{q}(\mathscr{G})$ to w_{q} defined by

$$
\begin{aligned}
& \rho\left(e_{i}\right)=\left(E_{i} J\right), \quad \rho\left(f_{i}\right)=\left(F_{i} J\right), \quad \rho\left(k_{i}\right)=K_{i}, \\
& \rho\left(k_{i}^{-1}\right)=\bar{K}_{i}, \quad \rho\left(p_{i}\right)=D_{i}, \quad \rho\left(p_{i}^{-1}\right)=\bar{D}_{i}, \quad i \in I .
\end{aligned}
$$

Then ρ is a Hopf algebra isomorphism.
To find the basis of $w U_{q}^{d}(\mathscr{G})$, we first introduce some notions. Define

$$
P_{i}^{k}= \begin{cases}K_{i}^{k}, & \text { if } k>0 \\ J, & \text { if } k=0 \\ \bar{K}_{i}^{-k}, & \text { if } k<0\end{cases}
$$

and

$$
Q_{i}^{k}= \begin{cases}D_{i}^{k}, & \text { if } k>0 \\ J, & \text { if } k=0 \\ \bar{D}_{i}^{-k}, & \text { if } k<0\end{cases}
$$

It is easy to see that P_{i}^{k} and Q_{i}^{k} satisfy the regularity conditions:

$$
P_{i}^{k} P_{i}^{-k} P_{i}^{k}=P_{i}^{k}, \quad Q_{i}^{k} Q_{i}^{-k} Q_{i}^{k}=Q_{i}^{k} .
$$

Set $P^{s}=\prod_{i \in I} P_{i}^{s_{i}}, Q^{t}=\prod_{i \in I} Q_{i}^{t_{i}}$, where $s_{i}, t_{i} \in \mathbf{Z}$.
There exists a triangular decomposition $U_{q}(\mathscr{G}) \cong U_{q}^{+} \otimes U_{q}^{0} \otimes U_{q}^{-}$(see [9]), where U_{q}^{0} is the subalgebra of $U_{q}(\mathscr{G})$ generated by $\left\{q^{h}\right\}_{h \in P^{v}}$, and U_{q}^{+}(resp. U_{q}^{-}) is the subalgebra of $U_{q}(\mathscr{G})$ generated by $\left\{e_{i}\right\}_{i \in I}$ (resp. $\left\{f_{i}\right\}_{i \in I}$). For $\alpha=\sum_{i \in I} r_{i} \alpha_{i}, r_{i} \in \mathbf{Z}$, we will use the notation $e_{\alpha}=\prod_{i \in I} e_{i}^{r_{i}}, f_{\alpha}=\prod_{i \in I} f_{i}^{r_{i}}$. Moreover, it is well known that $\left\{e_{\alpha} q^{h} f_{\beta} \mid \alpha, \beta \in \Omega, h \in P^{v}\right\}$ forms a basis of $U_{q}(\mathscr{G})$, where Ω is just a set indexing the basis elements.

Proposition 4.2 The set $\left\{E_{\alpha} P^{s} Q^{t} F_{\beta} J \mid \alpha, \beta \in \Omega\right\}$ forms a basis of w_{q}.
Proof Let w_{q}^{0} be the subalgebra generated by $K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}, i \in I$. It is easy to see that $\left\{P^{s} Q^{t}\right\}$ forms a basis of w_{q}^{0}.

Let w_{q}^{+}(resp. w_{q}^{-}) be the subalgebra of w_{q} generated by $\left\{E_{i} J\right\}_{i \in I}$ (resp. $\left\{F_{i} J\right\}_{i \in I}$). Obviously $w_{q}^{+} \cong U_{q}^{+}$, we replace every e_{i} in the monomial e_{α} by $E_{i} J$, thus the set $\left\{E_{\alpha} J \mid \alpha \in \Omega\right\}$ forms a basis of w_{q}^{+}. By $w_{q}^{-} \cong U_{q}^{-}$, the set $\left\{F_{\beta} J \mid \beta \in \Omega\right\}$ forms a basis of w_{q}^{-}. Furthermore, $\left(E_{\alpha} J\right) P^{s} Q^{t}\left(F_{\beta} J\right)=E_{\alpha} P^{s} Q^{t} F_{\beta} J$, then $\left\{E_{\alpha} P^{s} Q^{t} F_{\beta} J \mid \alpha, \beta \in \Omega\right\}$ forms a basis of w_{q}.

To consider the basis of $\bar{w}_{q}=w U_{q}^{d}(\mathscr{G})(1-J)$, we need to recall some conventions. First note that $d=\left(\left\{c_{i}\right\}_{i \in I} \mid\left\{\bar{c}_{i}\right\}_{i \in I}\right)$, if $c_{i}=0$ (resp. $\bar{c}_{i}=0$), then $E_{i}(1-J)=0$ (resp. $\left.F_{i}(1-J)=0\right)$; if $c_{i} \neq 0\left(\right.$ resp. $\left.\bar{c}_{i} \neq 0\right)$, then $E_{i}(1-J) \neq 0\left(\right.$ resp. $\left.F_{i}(1-J) \neq 0\right)$. Let

$$
I_{1}=\left\{i \mid c_{i} \neq 0\right\}, \quad I_{2}=\left\{i \mid \bar{c}_{i} \neq 0\right\}
$$

and

$$
X_{i}=E_{i}(1-J), \quad Y_{j}=F_{j}(1-J), \quad i \in I_{1}, j \in I_{2}
$$

Obviously, $\left\{X_{i}, Y_{j} \mid i \in I_{1}, j \in I_{2}\right\} \cup\{1-J\}$ generates the ideal \bar{w}_{q} enjoying the following relation:

$$
\begin{equation*}
X_{i} Y_{j}=Y_{j} X_{i}, \tag{4.9}
\end{equation*}
$$

for all $i \in I_{1}, j \in I_{2}$ by (2.16).
To see what other relations X_{i}, Y_{j} enjoy, we consider the following five cases:
(1) If $I_{1}=I_{2}=I$, using the quantum serre relations (2.17)-(2.19), then we have

$$
\begin{align*}
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} X_{i}^{1-a_{i j}-r} X_{j} X_{i}^{r}=0, \quad \text { if } a_{i i}=2, \quad i \neq j, \tag{4.10}\\
& \sum_{r=0}^{1-a_{i j}}(-1)^{r}\left[\begin{array}{c}
1-a_{i j} \\
r
\end{array}\right]_{q_{i}} Y_{i}^{1-a_{i j}-r} Y_{j} Y_{i}^{r}=0, \text { if } a_{i i}=2, i \neq j, \tag{4.11}\\
& X_{i} X_{j}=X_{j} X_{i}, \quad Y_{i} Y_{j}=Y_{j} Y_{i}, \quad \text { if } a_{i j}=0, \tag{4.12}
\end{align*}
$$

and other relations corresponding to (2.7)-(2.13) would vanish automatically. This means the ideal \bar{w}_{q} can be understood as an algebra generated by $\left\{X_{i}, Y_{j} \mid i, j \in I\right\} \cup\{1-J\}$ subject to the relations (4.9)-(4.12). Therefore $\left\{E_{\alpha} F_{\beta}(1-J) \mid \alpha, \beta \in \Omega\right\}$ forms a basis of \bar{w}_{q}.
(2) If $I_{1}=I_{2}=\emptyset$, then $\{1-J\}$ forms a basis of \bar{w}_{q}.
(3) If $I_{1} \neq \emptyset, I_{2} \neq \emptyset$, then \bar{w}_{q} generated by $\left\{X_{i}, Y_{j} \mid i \in I_{1}, j \in I_{2}\right\} \cup\{1-J\}$ satisfies the relations (4.9)-(4.12). For

$$
\alpha^{\prime}=\sum_{i \in I_{1}} r_{i} \alpha_{i}, r_{i} \in \mathbf{Z}, \quad \beta^{\prime}=\sum_{i \in I_{2}} t_{i} \alpha_{i}, t_{i} \in \mathbf{Z},
$$

we denote

$$
E_{\alpha^{\prime}}=\prod_{i \in I_{1}} E_{i}^{r_{i}}, \quad F_{\beta^{\prime}}=\prod_{i \in I_{2}} F_{i}^{t_{i}} .
$$

Therefore $\left\{E_{\alpha^{\prime}} F_{\beta^{\prime}}(1-J)\right\}$ forms a basis of \bar{w}_{q}.
(4) If $I_{1}=\emptyset, I_{2} \neq \emptyset$, then \bar{w}_{q} generated by $\left\{Y_{j} \mid j \in I_{2}\right\} \cup\{1-J\}$ satisfies the relations (4.11)-(4.12), so $\left\{F_{\beta^{\prime}}(1-J) \mid \beta^{\prime} \in \Omega^{\prime}\right\}$ forms a basis of \bar{w}_{q}.
(5) If $I_{1} \neq \emptyset, I_{2}=\emptyset$, then \bar{w}_{q} generated by $\left\{X_{i} \mid i \in I_{1}\right\} \cup\{1-J\}$ satisfies the relations (4.10) and (4.12). Therefore $\left\{E_{\alpha^{\prime}}(1-J) \mid \alpha^{\prime} \in \Omega^{\prime}\right\}$ forms a basis of \bar{w}_{q}.

The case (1) is a special type of the case (5). For every case, we can describe the basis of $w U_{q}^{d}(\mathscr{G})$ from the above discussion. For example, for the case (1), $\left\{E_{\alpha} P^{s} Q^{t} F_{\beta} J \mid \alpha, \beta \in\right.$ $\Omega\} \cup\left\{E_{\alpha} F_{\beta}(1-J) \mid \alpha, \beta \in \Omega\right\}$ is a basis of $w U_{q}^{d}(\mathscr{G})$. For other cases, the results are similar.

5 The Highest Weight Module

In this section, we will define some terms which are similar to the respective definitions of $U_{q}(\mathscr{G})$ in [9]. The following lemma is similar to [11, Lemma 1.1].
Lemma 5.1 Let V be a $w U_{q}^{d}(\mathscr{G})$-module and $0 \neq v \in V$. For every $i \in I$, if $K_{i} v=\lambda_{i} v$ and $\bar{K}_{i} v=\bar{\lambda}_{i} v$ for $\lambda_{i}, \bar{\lambda}_{i} \in \mathbf{C}$, then $\bar{\lambda}_{i}=\left\{\begin{array}{c}\lambda_{i}^{-1}, \text { if } \lambda_{i} \neq 0 ; \\ 0, \\ \text { if } \lambda_{i}=0 .\end{array}\right.$ Thus $J v=v$, provided that there exists $i \in I$ such that $K_{i} v=\lambda_{i} v$ and $\lambda_{i} \neq 0$.
Proof If $\lambda_{i} \neq 0$, we have

$$
\lambda_{i} v=K_{i} v=K_{i} \bar{K}_{i} K_{i} v=\bar{\lambda}_{i} \lambda_{i}^{2} v
$$

So $\bar{\lambda}_{i} \lambda_{i}=1$. On the other hand, if $\lambda_{i}=0$, we have

$$
\bar{\lambda}_{i} v=\bar{K}_{i} v=\bar{K}_{i} K_{i} \bar{K}_{i} v=\lambda_{i} \bar{\lambda}_{i}^{2} v=0 .
$$

Hence we can conclude that if $\lambda_{i} \neq 0, \bar{K}_{i} v=\lambda_{i}^{-1} v$ and if $\lambda_{i}=0, \bar{K}_{i} v=0$. Since $J=K_{i} \bar{K}_{i}$, if there exists $i \in I$ such that $\lambda_{i} \neq 0$, then $J v=\lambda_{i} \bar{\lambda}_{i} v=v$.

Similarly, we can prove the following corollary:
Corollary 5.2 Let V be a $w U_{q}^{d}(\mathscr{G})$-module and $0 \neq v \in V$. For every $i \in I$, if $D_{i} v=\lambda_{i} v$ and $\bar{D}_{i} v=\bar{\lambda}_{i} v$ for $\lambda_{i}, \bar{\lambda}_{i} \in \mathbf{C}$, then $\bar{\lambda}_{i}=\left\{\begin{array}{cc}\lambda_{i}^{-1} & \text { if } \lambda_{i} \neq 0 ; \\ 0 & \text { if } \lambda_{i}=0 .\end{array}\right.$ Thus $J v=v$, provided that there exists $i \in I$ such that $D_{i} v=\lambda_{i} v$ and $\lambda_{i} \neq 0$.

From the above results, we can introduce the following definition:

Definition 5.3 $A w U_{q}^{d}(\mathscr{G})$-module V^{q} is called a weak quantum weight module if $V^{q}=$ $\oplus_{\mu \in P} w V_{\mu}^{q}$, where

$$
\begin{array}{r}
w V_{\mu}^{q}=\left\{v \in V^{q} \mid J v=v, K_{i} v=q_{i}^{\mu\left(h_{i}\right)} v, \bar{K}_{i} v=q_{i}^{-\mu\left(h_{i}\right)} v,\right. \\
\left.D_{i} v=q_{i}^{\mu\left(d_{i}\right)} v, \bar{D}_{i} v=q_{i}^{-\mu\left(d_{i}\right)} v, h_{i}, d_{i} \in h, i \in I\right\} .
\end{array}
$$

$A w U_{q}^{d}(\mathscr{G})$-module V^{q} is called the highest weight module with highest weight $\lambda \in P$ if there exists a nonzero vector $v_{\lambda} \in V^{q}$ such that
(1) $E_{i} v_{\lambda}=0$ for every $i \in I$;
(2) $v_{\lambda} \in w V_{\lambda}^{q}$;
(3) $V^{q}=w U_{q}^{d}(\mathscr{G}) v_{\lambda}$.

Proposition 5.4 $V^{q}=w_{q}^{-} v_{\lambda}$.
Proof By Prop. 4.1, every $u \in w U_{q}^{d}(\mathscr{G})$ has a unique representation $u=w+\bar{w}, w \in w_{q}, \bar{w} \in \bar{w}_{q}$. Since $(1-J) v_{\lambda}=0, \bar{w} v_{\lambda}=0$, we have $u v_{\lambda}=w v_{\lambda}$. Hence $V^{q}=w_{q} v_{\lambda}$. Recall that every element of w of w_{q} can be written as a sum of elements of the form $w^{-} w^{0} w^{+}$, where $w^{0} \in w_{q}^{0}$ and $w^{ \pm} \in w_{q}^{ \pm}$. By Def. 5.3, $V^{q}=w_{q}^{-} v_{\lambda}$.

Since $V^{q}=w_{q} v_{\lambda}$ and $w_{q} \cong U_{q}(\mathscr{G})$, we have the following result:
Definition 5.5 If $\operatorname{dim}_{\mathbf{C}} w V_{\mu}^{q}<\infty$ for all $\mu \in P$, then the character of V^{q} is

$$
C h V^{q}=\sum_{\mu \in P}\left(\operatorname{dim}_{\mathbf{C}} w V_{\mu}^{q}\right) e^{\mu},
$$

where e^{μ} is the basis of elements of the group algebra $\mathbf{C}\left[\mathscr{H}^{*}\right]$ with multiplication given by $e^{\mu} e^{\nu}=e^{\mu+\nu}$ for $\mu, \nu \in P$.
Definition 5.6 $A w U_{q}^{d}(\mathscr{G})$-module $M^{q}(\lambda)$ with highest weight λ is called a weak Verma module if every $w U_{q}^{d}(\mathscr{G})$-module with highest weight λ is a quotient of $M^{q}(\lambda)$.
Proposition 5.7 (1) For each $\lambda \in P$, there exists a unique up to an isomorphism weak Verma module $M^{q}(\lambda)$;
(2) Viewed as a $w U_{q}^{d}(\mathscr{G})$-module, $M^{q}(\lambda)$ is a free module of rank 1 generated by a highest weight vector $v_{\lambda}=1+I_{q}(\lambda)$;
(3) $M^{q}(\lambda)$ contains a unique proper maximal submodule $J_{q}(\lambda)$.

Proof (1) If $M_{1}^{q}(\lambda)$ and $M_{2}^{q}(\lambda)$ are two weak Verma modules, then by definition there exists a surjective homomorphism $\varphi: M_{1}^{q}(\lambda) \longrightarrow M_{2}^{q}(\lambda)$. In particular, $\varphi\left(M_{1}^{q}(\lambda)_{\mu}\right)=M_{2}^{q}(\lambda)_{\mu}$ for all $\mu \in P$, and hence $\operatorname{dim}_{\mathbf{C}} \varphi\left(M_{1}^{q}(\lambda)_{\mu}\right) \geq \operatorname{dim}_{\mathbf{C}} M_{2}^{q}(\lambda)_{\mu}$ for all $\mu \in P$. Exchanging $M_{1}^{q}(\lambda)$ and $M_{2}^{q}(\lambda)$ proves that φ is an isomorphism.

To prove the existence of a Verma module, consider the left ideal $I_{q}(\lambda)$ of $w U_{q}^{d}(g)$ generated by $\left\{J-1, E_{i}, K_{i}-q_{i}^{\lambda\left(h_{i}\right)} \cdot 1, \bar{K}_{i}-q_{i}^{-\lambda\left(h_{i}\right)} \cdot 1, D_{i}-q_{i}^{\lambda\left(d_{i}\right)} \cdot 1, \bar{D}_{i}-q_{i}^{-\lambda\left(d_{i}\right)} \cdot 1\right\}_{i \in I}$, and set $M^{q}(\lambda)=$ $w U_{q}^{d}(\mathscr{G}) / I_{q}(\lambda)$. Then, via the left multiplication, $M^{q}(\lambda)$ becomes a $w U_{q}^{d}(g)$-module. It is clear that $M^{q}(\lambda)$ is a $w U_{q}^{d}(\mathscr{G})$-module with the highest weight λ, the highest weight vector being the image of $1 \in w U_{q}^{d}(\mathscr{G})$.
(2) By Prop. 5.4, $\forall u \in w U_{q}^{d}(\mathscr{G}), u v_{\lambda}$ can be written as a sum of elements of the form $w^{-} v_{\lambda}$. If $w^{-}\left(1+I_{q}(\lambda)\right)=0$, then $w^{-} \in I_{q}(\lambda)$. Hence w^{-}must be zero, and our assertion follows.
(3) Note that for any proper submodule M^{\prime} of $M^{q}(\lambda), M^{\prime} \subseteq \oplus_{\mu \in P, \mu \neq \lambda} w V_{\mu}^{q}$, Thus the sum of proper submodules is again a submodule of $M^{q}(\lambda)$. Then $M^{q}(\lambda)$ contains a unique proper maximal submodule $J^{q}(\lambda)$.

The irreducible quotient $V^{q}(\lambda)=M^{q}(\lambda) / J_{q}(\lambda)$ is an irreducible weight module over $w U_{q}^{d}(g)$ with the highest weight λ.

6 Weak A-forms

The A-form U_{A} of the quantum group $U_{q}(\mathscr{G})$ is defined in [8, 9$]$, where \mathscr{G} is a generalized KacMoody algebra. In this section, we would like to define the weak A-forms of $w U_{q}^{d}(\mathscr{G})$, where $A=\mathbf{C}\left[q, q^{-1}, 1 /[n]_{q_{i}}, i \in I, n>0\right]$.

Following [8, 9], for each $i \in I, c \in \mathbf{Z}, n \in \mathbf{Z}_{\geq 0}$, we define

$$
\begin{align*}
& {\left[\begin{array}{c}
K_{i} ; c \\
n
\end{array}\right]_{w}=\prod_{r=1}^{n} \frac{K_{i} q_{i}^{c-r+1}-\bar{K}_{i} q_{i}^{-(c-r+1)}}{q_{i}^{r}-q_{i}^{-r}},} \tag{6.1}\\
& {\left[\begin{array}{c}
\bar{K}_{i} ; c \\
n
\end{array}\right]_{w}=\prod_{r=1}^{n} \frac{\bar{K}_{i} q_{i}^{c-r+1}-K_{i} q_{i}^{-(c-r+1)}}{q_{i}^{r}-q_{i}^{-r}},} \tag{6.2}\\
& {\left[\begin{array}{c}
D_{i} ; c \\
n
\end{array}\right]_{w}=\prod_{r=1}^{n} \frac{D_{i} q_{i}^{c-r+1}-\bar{D}_{i} q_{i}^{-(c-r+1)}}{q_{i}^{r}-q_{i}^{-r}},} \tag{6.3}\\
& {\left[\begin{array}{c}
\bar{D}_{i} ; c \\
n
\end{array}\right]_{w}=\prod_{r=1}^{n} \frac{\bar{D}_{i} q_{i}^{c-r+1}-D_{i} q_{i}^{-(c-r+1)}}{q_{i}^{r}-q_{i}^{-r}} .} \tag{6.4}
\end{align*}
$$

From the above definition, we have

$$
\begin{aligned}
& \frac{K_{i} q_{i}^{c-r+1}-\bar{K}_{i} q_{i}^{-(c-r+1)}}{q_{i}^{r}-q_{i}^{-r}} \\
& \quad=\frac{K_{i} q_{i}^{c-r+1}-\bar{K}_{i} q_{i}^{c-r+1}+\bar{K}_{i} q_{i}^{c-r+1}-\bar{K}_{i} q_{i}^{-(c-r+1)}}{q_{i}^{r-q_{i}^{-r}}} \\
& \quad=q_{i}^{c-r+1} \frac{K_{i}-\bar{K}_{i}}{q_{i}^{r}-q_{i}^{-r}}+\bar{K}_{i} \frac{q_{i}^{c-r+1}-q_{i}^{-(c-r+1)}}{q_{i}^{r}-q_{i}^{-r}} \\
& \quad=q_{i}^{c-r+1} \frac{q_{i}-q_{i}^{-1}}{q_{i}^{r}-q_{i}^{-r}} \frac{K_{i}-\bar{K}_{i}}{q_{i}-q_{i}^{-1}}+\bar{K}_{i} \frac{q_{i}^{c-r+1}-q_{i}^{-(c-r+1)}}{q_{i}-q_{i}^{-1}} \frac{q_{i}-q_{i}^{-1}}{q_{i}^{r}-q_{i}^{-r}} \\
& \quad=\frac{1}{[r]_{q_{i}}}\left(q_{i}^{c-r+1}\left[\begin{array}{c}
K_{i} ; 0 \\
1
\end{array}\right]_{w}+[c-r+1]_{q_{i}} \bar{K}_{i}\right) .
\end{aligned}
$$

Then the following identity holds:

$$
\left[\begin{array}{c}
K_{i} ; c \tag{6.5}\\
n
\end{array}\right]_{w}=\prod_{r=1}^{n} \frac{1}{[r]_{q_{i}}}\left(q_{i}^{c-r+1}\left[\begin{array}{c}
K_{i} ; 0 \\
1
\end{array}\right]_{w}+[c-r+1]_{q_{i}} \bar{K}_{i}\right),
$$

for all $c \in \mathbf{Z}$.
Similarly,

$$
\left[\begin{array}{c}
\bar{K}_{i} ; c \tag{6.6}\\
n
\end{array}\right]_{w}=\prod_{r=1}^{n} \frac{1}{[r]_{q_{i}}}\left(q_{i}^{c-r+1}\left[\begin{array}{c}
\bar{K}_{i} ; 0 \\
1
\end{array}\right]_{w}+[c-r+1]_{q_{i}} K_{i}\right),
$$

for all $c \in \mathbf{Z}$, and the respective relations hold with $D_{i}\left(\right.$ resp. $\left.\bar{D}_{i}\right)$ in place of K_{i} (resp. \bar{K}_{i}).
Note that

$$
\left[\begin{array}{c}
\bar{K}_{i} ; 0 \tag{6.7}\\
1
\end{array}\right]_{w}=-\left[\begin{array}{c}
K_{i} ; 0 \\
1
\end{array}\right]_{w}, \quad\left[\begin{array}{c}
\bar{D}_{i} ; 0 \\
1
\end{array}\right]_{w}=-\left[\begin{array}{c}
D_{i} ; 0 \\
1
\end{array}\right]_{w}
$$

for all $i \in I$.
We define the d-type weak A-form $w U_{A}^{d}$ of $w U_{q}^{d}(\mathscr{G})$ to be the A-subalgebra of $w U_{q}^{d}(\mathscr{G})$ with unit 1 generated by the elements $E_{i}, F_{i}, K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}, J,\left[\begin{array}{c}K_{i} ; 0 \\ 1\end{array}\right]_{w}$ and $\left[\begin{array}{c}D_{i} ; 0 \\ 1\end{array}\right]_{w}(i \in I)$. Obviously, $\left(w U_{A}^{d}, \mu, \eta, \Delta, \epsilon\right)$ is a d-type weak Hopf subalgebra.
Lemma 6.1 For $i, j \in I, c \in \mathbf{Z}$, and $n \in \mathbf{Z}_{>0}$, we have

$$
\begin{align*}
& {\left[\begin{array}{c}
K_{i} ; c \\
n
\end{array}\right]_{w} E_{j}=E_{j}\left[\begin{array}{c}
K_{i} ; c+a_{i j} \\
n
\end{array}\right]_{w}} \tag{6.8}\\
& E_{j}\left[\begin{array}{c}
\bar{K}_{i} ; c \\
n
\end{array}\right]_{w}=\left[\begin{array}{c}
\bar{K}_{i} ; c+a_{i j} \\
n
\end{array}\right]_{w} E_{j}, \tag{6.9}\\
& {\left[\begin{array}{c}
K_{i} ; c \\
n
\end{array}\right]_{w} F_{j}=F_{j}\left[\begin{array}{c}
K_{i} ; c-a_{i j} \\
n
\end{array}\right]_{w},} \tag{6.10}\\
& F_{j}\left[\begin{array}{c}
\bar{K}_{i} ; c \\
n
\end{array}\right]_{w}=\left[\begin{array}{c}
\bar{K}_{i} ; c-a_{i j} \\
n
\end{array}\right]_{w} F_{j}, \tag{6.11}\\
& {\left[\begin{array}{c}
D_{i} ; c \\
n
\end{array}\right]_{w} E_{j}=E_{j}\left[\begin{array}{c}
D_{i} ; c+\delta_{i j} \\
n
\end{array}\right]_{w},} \tag{6.12}\\
& E_{j}\left[\begin{array}{c}
\bar{D}_{i} ; c \\
n
\end{array}\right]_{w}=\left[\begin{array}{c}
\bar{D}_{i} ; c+\delta_{i j} \\
n
\end{array}\right]_{w} E_{j}, \tag{6.13}\\
& {\left[\begin{array}{c}
D_{i} ; c \\
n
\end{array}\right]_{w}^{F_{j}}=F_{j}\left[\begin{array}{c}
D_{i} ; c-\delta_{i j} \\
n
\end{array}\right]_{w},} \tag{6.14}\\
& F_{j}\left[\begin{array}{c}
\bar{D}_{i} ; c \\
n
\end{array}\right]_{w}=\left[\begin{array}{c}
\bar{D}_{i} ; c-\delta_{i j} \\
n
\end{array}\right]_{w} F_{j}, \tag{6.15}\\
& E_{i} F_{j}-F_{j} E_{i}=\delta_{i j}\left[\begin{array}{c}
K_{i} ; 0 \\
1
\end{array}\right]_{w}, \tag{6.16}\\
& E_{i} F_{j}^{n}=\left\{\begin{array}{l}
F_{j}^{n} E_{i}+F_{i}^{n-1} \sum_{r=0}^{n-1}\left[\begin{array}{l}
K_{i} ;-r a_{i i} \\
1
\end{array}\right], \text { if } i=j ; \\
F_{j}^{n} E_{i}, \\
i f=j .
\end{array}\right. \tag{6.17}
\end{align*}
$$

Proof The first nine equalities follow directly from the defining relations of $w U_{q}^{d}(\mathscr{G})$ and (6.1)(6.4), while (6.17) is proved by induction.

Let $w_{A}=w U_{A}^{d} J, \bar{w}_{A}=w U_{A}^{d}(1-J)$. Then
Proposition 6.2 As algebras, $w U_{A}^{d}=w_{A} \oplus \bar{w}_{A}$. Moreover, $w_{A} \cong U_{A}$ as Hopf algebras, where U_{A} is the A-form of $U_{q}(\mathscr{G})$ (see [9]).

Proof Since $J^{2}=J, w_{A}$ and \bar{w}_{A} are ideals of $w U_{A}^{d}$. Consequently, $w U_{A}^{d}=w_{A} \oplus \bar{w}_{A}$ as algebras. Moreover, w_{A} is generated by $J E_{i}, J F_{i}, K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}, J,\left[\begin{array}{c}K_{i} ; 0 \\ 1\end{array}\right]_{w}$ and $\left[\begin{array}{c}D_{i} ; 0 \\ 1\end{array}\right]_{w}(i \in I)$. The respective relations of Lemma 6.1 hold by replacing E_{i} (resp. F_{i}) with $J E_{i}$ (resp. $J F_{i}$). Let $\rho: w_{A} \rightarrow U_{A}$ satisfy

$$
\begin{aligned}
& \rho\left(e_{i}\right)=E_{i} J, \rho\left(f_{i}\right)=F_{i} J, \quad \rho\left(k_{i}\right)=K_{i} \\
& \rho\left(k_{i}^{-1}\right)=\bar{K}_{i}, \rho\left(p_{i}\right)=D_{i}, \rho\left(p_{i}^{-1}\right)=\bar{D}_{i} \\
& \rho\left(\left[\begin{array}{c}
k_{i} ; 0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
K_{i} ; 0 \\
1
\end{array}\right]_{w}, \quad \rho\left(\left[\begin{array}{c}
p_{i} ; 0 \\
1
\end{array}\right]\right)=\left[\begin{array}{c}
D_{i} ; 0 \\
1
\end{array}\right]_{w} .
\end{aligned}
$$

It is easy to check ρ is a Hopf algebra isomorphism.
As an immediate consequence of Lemma 6.2, we have the triangular decomposition of the algebra w_{A} :

$$
w_{A} \cong w_{A}^{+} \otimes w_{A}^{0} \otimes w_{A}^{-}
$$

where w_{A}^{0} is a subalgebra of w_{A} generated by

$$
\left\{K_{i}, \bar{K}_{i}, D_{i}, \bar{D}_{i}, J,\left[\begin{array}{c}
\bar{K}_{i} ; 0 \\
1
\end{array}\right]_{w},\left[\begin{array}{c}
\bar{D}_{i} ; 0 \\
1
\end{array}\right]_{w}\right\}_{i \in I}
$$

and w_{A}^{+}(resp. w_{A}^{-}) is a subalgebra of w_{A} generated by $\left\{J E_{i}\right\}_{i \in I}$ (resp. $\left\{J F_{i}\right\}_{i \in I}$).
Corollary 6.3 Let $V^{q}(\lambda)$ be the irreducible highest weight module with the highest weight $\lambda \in P^{+}$and the highest weight vector v_{λ}.
(1) If $\lambda\left(h_{i}\right)=0$, then $F_{i} v_{\lambda}=0$ for $i \in I$;
(2) If $a_{i i}=2$, then $F_{i}^{\lambda\left(h_{i}\right)+1} v_{\lambda}=0$ for $i \in I$.

Proof (1) Obviously, the equality $E_{i} F_{i} v_{\lambda}=F_{i} E_{i} v_{\lambda}=0$ holds by (6.16). If $i \neq j$, from $\lambda\left(h_{i}\right)=0$ we can obtain that

$$
E_{i} F_{j} v_{\lambda}=F_{j} E_{i} v_{\lambda}+\frac{K_{i}-\bar{K}_{i}}{q_{i}-q_{i}^{-1}} v_{\lambda}=\frac{q_{i}^{\lambda\left(h_{i}\right)}-q_{i}^{-\lambda\left(h_{i}\right)}}{q_{i}-q_{i}^{-1}} v_{\lambda}=0 .
$$

Hence $F_{j} v_{\lambda}$ is a primitive vector of $V_{q}(\lambda)$. Note that $V_{q}(\lambda)$ is irreducible, so $F_{j} v_{\lambda}=0$, for otherwise $F_{j} v_{\lambda}$ would generate a proper submodule of $V_{q}(\lambda)$ with highest weight $\lambda-\alpha_{i}(\neq \lambda)$, which is a contradiction.
(2) Applying (6.17), for $i \neq j$, we can conclude that

$$
E_{i} F_{j}^{\lambda\left(h_{i}\right)+1} v_{\lambda}=F_{j}^{\lambda\left(h_{i}\right)+1} E_{i} v_{\lambda}=0
$$

For $i=j$ and $a_{i i}=2$, we have

$$
\begin{aligned}
E_{i} F_{i}^{\lambda\left(h_{i}\right)+1} v_{\lambda} & =F_{i}^{\lambda\left(h_{i}\right)+1} E_{i} v_{\lambda}+F_{i}^{\lambda\left(h_{i}\right)} \sum_{r=0}^{\lambda\left(h_{i}\right)}\left[\begin{array}{c}
K_{i} ;-2 r \\
1
\end{array}\right]_{w} v_{\lambda} \\
& =F_{i}^{\lambda\left(h_{i}\right)} \sum_{r=0}^{\lambda\left(h_{i}\right)} \frac{q_{i}^{\lambda\left(h_{i}\right)-2 r}-q_{i}^{-\lambda\left(h_{i}\right)+2 r}}{q_{i}-q_{i}^{-1}} v_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
= & \left(q_{i}-q_{i}^{-1}\right)\left(\left(q_{i}^{\lambda\left(h_{i}\right)}-q_{i}^{-\lambda\left(h_{i}\right)}\right)+\left(q_{i}^{\lambda\left(h_{i}\right)-2}-q_{i}^{-\lambda\left(h_{i}\right)+2}\right)\right. \\
& \left.+\cdots+\left(q_{i}^{2-\lambda\left(h_{i}\right)}-q_{i}^{\lambda\left(h_{i}\right)-2}\right)+\left(q_{i}^{-\lambda\left(h_{i}\right)}-q_{i}^{\lambda\left(h_{i}\right)}\right)\right) F_{i}^{\lambda\left(h_{i}\right)} v_{\lambda}=0 .
\end{aligned}
$$

Therefore, $F_{j}^{\lambda\left(h_{i}\right)+1} v_{\lambda}$ is a primitive vector of weight $\lambda-\left(\lambda\left(h_{i}\right)+1\right) \alpha_{i} \neq \lambda$, and hence $F_{j}^{\lambda\left(h_{i}\right)+1} v_{\lambda}=0$.

Assume $\lambda \in P$, and let V^{q} be a highest weight module over $w U_{q}^{d}(\mathscr{G})$ with highest weight λ and highest weight vector v_{λ}. We define the weak A-form $w V_{A}^{q}$ to be the $w U_{A}^{d}$-submodule of V^{q} generated by v_{λ}. That is, $w V_{A}^{q}=w U_{A}^{d} v_{\lambda}$.
Proposition 6.4 $w V_{A}^{q}=w_{A}^{-} v_{\lambda}$.
Proof By Lemma 6.2, every $u \in w U_{A}^{d}$ has a unique representation $u=w+\bar{w}, w \in w_{A}, \bar{w} \in \bar{w}_{A}$. Since $(1-J) v_{\lambda}=0, \bar{w} v_{\lambda}=0$, we have $u v_{\lambda}=w v_{\lambda}$. Recall that every element of w of w_{q} can be written as a sum of elements of the form $w^{-} w^{0} w^{+}$, where $w^{0} \in w_{A}^{0}$ and $w^{ \pm} \in w_{A}^{ \pm}$. By definition, $w^{+} v_{\lambda}=0$, unless $w^{+} \in A$, and $K_{i} v_{\lambda}=q_{i}^{\mu\left(h_{i}\right)} v_{\lambda} \in A_{\lambda}, D_{i} v_{\lambda}=q_{i}^{\mu\left(d_{i}\right)} v_{\lambda} \in A_{\lambda}$. For $i \in I, c \in \mathbf{Z}$ and $n \in \mathbf{Z}_{\geq 0}$, we have

$$
\left[\begin{array}{c}
K_{i} ; c \\
n
\end{array}\right]_{w} v_{\lambda}=\left[\begin{array}{c}
\lambda\left(h_{i}\right)+c \\
n
\end{array}\right]_{q_{i}} v_{\lambda}
$$

where

$$
\begin{aligned}
{\left[\begin{array}{c}
\lambda\left(h_{i}\right)+c \\
n
\end{array}\right]_{q_{i}} } & =\prod_{r=1}^{n} \frac{q_{i}^{\lambda\left(h_{i}\right)+c-r+1}-q_{i}^{-\left(\lambda\left(h_{i}\right)+c-r+1\right)}}{q_{i}^{r}-q_{i}^{-r}} \\
& =\frac{\left[\lambda\left(h_{i}\right)+c\right]_{q_{i}}!}{[n]_{q_{i}}!\left[\lambda\left(h_{i}\right)+c-n\right]_{q_{i}}!} \in A .
\end{aligned}
$$

Hence, $\left[\begin{array}{c}K_{i} ; c \\ n\end{array}\right]_{w} v_{\lambda} \in A v_{\lambda}$. Similarly, $\left[{ }_{n}^{D_{n} ; c}\right]_{w} v_{\lambda} \in A v_{\lambda}$. Then $w^{-} w^{0} w^{+} v_{\lambda} \in w_{A}^{-} v_{\lambda}$. That is, $w V_{A}^{q} \subseteq w_{A}^{-} v_{\lambda}$. It follows that $w V_{A}^{q}=w_{A}^{-} v_{\lambda}$.
Proposition 6.5 The map $\varphi: \mathbf{C}[q] \otimes w V_{A}^{q} \rightarrow V^{q}$ given by $f \otimes v \rightarrow f v\left(f \in \mathbf{C}[q], v \in w V_{A}^{q}\right)$ is a $\mathbf{C}[q]$-linear isomorphism.
Proof It is clear that the $C[q]$-linear map given above is surjective. Let $\left\{F_{\eta} J v_{\lambda} \mid \eta \in \Omega\right\}$ be a basis of V^{q}, where F_{η} is a monomial in $F_{i}^{\prime} s$. Define a $C[q]$-linear map $\psi: V^{q} \rightarrow C[q] \otimes w V_{A}^{q}$ by

$$
\psi\left(F_{\eta} J v_{\lambda}\right)=1 \otimes F_{\eta} J v_{\lambda} .
$$

Then it is easy to see that ψ and φ are inverse to each other, which proves our assertion.
Proposition 6.6 For $\mu \in P$, let $\left(w V_{A}^{q}\right)_{\mu}=w V_{A}^{q} \cap w V_{\mu}^{q}$. Then $w V_{A}^{q}$ has the weight space decomposition $w V_{A}^{q}=\oplus_{\mu \in P}\left(w V_{A}^{q}\right)_{\mu}$.
Proof Let $v=v_{1}+v_{2}+\cdots+v_{p} \in w V_{A}^{q}$, where $v_{j} \in w V_{\mu_{j}}^{q}\left(\mu_{j} \in P, j=1,2, \ldots, p\right)$. We would like to show $v_{j} \in w V_{A}^{q}$ for all $j=1,2, \ldots, p$. We will prove that $v_{1} \in w V_{A}^{q}$. The other cases can be proved in a similar way.

For $j=1,2, \ldots, p$ and $i \in I$, write $\mu_{j}\left(h_{i}\right)=S_{i j}$ and $\mu_{j}\left(d_{i}\right)=T_{i j}$. Since $\mu_{j} \neq \mu_{1}$ for $j=2, \ldots, p$, we can choose an index $i_{j} \in I$ such that $S_{i_{j}, j} \neq S_{i_{j}, 1}$ or $T_{i_{j}, j} \neq T_{i_{j}, 1}$. Let $I_{0}=\left\{i_{2}, i_{3}, \ldots, i_{p}\right\}$, and take $s=\max \left\{\left|S_{i j}-S_{i 1}\right|,\left|T_{i j}-T_{i 1}\right|\right\}$ for all $i \in I_{0}, j=1, \ldots, p$. We
define an element u of $w U_{A}^{d}$ to be

$$
u=\prod_{i \in I_{0}}\left[\begin{array}{c}
K_{i} ;-S_{i 1}+s \\
s
\end{array}\right]_{w}\left[\begin{array}{c}
K_{i} ;-S_{i 1}-1 \\
s
\end{array}\right]_{w}\left[\begin{array}{c}
D_{i} ;-T_{i 1}+s \\
s
\end{array}\right]_{w}\left[\begin{array}{c}
D_{i} ;-T_{i 1}-1 \\
s
\end{array}\right]_{w} .
$$

Then we have

$$
\begin{aligned}
{\left[\begin{array}{c}
K_{i} ;-S_{i 1}-1 \\
s
\end{array}\right]_{w} v_{1} } & =\prod_{r=1}^{s} \frac{K_{i} q_{i}^{-S_{i 1}-r}-\bar{K}_{i} q_{i}^{S_{i 1}+r}}{q_{i}^{r}-q_{i}^{-r}} v_{1} \\
& =\prod_{r=1}^{s} \frac{q_{i}^{-r}-q_{i}^{r}}{q_{i}^{r}-q_{i}^{-r}} v_{1}=(-1)^{s} v_{1}
\end{aligned}
$$

and

$$
\begin{aligned}
{\left[\begin{array}{c}
K_{i} ;-S_{i 1}+s \\
s
\end{array}\right]_{w} v_{1} } & =\prod_{r=1}^{s} \frac{K_{i} q_{i}^{-S_{i 1}+s-r+1}-\bar{K}_{i} q_{i}^{-\left(-S_{i 1}+s-r+1\right)}}{q_{i}^{r}-q_{i}^{-r}} v_{1} \\
& =\prod_{r=1}^{s} \frac{q_{i}^{s-r+1}-q_{i}^{-s+r-1}}{q_{i}^{r}-q_{i}^{-r}} v_{1}=v_{1} .
\end{aligned}
$$

Similarly,

$$
\left[\begin{array}{c}
D_{i} ;-T_{i 1}-1 \\
s
\end{array}\right]_{w} v_{1}=(-1)^{s} v_{1}
$$

and

$$
\left[\begin{array}{c}
D_{i} ;-T_{i 1}+s \\
s
\end{array}\right]_{w} v_{1}=v_{1}
$$

Therefore, $u v_{1}=(-1)^{2 s(p-1)} v_{1}=v_{1}$.
If $j \neq 1$, then

$$
\left[\begin{array}{c}
K_{i} ;-S_{i 1}-1 \\
s
\end{array}\right]_{w} v_{j}=\prod_{r=1}^{s} \frac{q_{i}^{S_{i j}-S_{i 1}-r}-q_{i}^{-\left(S_{i j}-S_{i 1}-r\right)}}{q_{i}^{r}-q_{i}^{-r}} v_{j}
$$

and

$$
\left[\begin{array}{c}
K_{i} ;-S_{i 1}+s \\
s
\end{array}\right]_{w} v_{j}=\prod_{r=1}^{s} \frac{q_{i}^{S_{i j}-S_{i 1}+s-r+1}-q_{i}^{-\left(S_{i j}-S_{i 1}+s-r+1\right)}}{q_{i}^{r}-q_{i}^{-r}} v_{j} .
$$

Thus,

$$
\begin{aligned}
\prod_{i \in I_{0}} & {\left[\begin{array}{c}
K_{i} ;-S_{i 1}-1 \\
s
\end{array}\right]_{w}\left[\begin{array}{c}
K_{i} ;-S_{i 1}+s \\
s
\end{array}\right]_{w} v_{j} } \\
& =\prod_{i \in I_{0}} \prod_{r, t=1}^{s} \frac{\left(q_{i}^{S_{i j}-S_{i 1}-r}-q_{i}^{-\left(S_{i j}-S_{i 1}-r\right)}\right)\left(q_{i}^{S_{i j}-S_{i 1}+s-t+1}-q_{i}^{-\left(S_{i j}-S_{i 1}+s-t+1\right)}\right)}{\left(q_{i}^{r}-q_{i}^{-r}\right)\left(q_{i}^{t}-q_{i}^{-t}\right)} v_{j} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\prod_{i \in I_{0}} & {\left[\begin{array}{c}
D_{i} ;-T_{i 1}-1 \\
s
\end{array}\right]_{w}\left[\begin{array}{c}
D_{i} ;-T_{i 1}+s \\
s
\end{array}\right]_{w} v_{j} } \\
& =\prod_{i \in I_{0}} \prod_{r, t=1}^{s} \frac{\left(q_{i}^{T_{i j}-T_{i 1}-r}-q_{i}^{-\left(T_{i j}-T_{i 1}-r\right)}\right)\left(q_{i}^{T_{i j}-T_{i 1}+s-t+1}-q_{i}^{-\left(T_{i j}-T_{i 1}+s-t+1\right)}\right)}{\left(q_{i}^{r}-q_{i}^{-r}\right)\left(q_{i}^{t}-q_{i}^{-t}\right)} v_{j}
\end{aligned}
$$

The terms where $r+t=s+1$ are

$$
\begin{aligned}
& \left(q_{i}^{S_{i j}-S_{i 1}-r}-q_{i}^{-\left(S_{i j}-S_{i 1}-r\right)}\right)\left(q_{i}^{S_{i j}-S_{i 1}+s-t+1}-q_{i}^{-\left(S_{i j}-S_{i 1}+s-t+1\right)}\right) \\
& \quad=q_{i}^{2\left(S_{i j}-S_{i 1}\right)}-q_{i}^{2 r}-q_{i}^{-2 r}+q_{i}^{-2\left(S_{i j}-S_{i 1}\right)}, \\
& \left(q_{i}^{T_{i j}-T_{i 1}-r}-q_{i}^{-\left(T_{i j}-T_{i 1}-r\right)}\right)\left(q_{i}^{T_{i j}-T_{i 1}+s-t+1}-q_{i}^{-\left(T_{i j}-T_{i 1}+s-t+1\right)}\right) \\
& \quad=q_{i}^{2\left(T_{i j}-T_{i 1}\right)}-q_{i}^{2 r}-q_{i}^{-2 r}+q_{i}^{-2\left(T_{i j}-T_{i 1}\right)} .
\end{aligned}
$$

By the definition of I_{0}, we have $S_{i, j}-S_{i, 1} \neq 0$ or $T_{i, j}-T_{i, 1} \neq 0$ for $i=i_{j} \in I_{0}$. Since r runs from 1 to s, there exists some value of r such that $r=\left|S_{i, j}-S_{i, 1}\right|$ or $r=\left|T_{i, j}-T_{i, 1}\right|$ for $i=i_{j} \in I_{0}$, which implies $u v_{j}=0$. It follows that $u v=u v_{1}$, and hence $v_{1} \in w V_{A}^{q}$.
Corollary 6.7 For all $\mu \in P,\left(w V_{A}^{q}\right)_{\mu}$ is a free A-module, and $\operatorname{rank}\left(w V_{A}^{q}\right)_{\mu}=\operatorname{dim}_{\mathbf{C}(q)}\left(w V_{\mu}^{q}\right)$.
Proof By Prop. 6.5 and Prop. 6.6, we get a $\mathbf{C}(q)$-linear isomorphism $\mathbf{C}(q) \otimes\left(w V_{A}^{q}\right)_{\mu} \cong w V_{\mu}^{q}$ for all $\mu \in P$, and our assertion follows.
Acknowledgements We would like to express our sincere gratitude to Fang Li for his many helpful suggestions.

References

[1] Li, F.: Weak Hopf algebra and some new solutions of the quantum Yang-Baxter equation. J. Algebra, 208, 72-100 (1998)
[2] Li, F., Duplij, S.: Weak Hopf algebras and singular solutions of quantum Yang-Baxter equation. Comm. Math. Phys., 225, 191-217 (2002)
[3] Li, F.: On quasi-bicrossed product of Weak Hopf algebras. Acta Mathematica Sinica, English Series, 20(2), 305-318 (2004)
[4] Li, F., Liu, G. X.: Weak tensor category and related generalzed Hopf algebras. Acta Mathematica Sinica, English Series, 22(4), 1027-1046 (2006)
[5] Aizawa, N., Isaac, P. S.: Weak Hopf algebras corresponding to $U_{q}\left[s l_{n}\right]$. J. Math. Phys., 44, 5250-5267 (2003)
[6] Yang, S. L.: Weak Hopf algebras corresponding to Cartan matrices. J. Math. Phys., 46, 073502-073520 (2005)
[7] Jeong, K., Kang, S. J., Kashiwara, M.: Crystal bases for quantum generalized Kac-Moody algebras. Proc. London Math. Soc., (3), 90, 395-438 (2005)
[8] Bankart, G., Kang, S. J., Melville, D.: Quantized enveloping algebras for Borcherds superalgebras. Transactions of the American Mathematical Society, 350(8), 3297-3319 (1998)
[9] Kang, S. J.: Quantum Deformation of generalized Kac-Moody algebras and their modules. J. Algebra, 175, 1041-1066 (1995)
[10] Jantzen, J. C.: Lectures on quantum group, American Mathematical Society. Providence, RI, 6, 60-70 (1995)
[11] Yang, S. L., Wang, H.: The Clebsch-Gordan decomposition for quantum algebra $w s l_{q}(2)$. The CJR Ring Conference Paper, Sep. 29, 2004

[^0]: Received March 8, 2006, Accepted December 29, 2006
 Supported in part by the Scientific Research Foundation of Zhejiang Provincial Education Department under grant number 20040322. It is also sponsored by SRF for ROCS, SEM

