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1 Introduction

The concept of a weak Hopf algebra was first introduced by Li in [1]. A bialgebra H over a
field k is called a weak Hopf algebra if there exists T ∈ Homk(H,H) such that T ∗ id ∗ T = T

and id ∗ T ∗ id = id, where T is called a weak antipode of H. Much work has been done
on such weak Hopf algebras, see [1–6]. As is known, two typical examples of such weak Hopf
algebras are the monoid algebra kS of a regular monoid S [1] and the almost quantum algebra
wslq(2) [2] (see also [5] for weak Hopf algebras corresponding to Uq[sln]). Recently, Yang has
given a more nontrivial weak Hopf algebra md

q(G ) in [6], where G is a semi-simple Lie algebra.
Following this idea, we will construct the more general weak Hopf algebra wUd

q (G ), where G is
a generalized Kac–Moody algebra. The main aim of the present paper is to study the structure
and representation of wUd

q (G ). The detailed outline of this paper is as follows.
In Section 2, we shortly review some basic concepts of the generalized Kac–Moody algebra,

then we will focus on the generalization of wUd
q (G ) by weakening the generators ki and pi

(i ∈ I), that is, exchanging their invertibility kik
−1
i = pip

−1
i = 1 to the regularityKiKiKi = Ki,
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KiKiKi = Ki, DiDiDi = Di, DiDiDi = Di. This leads to a weak Hopf algebra structure
of wUd

q (G ), which is studied in detail in Section 3. In Section 4 we will discuss the basis of
wUd

q (G ). In Section 5, we will define the highest weight module and Verma module over the
weak quantum generalized Kac–Moody algebra wUd

q (G ). Moreover, we study the corresponding
weak A-form in Section 6. At the same time, we obtain some results, which are the natural
generalization of the respective convention on the quantum enveloping algebra Uq(G ) (see [7]).

2 Weak Quantum Generalized Kac–Moody Algebra wUd
q (G )

Throughout the paper, some notations and definitions unexplained here can be found in [7–9].
We assume the basic field is the complex number field C. All algebras, modules and vector
spaces are over C without being specified.

Let I = {1, 2, . . . , n}, or I = N, the natural number set. A real square matrix A = (aij)i,j∈I

is a Borcherds–Cartan matrix if it satisfies:

(1) aii = 2 or aii ≤ 0 for all i ∈ I;

(2) aij ≤ 0 if i �= j;

(3) aij ∈ Z if aii = 2;

(4) aij = 0 if and only if aji = 0.

In this paper, we assume that all the entries of A are integers and the diagonal entries are
even. Furthermore, we assume that A is symmetrizable, that is, there exists a diagonal matrix
D = diag(si ∈ N>0|i ∈ I) such that DA is symmetric.

Let us introduce some useful concepts associated with generalized Kac–Moody algebras.
Suppose P v = (⊕i∈IZhi)⊕ (⊕i∈IZdi), and let H = C⊗ZP

v be the complex vector space with
basis {hi, di}i∈I . For i ∈ I, we define αi ∈ H ∗ by setting αi(hj) = aji and αi(dj) = δji, where
H ∗ is the dual space of H . Furthermore, the weight lattice is defined to be

P = {λ ∈ H ∗|λ(P v) ⊂ Z}.

The quantum enveloping algebra Uq(G ) of a generalized Kac–Moody algebra G with a
Borcherds–Cartan datum (A,P v, P,Π,Πv) is defined in [7, 9]. Uq(G ) is an associated algebra
with unit 1 generated by the generators ei, fi(i ∈ I) and qh (h ∈ P v) with the relations:

q0 = 1, qh1qh2 = qh1+h2 , h1, h2 ∈ P v, (2.1)

qheiq
−h = qαi(h)ei, qhfiq

−h = q−αi(h)fi, (2.2)

eifj − fjei = δij
ki − k−1

i

qi − q−1
i

, where ki = qsihi , (2.3)

1−aij∑

r=0

(−1)r

[
1 − aij

r

]

qi

e
1−aij−r
i eje

r
i = 0, if aii = 2, i �= j, (2.4)

1−aij∑

r=0

(−1)r

[
1 − aij

r

]

qi

f
1−aij−r
i fjf

r
i = 0, if aii = 2, i �= j, (2.5)

eiej − ejei = 0, fifj − fjfi = 0, if aij = 0, (2.6)
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where qi = qsi and
[
m

n

]

qi

=
(qm

i − q−m
i )(qm−1

i − q
−(m−1)
i ) · · · (qm−n+1

i − q
−(m−n+1)
i )

(qi − q−1
i )(q2i − q−2

i ) · · · (qn
i − q−n

i )
, m > n > 0.

Since the basis of H is {hi, di}i∈I , then the generators of Uq(G ) can be written as ei, fi, k
±1
i

and p±1
i , where ki = qsihi and pi = qsidi . To generalize the invertibility condition (2.1),

we introduce a projector J to weaken the invertibility to regularity, replacing {ki, k
−1
i } (resp.

{pi, p
−1
i }) by a pair {Ki,Ki} (resp. {Di, Di}) for all i ∈ I subject to some relations:

J = KiKi = KiKi = DiDi = DiDi, (2.7)

JKi = KiJ = Ki, JKi = KiJ = Ki, (2.8)

JDi = DiJ = Di, JDi = DiJ = Di. (2.9)

To generalize other relations of the definition of Uq(G ), we need some terminology. If Ei

satisfies

KjEi = q
aij

i EiKj , EiKj = q
aij

i KjEi, DjEi = q
δij

i EiDj , EiDj = q
δij

i DjEi, (2.10)

for all j ∈ I, we say Ei is of type 1. However, if Ei satisfies

KjEiKj = q
aij

i Ei, DjEiDj = q
δij

i Ei, (2.11)

for all j ∈ I, we say Ei is of type 2. The same convention holds for Fi by replacing Ei with Fi

and aij (resp. δij) with −aij (resp. −δij) in the above relations.
We borrow some notions from [5–6], Ei and Fi(i ∈ I) are listed by starting with Ei followed

by Fi, where a 1 indicates the use of a type 1 generator and a 0 indicates the use of a type 2
generator. Then write d in terms of its binary expansion,

d = ({ci}i∈I |{ci}i∈I),

where the bar seperates the values representing the Ei and Fi, and where the ci and ci have
values of either 0 or 1. Accordingly, we say Ei and Fi are of type d in an obvious sense.

Definition 2.1 The algebra wUd
q (G ) is generated by the generators Ei, Fi, Ki,Ki, Di, Di

and J satisfying (2.7)–(2.9) along with the relations : For all i, j ∈ I,

KiKj = KjKi, KiKj = KjKi, KiKj = KjKi, (2.12)

DiDj = DjDi, DiDj = DjDi, DiDj = DjDi, (2.13)

DiKj = KjDi, DiKj = KjDi, DiKj = KjDi, DiKj = KjDi, (2.14)

Ei, Fi are type d, (2.15)

EiFj − FjEi = δij
Ki −Ki

qi − q−1
i

, (2.16)

1−aij∑

r=0

(−1)r

[
1 − aij

r

]

qi

E
1−aij−r
i EjE

r
i = 0, if aii = 2, i �= j, (2.17)

1−aij∑

r=0

(−1)r

[
1 − aij

r

]

qi

F
1−aij−r
i FjF

r
i = 0, if aii = 2, i �= j, (2.18)
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EiEj = EjEi, FiFj = FjFi, if aij = 0. (2.19)

The algebra wUd
q (G ) is called a d-type weak quantum generalized Kac–Moody algebra.

There are some properties for wUd
q (G ) which will be used later.

Proposition 2.2 The idempotent J satisfies aJ = Ja, for any a ∈ wUd
q (G ).

Proof It is obvious that aJ = Ja for a = Ki,Ki, Di, Di or J .

If Ei is of type 1, then we obtain, from (2.10),

JEi = (KjKj)Ei = Kj(q
aij

i EiKj) = (qaij

i KjEi)Kj = (EiKj)Kj = EiJ.

If Ei is of type 2, then we obtain, from (2.11),

JEi = (KjKj)Ei = (KjKj)(q
−aij

i KjEiKj) = q
−aij

i (KjEiKj)J = EiJ.

Hence, JEi = EiJ for all i ∈ I. A similar calculation is performed for Fi.
In particular, if Ei and Fi are of type 2, then EiJ = JEi = Ei, FiJ = JFi = Fi.
Also note that, due to the relation (2.15), the following relations hold:

Kn
j E

m
i = q

mnaij

i Em
i K

n
j , Em

i K
n

j = q
mnaij

i K
n

jE
m
i ,

Dn
j E

m
i = q

mnδij

i Em
i D

n
j , Em

i D
n

j = q
mnδij

i D
n

jE
m
i ,

for all m,n ∈ Z>0. The respective relations hold for Fi by replacing Ei with Fi and aij (resp.
δij) with −aij (resp. −δij) in the above relations.

3 The Weak Hopf Algebra Structure of wUd
q (G )

Let us define three maps

Δ : wUd
q (G ) −→ wUd

q (G ) ⊗ wUd
q (G ),

ε : wUd
q (G ) −→ C,

T : wUd
q (G ) −→ wUd

q (G )

as follows:

Δ(J) = J ⊗ J, (3.1)

Δ(Ki) = Ki ⊗Ki, Δ(Ki) = Ki ⊗Ki, (3.2)

Δ(Di) = Di ⊗Di, Δ(Di) = Di ⊗Di, (3.3)

Δ(Ei) =

{
Ei ⊗Ki + 1 ⊗ Ei, if Ei is type 1;
Ei ⊗Ki + J ⊗ Ei, if Ei is type 2,

(3.4)

Δ(Fi) =

{
Fi ⊗ 1 +Ki ⊗ Fi, if Fi is type 1;
Fi ⊗ J +Ki ⊗ Fi, if Fi is type 2,

(3.5)

ε(Di) = ε(Di) = ε(Ki) = ε(Ki) = ε(J) = 1, ε(Ei) = ε(Fi) = 0, (3.6)

T (1) = 1, T (J) = J, T (Ki) = Ki, T (Ki) = Ki, T (Di) = Di, T (Di) = Di, (3.7)

T (Ei) = −EiKi, T (Fi) = −KiFi, i ∈ I. (3.8)
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Let μ and η be the product and the unit of wUd
q (G ), respectively. Then we have the following

lemma:

Lemma 3.1 (wUd
q (G ), μ, η,Δ, ε) is a bialgebra.

Proof It is easy to check that (wUd
q (G ),Δ, ε) is a coalgebra and ε is an algebra morphism. To

show that Δ is an algebra morphism, we shall check that it preserves the relations (2.7)–(2.19).
All of these are straightforward, saving the calculations involving relations (2.7)–(2.15) and
(2.19). We will illustrate the arguments in these cases.

For (2.16), we should examine the identity

Δ(Ei)Δ(Fj) − Δ(Fj)Δ(Ei) = δij
Δ(Ki) − Δ(Ki)

qi − q−1
i

.

The following cases should be considered:

(1) Both Ei and Fj are of type 1;

(2) Ei is of type 1 and Fj is of type 2;

(3) Ei is of type 2 and Fj is of type 1;

(4) Both Ei and Fj are of type 2.

For the case (3), using the facts, which are EiKj = q
−aij

i KjEi and FjKi = q
−aij

i KiFj , it
is obvious that

Δ(Ei)Δ(Fj) − Δ(Fj)Δ(Ei) = (EiFj − FjEi) ⊗Ki +KiJ ⊗ (EiFj − FjEi)

= δij
(Ki −Ki) ⊗Ki +Ki ⊗ (Ki −Ki)

qi − q−1
i

= δij
Ki ⊗Ki −Ki ⊗Ki

qi − q−1
i

= δij
Δ(Ki) − Δ(Ki)

qi − q−1
i

.

For the other cases, the proof is similar. For (2.17) and (2.18), we should consider several cases
according to the type of {Ei, Ej} or {Fi, Fj}, i �= j. In fact, the argument is more or less the
same as the discussion in [10, pp. 67–68].

Lemma 3.2 T is an antimorphism from wUd
q (G ) to wUd

q (G ).

Proof It is trivial that T keeps the antirelations of (2.7)–(2.16) and (2.19).

For (2.17), it can be proved as follows:

1−aij∑

r=0

(−1)r

[
1 − aij

r

]

qi

T (Ei)rT (Ej)T (Ei)1−aij−r

= −
( 1−aij∑

r=0

(−1)1−aij−r

[
1 − aij

1 − aij − r

]

qi

Er
iEjE

1−aij−r
i

)
K

1−aij

i Kj

= −
( 1−aij∑

s=0

(−1)s

[
1 − aij

s

]

qi

E
1−aij−s
i EjE

s
i

)
K

1−aij

i Kj

= 0.
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The argument for (2.18) is similar. Hence T can be extended to an antimorphism from
wUd

q (G ) to wUd
q (G ).

Lemma 3.3 Let X be Ei, Fi,Ki,Ki, Di, Di or J . Then

(id ∗ T ∗ id)(X) = X, (T ∗ id ∗ T )(X) = T (X).

Proof For X = Ki,Ki, Di, Di or J , the calculations are trivial.
If Ei is of type 1, then

(Δ ⊗ id)Δ(Ei) = Ei ⊗Ki ⊗Ki + 1 ⊗ Ei ⊗Ki + 1 ⊗ 1 ⊗ Ei.

It follows that

(id ∗ T ∗ id)(Ei) = EiKiKi + (−EiKi)Ki + Ei = Ei = id(Ei),

(T ∗ id ∗ T )(Ei) = (−EiKi)KiKi + EiKi + (−EiKi) = −EiKi = T (Ei).

If Ei is of type 2, then

(Δ ⊗ id)Δ(Ei) = Ei ⊗Ki ⊗Ki + J ⊗ Ei ⊗Ki + J ⊗ J ⊗ Ei.

We also deduces that

(id ∗ T ∗ id)(Ei) = EiKiKi + J(−EiKi)Ki + JEi = JEi = Ei = id(Ei),

(T ∗ id ∗ T )(Ei) = (−EiKi)KiKi + JEiKi + J(−EiKi) = −JEiKi = EiKi = T (Ei).

As for Fi, the argument is similar.
Notice that the following two facts hold:
(1) The coproducts of the generators are bilinear expressions of generators;
(2) One of id ∗ T (X) and T ∗ id(X) is a central element of wUd

q (G ) for X being Ei, Fi,

Ki,Ki, Di, Di or J .
From the above facts we can show that, if

(id ∗ T ∗ id)(x) = x, (T ∗ id ∗ T )(x) = T (x),

(id ∗ T ∗ id)(y) = y, (T ∗ id ∗ T )(y) = T (y),

for x and y being Ei, Fi,Ki,Ki, Di, Di or J , then

(id ∗ T ∗ id)(xy) = xy, (T ∗ id ∗ T )(xy) = T (xy).

Hence, the antipode axioms hold on arbitrary elements by induction, and T is a weak antipode.
From the above lemmas, we have the following theorem:

Theorem 3.4 (wUd
q (G ), μ, η,Δ, ε, T ) is a weak Hopf algebra.

4 The Basis of wUd
q (G )

Similarly to [2, 5–6], we can establish the relationship between wUd
q (G ) and the quantum

enveloping algebra Uq(G ) as follows.

Proposition 4.1 wUd
q (G ) = wq⊕wq, where wq = wUd

q (G )J , wq = wUd
q (G )(1−J). Moreover,

wq
∼= Uq(G ) as Hopf algebras.
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Proof Due to J2 = J , wq and wq are ideals of wUd
q (G ). Consequently, wUd

q (G ) = wq ⊕ wq as
algebras. Moreover, it is obvious to see that wq is generated by EiJ, FiJ, Ki, Ki, Di, Di and
J subject to the relations (2.7)–(2.9) and

Kj(EiJ) = q
aij

i (EiJ)Kj , (EiJ)Kj = q
aij

i Kj(EiJ), (4.1)

Dj(EiJ) = q
δij

i (EiJ)Dj , (EiJ)Dj = q
δij

i Dj(EiJ), (4.2)

Kj(FiJ) = q
−aij

i (FiJ)Kj , (FiJ)Kj = q
−aij

i Kj(FiJ), (4.3)

Dj(FiJ) = q
−δij

i (FiJ)Dj , (FiJ)Dj = q
−δij

i Dj(FiJ), (4.4)

(EiJ)(FjJ) − (FjJ)(EiJ) = δij
Ki −Ki

qi − q−1
i

, (4.5)

1−aij∑

r=0

(−1)r

[
1 − aij

r

]

qi

(EiJ)1−aij−r(EjJ)(EiJ)r = 0, if aii = 2, i �= j, (4.6)

1−aij∑

r=0

(−1)r

[
1 − aij

r

]

qi

(FiJ)1−aij−r(FjJ)(FiJ)r = 0, if aii = 2, i �= j, (4.7)

(EiJ)(EjJ) = (EjJ)(EiJ), (FiJ)(FjJ) = (FjJ)(FiJ), if aij = 0. (4.8)

Here J can be viewed as the identity of wq. From this point of view wq becomes a weak Hopf
algebra, where the coproduct Δ is

Δ(J) = J ⊗ J, Δ(Ki) = Ki ⊗Ki, Δ(Ki) = Ki ⊗Ki,

Δ(Di) = Di ⊗Di, Δ(Di) = Di ⊗Di,

Δ(EiJ) = EiJ ⊗Ki + J ⊗ (EiJ),

Δ(FiJ) = FiJ ⊗ J +Ki ⊗ (FiJ), i ∈ I.

The counit is

ε(Di) = ε(Di) = ε(Ki) = ε(Ki) = ε(J) = 1,

ε(EiJ) = ε(FiJ) = 0, i ∈ I.

The antipode S is

S(Ki) = Ki, S(Ki) = Ki, S(Di) = Di,

S(Di) = Di, S(EiJ) = −(EiJ)Ki, S(Fi) = −Ki(FiJ), i ∈ I.

Let ρ be the algebra morphism from Uq(G ) to wq defined by

ρ(ei) = (EiJ), ρ(fi) = (FiJ), ρ(ki) = Ki,

ρ(k−1
i ) = Ki, ρ(pi) = Di, ρ(p−1

i ) = Di, i ∈ I.

Then ρ is a Hopf algebra isomorphism.
To find the basis of wUd

q (G ), we first introduce some notions. Define

P k
i =

⎧
⎪⎨

⎪⎩

Kk
i , if k > 0,

J, if k = 0,

K
−k

i , if k < 0,
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and

Qk
i =

⎧
⎪⎨

⎪⎩

Dk
i , if k > 0,

J, if k = 0,

D
−k

i , if k < 0.

It is easy to see that P k
i and Qk

i satisfy the regularity conditions:

P k
i P

−k
i P k

i = P k
i , Qk

iQ
−k
i Qk

i = Qk
i .

Set P s =
∏

i∈I P
si
i , Qt =

∏
i∈I Q

ti
i , where si, ti ∈ Z.

There exists a triangular decomposition Uq(G ) ∼= U+
q ⊗ U0

q ⊗ U−
q (see [9]), where U0

q is the
subalgebra of Uq(G ) generated by {qh}h∈P v , and U+

q (resp. U−
q ) is the subalgebra of Uq(G )

generated by {ei}i∈I (resp. {fi}i∈I). For α =
∑

i∈I riαi, ri ∈ Z, we will use the notation
eα =

∏
i∈I e

ri
i , fα =

∏
i∈I f

ri
i . Moreover, it is well known that {eαq

hfβ |α, β ∈ Ω, h ∈ P v}
forms a basis of Uq(G ), where Ω is just a set indexing the basis elements.

Proposition 4.2 The set {EαP
sQtFβJ |α, β ∈ Ω} forms a basis of wq.

Proof Let w0
q be the subalgebra generated by Ki,Ki, Di, Di, i ∈ I. It is easy to see that

{P sQt} forms a basis of w0
q .

Let w+
q (resp. w−

q ) be the subalgebra of wq generated by {EiJ}i∈I (resp. {FiJ}i∈I).
Obviously w+

q
∼= U+

q , we replace every ei in the monomial eα by EiJ , thus the set {EαJ |α ∈ Ω}
forms a basis of w+

q . By w−
q

∼= U−
q , the set {FβJ |β ∈ Ω} forms a basis of w−

q . Furthermore,
(EαJ)P sQt(FβJ) = EαP

sQtFβJ , then {EαP
sQtFβJ |α, β ∈ Ω} forms a basis of wq.

To consider the basis of wq = wUd
q (G )(1−J), we need to recall some conventions. First note

that d = ({ci}i∈I |{ci}i∈I), if ci = 0 (resp. ci = 0), then Ei(1 − J) = 0 (resp. Fi(1 − J) = 0); if
ci �= 0 (resp. ci �= 0), then Ei(1 − J) �= 0 (resp. Fi(1 − J) �= 0). Let

I1 = {i|ci �= 0}, I2 = {i|ci �= 0}
and

Xi = Ei(1 − J), Yj = Fj(1 − J), i ∈ I1, j ∈ I2.

Obviously, {Xi, Yj |i ∈ I1, j ∈ I2}∪{1−J} generates the ideal wq enjoying the following relation:

XiYj = YjXi, (4.9)

for all i ∈ I1, j ∈ I2 by (2.16).

To see what other relations Xi, Yj enjoy, we consider the following five cases:

(1) If I1 = I2 = I, using the quantum serre relations (2.17)–(2.19), then we have

1−aij∑

r=0

(−1)r

[
1 − aij

r

]

qi

X
1−aij−r
i XjX

r
i = 0, if aii = 2, i �= j, (4.10)

1−aij∑

r=0

(−1)r

[
1 − aij

r

]

qi

Y
1−aij−r
i YjY

r
i = 0, if aii = 2, i �= j, (4.11)

XiXj = XjXi, YiYj = YjYi, if aij = 0, (4.12)
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and other relations corresponding to (2.7)-(2.13) would vanish automatically. This means the
ideal wq can be understood as an algebra generated by {Xi, Yj |i, j ∈ I} ∪ {1 − J} subject to
the relations (4.9)–(4.12). Therefore {EαFβ(1 − J)|α, β ∈ Ω} forms a basis of wq.

(2) If I1 = I2 = ∅, then {1 − J} forms a basis of wq.

(3) If I1 �= ∅, I2 �= ∅, then wq generated by {Xi, Yj |i ∈ I1, j ∈ I2} ∪ {1 − J} satisfies the
relations (4.9)–(4.12). For

α′ =
∑

i∈I1

riαi, ri ∈ Z, β′ =
∑

i∈I2

tiαi, ti ∈ Z,

we denote

Eα′ =
∏

i∈I1

Eri

i , Fβ′ =
∏

i∈I2

F ti

i .

Therefore {Eα′Fβ′(1 − J)} forms a basis of wq.

(4) If I1 = ∅, I2 �= ∅, then wq generated by {Yj |j ∈ I2} ∪ {1 − J} satisfies the relations
(4.11)–(4.12), so {Fβ′(1 − J)|β′ ∈ Ω′} forms a basis of wq.

(5) If I1 �= ∅, I2 = ∅, then wq generated by {Xi|i ∈ I1} ∪ {1 − J} satisfies the relations
(4.10) and (4.12). Therefore {Eα′(1 − J)|α′ ∈ Ω′} forms a basis of wq.

The case (1) is a special type of the case (5). For every case, we can describe the basis
of wUd

q (G ) from the above discussion. For example, for the case (1), {EαP
sQtFβJ |α, β ∈

Ω} ∪ {EαFβ(1 − J)|α, β ∈ Ω} is a basis of wUd
q (G ). For other cases, the results are similar.

5 The Highest Weight Module

In this section, we will define some terms which are similar to the respective definitions of Uq(G )
in [9]. The following lemma is similar to [11, Lemma 1.1].

Lemma 5.1 Let V be a wUd
q (G )−module and 0 �= v ∈ V . For every i ∈ I, if Kiv = λiv

and Kiv = λiv for λi, λi ∈ C, then λi =
{

λ−1
i , if λi �=0;
0, if λi=0.

Thus Jv = v, provided that there exists
i ∈ I such that Kiv = λiv and λi �= 0.

Proof If λi �= 0, we have

λiv = Kiv = KiKiKiv = λiλ
2
i v.

So λiλi = 1. On the other hand, if λi = 0, we have

λiv = Kiv = KiKiKiv = λiλ
2

i v = 0.

Hence we can conclude that if λi �= 0, Kiv = λ−1
i v and if λi = 0, Kiv = 0. Since J = KiKi, if

there exists i ∈ I such that λi �= 0, then Jv = λiλiv = v.

Similarly, we can prove the following corollary:

Corollary 5.2 Let V be a wUd
q (G )-module and 0 �= v ∈ V . For every i ∈ I, if Div = λiv

and Div = λiv for λi, λi ∈ C, then λi =
{

λ−1
i if λi �=0;
0 if λi=0.

Thus Jv = v, provided that there exists
i ∈ I such that Div = λiv and λi �= 0.

From the above results, we can introduce the following definition:
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Definition 5.3 A wUd
q (G )-module V q is called a weak quantum weight module if V q =

⊕μ∈PwV
q
μ , where

wV q
μ = {v ∈ V q|Jv = v, Kiv = q

μ(hi)
i v, Kiv = q

−μ(hi)
i v,

Div = q
μ(di)
i v,Div = q

−μ(di)
i v, hi, di ∈ h, i ∈ I}.

A wUd
q (G )-module V q is called the highest weight module with highest weight λ ∈ P if there

exists a nonzero vector vλ ∈ V q such that

(1) Eivλ = 0 for every i ∈ I;

(2) vλ ∈ wV q
λ ;

(3) V q = wUd
q (G )vλ.

Proposition 5.4 V q = w−
q vλ.

Proof By Prop. 4.1, every u ∈ wUd
q (G ) has a unique representation u = w+w,w ∈ wq, w ∈ wq.

Since (1 − J)vλ = 0, wvλ = 0, we have uvλ = wvλ. Hence V q = wqvλ. Recall that every
element of w of wq can be written as a sum of elements of the form w−w0w+, where w0 ∈ w0

q

and w± ∈ w±
q . By Def. 5.3, V q = w−

q vλ.

Since V q = wqvλ and wq
∼= Uq(G ), we have the following result:

Definition 5.5 If dimC wV
q
μ <∞ for all μ ∈ P , then the character of V q is

ChV q =
∑

μ∈P

(dimC wV
q
μ )eμ,

where eμ is the basis of elements of the group algebra C[H ∗] with multiplication given by
eμeν = eμ+ν for μ, ν ∈ P .

Definition 5.6 A wUd
q (G )-module Mq(λ) with highest weight λ is called a weak Verma

module if every wUd
q (G )-module with highest weight λ is a quotient of Mq(λ).

Proposition 5.7 (1) For each λ ∈ P , there exists a unique up to an isomorphism weak
Verma module Mq(λ);

(2) Viewed as a wUd
q (G )-module, Mq(λ) is a free module of rank 1 generated by a highest

weight vector vλ = 1 + Iq(λ);

(3) Mq(λ) contains a unique proper maximal submodule Jq(λ).

Proof (1) If Mq
1 (λ) and Mq

2 (λ) are two weak Verma modules, then by definition there exists
a surjective homomorphism ϕ : Mq

1 (λ) −→ Mq
2 (λ). In particular, ϕ(Mq

1 (λ)μ) = Mq
2 (λ)μ for

all μ ∈ P , and hence dimC ϕ(Mq
1 (λ)μ) ≥ dimCM

q
2 (λ)μ for all μ ∈ P . Exchanging Mq

1 (λ) and
Mq

2 (λ) proves that ϕ is an isomorphism.

To prove the existence of a Verma module, consider the left ideal Iq(λ) of wUd
q (g) generated

by {J −1, Ei,Ki − qλ(hi)
i ·1,Ki − q−λ(hi)

i ·1, Di − qλ(di)
i ·1, Di − q−λ(di)

i ·1}i∈I , and set Mq(λ) =
wUd

q (G )/Iq(λ). Then, via the left multiplication, Mq(λ) becomes a wUd
q (g)-module. It is clear

that Mq(λ) is a wUd
q (G )-module with the highest weight λ, the highest weight vector being the

image of 1 ∈ wUd
q (G ).

(2) By Prop. 5.4, ∀u ∈ wUd
q (G ), uvλ can be written as a sum of elements of the form w−vλ.

If w−(1 + Iq(λ)) = 0, then w− ∈ Iq(λ). Hence w− must be zero, and our assertion follows.
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(3) Note that for any proper submodule M ′ of Mq(λ), M ′ ⊆ ⊕μ∈P,μ �=λwV
q
μ , Thus the sum

of proper submodules is again a submodule of Mq(λ). Then Mq(λ) contains a unique proper
maximal submodule Jq(λ).

The irreducible quotient V q(λ) = Mq(λ)/Jq(λ) is an irreducible weight module over wUd
q (g)

with the highest weight λ.

6 Weak A-forms

The A-form UA of the quantum group Uq(G ) is defined in [8, 9], where G is a generalized Kac–
Moody algebra. In this section, we would like to define the weak A-forms of wUd

q (G ), where
A = C[q, q−1, 1/ [n]qi

, i ∈ I, n > 0].
Following [8, 9], for each i ∈ I, c ∈ Z, n ∈ Z≥0, we define

[
Ki; c

n

]

w

=
n∏

r=1

Kiq
c−r+1
i −Kiq

−(c−r+1)
i

qr
i − q−r

i

, (6.1)

[
Ki; c
n

]

w

=
n∏

r=1

Kiq
c−r+1
i −Kiq

−(c−r+1)
i

qr
i − q−r

i

, (6.2)

[
Di; c
n

]

w

=
n∏

r=1

Diq
c−r+1
i −Diq

−(c−r+1)
i

qr
i − q−r

i

, (6.3)

[
Di; c
n

]

w

=
n∏

r=1

Diq
c−r+1
i −Diq

−(c−r+1)
i

qr
i − q−r

i

. (6.4)

From the above definition, we have

Kiq
c−r+1
i −Kiq

−(c−r+1)
i

qr
i − q−r

i

=
Kiq

c−r+1
i −Kiq

c−r+1
i +Kiq

c−r+1
i −Kiq

−(c−r+1)
i

qr
i − q−r

i

= qc−r+1
i

Ki −Ki

qr
i − q−r

i

+Ki
qc−r+1
i − q

−(c−r+1)
i

qr
i − q−r

i

= qc−r+1
i

qi − q−1
i

qr
i − q−r

i

Ki −Ki

qi − q−1
i

+Ki
qc−r+1
i − q

−(c−r+1)
i

qi − q−1
i

qi − q−1
i

qr
i − q−r

i

=
1

[r]qi

(
qc−r+1
i

[
Ki; 0

1

]

w

+ [c− r + 1]qi
Ki

)
.

Then the following identity holds:
[
Ki; c
n

]

w

=
n∏

r=1

1
[r]qi

(
qc−r+1
i

[
Ki; 0

1

]

w

+ [c− r + 1]qi
Ki

)
, (6.5)

for all c ∈ Z.

Similarly,
[
Ki; c

n

]

w

=
n∏

r=1

1
[r]qi

(
qc−r+1
i

[
Ki; 0

1

]

w

+ [c− r + 1]qi
Ki

)
, (6.6)
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for all c ∈ Z, and the respective relations hold with Di (resp. Di) in place of Ki (resp. Ki).
Note that [

Ki; 0
1

]

w

= −
[
Ki; 0

1

]

w

,

[
Di; 0

1

]

w

= −
[
Di; 0

1

]

w

, (6.7)

for all i ∈ I.

We define the d-type weak A-form wUd
A of wUd

q (G ) to be the A-subalgebra of wUd
q (G ) with

unit 1 generated by the elements Ei, Fi, Ki, Ki, Di, Di, J ,
[

Ki;0
1

]
w

and
[

Di;0
1

]
w

(i ∈ I).
Obviously, (wUd

A, μ, η,Δ, ε) is a d-type weak Hopf subalgebra.

Lemma 6.1 For i, j ∈ I, c ∈ Z, and n ∈ Z>0, we have
[
Ki; c

n

]

w

Ej = Ej

[
Ki; c+ aij

n

]

w

, (6.8)

Ej

[
Ki; c
n

]

w

=
[
Ki; c+ aij

n

]

w

Ej , (6.9)

[
Ki; c
n

]

w

Fj = Fj

[
Ki; c− aij

n

]

w

, (6.10)

Fj

[
Ki; c
n

]

w

=
[
Ki; c− aij

n

]

w

Fj , (6.11)

[
Di; c

n

]

w

Ej = Ej

[
Di; c+ δij

n

]

w

, (6.12)

Ej

[
Di; c

n

]

w

=
[
Di; c+ δij

n

]

w

Ej , (6.13)

[
Di; c
n

]

w

Fj = Fj

[
Di; c− δij

n

]

w

, (6.14)

Fj

[
Di; c
n

]

w

=
[
Di; c− δij

n

]

w

Fj , (6.15)

EiFj − FjEi = δij

[
Ki; 0

1

]

w

, (6.16)

EiF
n
j =

⎧
⎪⎨

⎪⎩
Fn

j Ei + Fn−1
i

∑n−1
r=0

[
Ki;−raii

1

]

w

, if i = j;

Fn
j Ei, if i �= j.

(6.17)

Proof The first nine equalities follow directly from the defining relations of wUd
q (G ) and (6.1)–

(6.4), while (6.17) is proved by induction.
Let wA = wUd

AJ , wA = wUd
A(1 − J). Then

Proposition 6.2 As algebras, wUd
A = wA ⊕ wA. Moreover, wA

∼= UA as Hopf algebras,
where UA is the A-form of Uq(G ) (see [9]).
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Proof Since J2 = J , wA and wA are ideals of wUd
A. Consequently, wUd

A = wA⊕wA as algebras.
Moreover, wA is generated by JEi, JFi, Ki, Ki, Di, Di, J ,

[
Ki;0

1

]
w

and
[

Di;0
1

]
w

(i ∈ I). The
respective relations of Lemma 6.1 hold by replacing Ei (resp. Fi) with JEi (resp. JFi). Let
ρ : wA → UA satisfy

ρ(ei) = EiJ, ρ(fi) = FiJ, ρ(ki) = Ki,

ρ(k−1
i ) = Ki, ρ(pi) = Di, ρ(p−1

i ) = Di,

ρ

([
ki; 0
1

])
=

[
Ki; 0

1

]

w

, ρ

([
pi; 0
1

])
=

[
Di; 0

1

]

w

.

It is easy to check ρ is a Hopf algebra isomorphism.

As an immediate consequence of Lemma 6.2, we have the triangular decomposition of the
algebra wA:

wA
∼= w+

A ⊗ w0
A ⊗ w−

A ,

where w0
A is a subalgebra of wA generated by

{
Ki,Ki, Di, Di, J,

[
Ki; 0

1

]

w

,

[
Di; 0

1

]

w

}

i∈I

and w+
A (resp. w−

A ) is a subalgebra of wA generated by {JEi}i∈I (resp. {JFi}i∈I ).

Corollary 6.3 Let V q(λ) be the irreducible highest weight module with the highest weight
λ ∈ P+ and the highest weight vector vλ.

(1) If λ(hi) = 0, then Fivλ = 0 for i ∈ I;

(2) If aii = 2, then F
λ(hi)+1
i vλ = 0 for i ∈ I.

Proof (1) Obviously, the equality EiFivλ = FiEivλ = 0 holds by (6.16). If i �= j, from
λ(hi) = 0 we can obtain that

EiFjvλ = FjEivλ +
Ki −Ki

qi − q−1
i

vλ =
q

λ(hi)
i − q

−λ(hi)
i

qi − q−1
i

vλ = 0.

Hence Fjvλ is a primitive vector of Vq(λ). Note that Vq(λ) is irreducible, so Fjvλ = 0, for
otherwise Fjvλ would generate a proper submodule of Vq(λ) with highest weight λ − αi( �= λ),
which is a contradiction.

(2) Applying (6.17), for i �= j, we can conclude that

EiF
λ(hi)+1
j vλ = F

λ(hi)+1
j Eivλ = 0.

For i = j and aii = 2, we have

EiF
λ(hi)+1
i vλ = F

λ(hi)+1
i Eivλ + F

λ(hi)
i

λ(hi)∑

r=0

[
Ki;−2r

1

]

w

vλ

= F
λ(hi)
i

λ(hi)∑

r=0

q
λ(hi)−2r
i − q

−λ(hi)+2r
i

qi − q−1
i

vλ
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= (qi − q−1
i )((qλ(hi)

i − q
−λ(hi)
i ) + (qλ(hi)−2

i − q
−λ(hi)+2
i )

+ · · · + (q2−λ(hi)
i − q

λ(hi)−2
i ) + (q−λ(hi)

i − q
λ(hi)
i ))Fλ(hi)

i vλ = 0.

Therefore, Fλ(hi)+1
j vλ is a primitive vector of weight λ − (λ(hi) + 1)αi �= λ, and hence

F
λ(hi)+1
j vλ = 0.

Assume λ ∈ P , and let V q be a highest weight module over wUd
q (G ) with highest weight λ

and highest weight vector vλ. We define the weak A-form wV q
A to be the wUd

A-submodule of
V q generated by vλ. That is, wV q

A = wUd
Avλ.

Proposition 6.4 wV q
A = w−

Avλ.

Proof By Lemma 6.2, every u ∈ wUd
A has a unique representation u = w+w,w ∈ wA, w ∈ wA.

Since (1 − J)vλ = 0, wvλ = 0, we have uvλ = wvλ. Recall that every element of w of wq can
be written as a sum of elements of the form w−w0w+, where w0 ∈ w0

A and w± ∈ w±
A . By

definition, w+vλ = 0, unless w+ ∈ A, and Kivλ = q
μ(hi)
i vλ ∈ Aλ, Divλ = q

μ(di)
i vλ ∈ Aλ. For

i ∈ I, c ∈ Z and n ∈ Z≥0, we have
[
Ki; c

n

]

w

vλ =
[
λ(hi) + c

n

]

qi

vλ,

where
[
λ(hi) + c

n

]

qi

=
n∏

r=1

q
λ(hi)+c−r+1
i − q

−(λ(hi)+c−r+1)
i

qr
i − q−r

i

=
[λ(hi) + c]qi

!
[n]qi

! [λ(hi) + c− n]qi
!
∈ A.

Hence, [ Ki;c
n ]w vλ ∈ Avλ. Similarly, [ Di;c

n ]w vλ ∈ Avλ. Then w−w0w+vλ ∈ w−
Avλ. That is,

wV q
A ⊆ w−

Avλ. It follows that wV q
A = w−

Avλ.

Proposition 6.5 The map ϕ : C[q] ⊗ wV q
A → V q given by f ⊗ v → fv (f ∈ C[q], v ∈ wV q

A)
is a C[q]-linear isomorphism.

Proof It is clear that the C[q]-linear map given above is surjective. Let {FηJvλ|η ∈ Ω} be a
basis of V q, where Fη is a monomial in F ,

is. Define a C[q]-linear map ψ : V q → C[q]⊗wV q
A by

ψ(FηJvλ) = 1 ⊗ FηJvλ.

Then it is easy to see that ψ and ϕ are inverse to each other, which proves our assertion.

Proposition 6.6 For μ ∈ P , let (wV q
A)μ = wV q

A ∩ wV q
μ . Then wV q

A has the weight space
decomposition wV q

A = ⊕μ∈P (wV q
A)μ.

Proof Let v = v1 + v2 + · · · + vp ∈ wV q
A, where vj ∈ wV q

μj
(μj ∈ P, j = 1, 2, . . . , p). We would

like to show vj ∈ wV q
A for all j = 1, 2, . . . , p. We will prove that v1 ∈ wV q

A. The other cases can
be proved in a similar way.

For j = 1, 2, . . . , p and i ∈ I, write μj(hi) = Sij and μj(di) = Tij . Since μj �= μ1 for
j = 2, . . . , p, we can choose an index ij ∈ I such that Sij ,j �= Sij ,1 or Tij ,j �= Tij ,1. Let
I0 = {i2, i3, . . . , ip}, and take s = max{|Sij − Si1|, |Tij − Ti1|} for all i ∈ I0, j = 1, . . . , p. We



Weak Hopf Algebras 1743

define an element u of wUd
A to be

u =
∏

i∈I0

[
Ki;−Si1 + s

s

]

w

[
Ki;−Si1 − 1

s

]

w

[
Di;−Ti1 + s

s

]

w

[
Di;−Ti1 − 1

s

]

w

.

Then we have
[
Ki;−Si1 − 1

s

]

w

v1 =
s∏

r=1

Kiq
−Si1−r
i −Kiq

Si1+r
i

qr
i − q−r

i

v1

=
s∏

r=1

q−r
i − qr

i

qr
i − q−r

i

v1 = (−1)sv1

and
[
Ki;−Si1 + s

s

]

w

v1 =
s∏

r=1

Kiq
−Si1+s−r+1
i −Kiq

−(−Si1+s−r+1)
i

qr
i − q−r

i

v1

=
s∏

r=1

qs−r+1
i − q−s+r−1

i

qr
i − q−r

i

v1 = v1.

Similarly,
[
Di;−Ti1 − 1

s

]

w

v1 = (−1)sv1

and [
Di;−Ti1 + s

s

]

w

v1 = v1.

Therefore, uv1 = (−1)2s(p−1)v1 = v1.

If j �= 1, then
[
Ki;−Si1 − 1

s

]

w

vj =
s∏

r=1

q
Sij−Si1−r
i − q

−(Sij−Si1−r)
i

qr
i − q−r

i

vj

and [
Ki;−Si1 + s

s

]

w

vj =
s∏

r=1

q
Sij−Si1+s−r+1
i − q

−(Sij−Si1+s−r+1)
i

qr
i − q−r

i

vj .

Thus,

∏

i∈I0

[
Ki;−Si1 − 1

s

]

w

[
Ki;−Si1 + s

s

]

w

vj

=
∏

i∈I0

s∏

r,t=1

(qSij−Si1−r
i − q

−(Sij−Si1−r)
i )(qSij−Si1+s−t+1

i − q
−(Sij−Si1+s−t+1)
i )

(qr
i − q−r

i )(qt
i − q−t

i )
vj .

Similarly,

∏

i∈I0

[
Di;−Ti1 − 1

s

]

w

[
Di;−Ti1 + s

s

]

w

vj

=
∏

i∈I0

s∏

r,t=1

(qTij−Ti1−r
i − q

−(Tij−Ti1−r)
i )(qTij−Ti1+s−t+1

i − q
−(Tij−Ti1+s−t+1)
i )

(qr
i − q−r

i )(qt
i − q−t

i )
vj .
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The terms where r + t = s+ 1 are

(qSij−Si1−r
i − q

−(Sij−Si1−r)
i )(qSij−Si1+s−t+1

i − q
−(Sij−Si1+s−t+1)
i )

= q
2(Sij−Si1)
i − q2r

i − q−2r
i + q

−2(Sij−Si1)
i ,

(qTij−Ti1−r
i − q

−(Tij−Ti1−r)
i )(qTij−Ti1+s−t+1

i − q
−(Tij−Ti1+s−t+1)
i )

= q
2(Tij−Ti1)
i − q2r

i − q−2r
i + q

−2(Tij−Ti1)
i .

By the definition of I0, we have Si,j − Si,1 �= 0 or Ti,j − Ti,1 �= 0 for i = ij ∈ I0. Since r
runs from 1 to s, there exists some value of r such that r = |Si,j − Si,1| or r = |Ti,j − Ti,1| for
i = ij ∈ I0, which implies uvj = 0. It follows that uv = uv1, and hence v1 ∈ wV q

A.

Corollary 6.7 For all μ ∈ P , (wV q
A)μ is a free A-module, and rank(wV q

A)μ = dimC(q)(wV q
μ ).

Proof By Prop. 6.5 and Prop. 6.6, we get a C(q)-linear isomorphism C(q) ⊗ (wV q
A)μ

∼= wV q
μ

for all μ ∈ P , and our assertion follows.
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