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Abstract

Block Toeplitz and Hankel matrices arise in many aspects of appli-
cations. In this paper, we will research the distributions of eigenvalues
for some models and get the semicircle law. Firstly we will give trace
formulae of block Toeplitz and Hankel matrix. Then we will prove
that the almost sure limit γ(m)

T
(γ(m)

H
) of eigenvalue distributions of

random block Toeplitz (Hankel) matrices exist and give the moments
of the limit distributions where m is the order of the blocks. Then we
will prove the existence of almost sure limit of eigenvalue distributions
of random block Toeplitz and Hankel band matrices and give the mo-
ments of the limit distributions. Finally we will prove that γ(m)

T
(γ(m)

H
)

converges weakly to the semicircle law as m→ ∞.

Key words: Random block Toeplitz matrix; Hankel matrix; Eigenvalues
distribution; Band matrix; Semicircle law.
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1 Introduction

In random matrix theory, a very important object is the eigenvalue distri-
bution of a random matrix. If A = (aij(ω))

N
i,j=1 is a real symmetric random

matrix where the (aij(ω))’s are random variables on a probability space Ω
with a probability measure P , then the eigenvalue distribution of A is

µ
A
=

1

N

∫

Ω

N∑

j=1

δλj(ω)dP (ω)
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where λj(ω)’s are the N real eigenvalues of A.
The asymptotic behavior of the eigenvalue distribution is of much im-

portance. In [23,24], Wigner got the semicircle law for a wide class of real
symmetric random matrices and this great result caused much development
of random matrix theory. Recently in a review paper (see [1]), Bai pro-
posed the study of random matrix models with certain additional linear
structure. The properties of the distributions of eigenvalues for random
Hankel and Toeplitz matrices with independent entries are listed among the
unsolved random matrix problems posed in [1]. In [5], Bryc, Dembo and
Jiang proved the existence of limit distribution γ

T
and γ

H
of real symmetric

Toeplitz and Hankel matrices. The moments of γ
T
and γ

H
are the sum of

volumes of solids. Hammond and Miller in [9] also proved the existence of
γ
T

and γ
H

independently. In [15], Liu and Wang proved the existence of
limit distribution γ

T
and γ

H
for real symmetric, complex Hermitian band

Toeplitz and real symmetric band Hankel matrices. We notice that Basak
and Bose (see [2]) and Kargin (see [13]) also did the same work indepen-
dently. Especially, the limit distribution of random Toeplitz band matrices
with bandwidth bN = o(N) is Gaussian.

Block Toeplitz and Hankel matrices arise in many aspects of mathemat-
ics, physics and technology (see [8,10,14,19]). A block Toeplitz matrix is a
block matrix which can be written as

T = (Ai−j)
N
i,j=1 =




A0 A−1 A−2 · · · A−(N−1)

A1 A0 A−1 · · · A−(N−2)

A2 A1 A0 · · · A−(N−3)
...

...
...

. . .
...

AN−1 AN−2 AN−3 · · · A0




where As = (aij(s))
m
i,j=1 is an m × m matrix, ∀s ∈ {−N + 1, ..., N − 1}.

In [7], Gazzah, Regalia and Delmas researched the asymptotic behavior of
the eigenvalue distribution for block Toeplitz matrices. In [18], Rashidi Far,
Oraby, Bryc and Speicher have proved the existence of the limit distribu-
tion of eigenvalues for a random block Toeplitz matrix whose blocks are
selfadjoint m×m matrices as m → ∞, which implies that the double limit
lim

N→∞
lim

m→∞
gives the semicircle law. In this paper, we will study the limit

distributions of real symmetric random block Toeplitz and Hankel matrices
as lim

N→∞
and lim

m→∞
lim

N→∞
.

In a block Toeplitz matrix with the form mentioned above, we suppose
the aij(s)’s are real random variables. For symmetry, we need As = (A−s)

T .
For independence of the elements, we suppose:
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(1) ai1j1(s1) and ai2j2(s2) are independent if |s1| 6= |s2|,
(2) If s 6= 0 and (i1, j1) 6= (i2, j2) then ai1j1(s) and ai2j2(s) are independent,
(3) If (i1, j1) 6= (i2, j2) and (i1, j1) 6= (j2, i2) then ai1j1(0) and ai2j2(0) are
independent.
In addition, we need the following uniform boundedness conditoin:
(4)

E(aij(s)) = 0, E(|aij(s)|2) = 1,−(N − 1) ≤ s ≤ N − 1, 1 ≤ i, j ≤ m (1.1)

and

sup
N ∈ N

−(N − 1) ≤ s ≤ N − 1

{
|aij(s)|k

∣∣1 ≤ i, j ≤ m
}
= Ck,m < +∞ (1.2)

and

sup
m∈N

Ck,m = Ck < +∞. (1.3)

A block Hankel matrix is a block matrix which can be written as

H = (AN+1−i−j)
N
i,j=1 =




AN−1 AN−2 AN−3 · · · A0

AN−2 AN−3 AN−4 · · · A−1

AN−3 AN−4 AN−5 · · · A−2
...

...
...

. . .
...

A0 A−1 A−2 · · · A−(N−1)




where As = (aij(s))
m
i,j=1 is an m × m matrix, ∀s ∈ {−N + 1, ..., N − 1}.

Similar to random block Toeplitz matrices, we suppose the aij(s)’s are real
random variables, As = (As)

T . In addition, we assume:
(1) ai1j1(s1) and ai2j2(s2) are independent if s1 6= s2,
(2) If (i1, j1) 6= (i2, j2) and (i1, j1) 6= (j2, i2) then ai1j1(s) and ai2j2(s) are
independent,
(3)

E(aij(s)) = 0, E(|aij(s)|2) = 1,−(N − 1) ≤ s ≤ N − 1, 1 ≤ i, j ≤ m

and
sup
N ∈ N

−(N − 1) ≤ s ≤ N − 1

{
|aij(s)|k

∣∣1 ≤ i, j ≤ m
}
= Ck,m < +∞

and
sup
m∈N

Ck,m = Ck < +∞.
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We will firstly give trace formulae of block Toeplitz and Hankel matrices
in Section 2. Using those trace formulae, we will prove that the almost sure
limit distributions of block Toeplitz and Hankel matrices exist in Section 3.
In that section we will also give the moments of the limit distributions. In
Section 4, we will prove the existence of almost sure limit distributions of
block Toeplitz and Hankel band matrices and give the moments of the limit
distributions. In Section 5 we will prove that for block Toeplitz and Hankel
matrices, the double limit lim

m→∞
lim

N→∞
gives the semicircle law.

2 Trace Formulae of Block Toeplitz and Hankel

Matrices

Definition 2.1. Let T be an mN ×mN matrix and consist of N2 blocks.
If T has the form

T = (Ai,j)
N
i,j=1 =




A0 A−1 A−2 · · · A−(N−1)

A1 A0 A−1 · · · A−(N−2)

A2 A1 A0 · · · A−(N−3)
...

...
...

. . .
...

AN−1 AN−2 AN−3 · · · A0




where {A−(N−1), ..., A0, ..., AN−1} is a set of m × m matrices and Ai,j =
Ai−j = (apq(i− j))mp,q=1 , then we call T a block Toeplitz matrix.

Let H be an mN ×mN matrix and can be written as H = ΦT where T
is a block Toeplitz matrix and

Φ =




0 · · · 0 Im
0 · · · Im 0
...

. . .
...

...
Im · · · 0 0




where Im is the m×m unit matrix. Then we call H a block Hankel matrix.
For convenience, let bN = N − 1.

Lemma 2.2. Let T = (Ai−j)
N
i,j=1 be a block Toeplitz matrix and As =

(apq(s))
m
p,q=1 where −bN ≤ s ≤ bN ; 1 ≤ p, q ≤ m. Then we have a trace
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formula

tr(T k) =

N∑

i=1

bN∑

j1,...,jk=−bN

tr(Aj1 · · ·Ajk)

k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

k∑

q=1
jq

=

N∑

i=1

bN∑

j1,...,jk=−bN

m∑

t1,...,tk=1

at1t2(j1) · · · atkt1(jk)
k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

k∑

q=1
jq

.

Lemma 2.3. Let H = ΦT be a block Hankel matrix and T = (Ai−j)
N
i,j=1; As =

(apq(s))
m
p,q=1 where −bN ≤ s ≤ bN ; 1 ≤ p, q ≤ m. Then we have the trace

formula

tr(Hk) =




N∑
i=1

bN∑
j1,...,jk=−bN

tr(Aj1 · · ·Ajk)
k∏

l=1

I[1,N ](i−
l∑

q=1
(−1)qjq)δ

0,
k∑

q=1
(−1)qjq

k even

N∑
i=1

bN∑
j1,...,jk=−bN

tr(Aj1 · · ·Ajk)
k∏

l=1

I[1,N ](i−
l∑

q=1
(−1)qjq)δ

2i−1−N,
k∑

q=1
(−1)qjq

k odd

where

tr(Aj1 · · ·Ajk) =

m∑

t1,...,tk=1

at1t2(j1) · · · atkt1(jk).

To prove the above lemmas, we consider Kronecker product of two ma-
trices (see [12]). Let A = (aij) be an m×n matrix and B be a p× q matrix.
The Kronecker product of A and B is an mp× nq matrix:

A⊗B =




a11B · · · a1nB
...

. . .
...

am1B · · · amnB


 .

Proof of Lemma 2.2. Let B and F be two N ×N matrices and

B = (δi+1,j)
N
i,j=1 =




0 1 0 · · · 0 0
0 0 1 · · · 0 0
0 0 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 1
0 0 0 · · · 0 0




, F = (δi,j+1)
N
i,j=1 =




0 0 0 · · · 0 0
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...

...
...

. . .
...

...
0 0 0 · · · 0 0
0 0 0 · · · 1 0




.
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Then T =
bN∑
j=0

Bj ⊗A−j +
bN∑
j=1

F j ⊗Aj . Let e
i
1 be the ith unit vector in RN

and ej2 be the jth unit vector in Rm, then we have

Bl ⊗A−l(e
i
1 ⊗ ej2) = (Blei1)⊗ (A−le

j
2) = I[1,N ](i− l)ei−l

1 ⊗ (A−le
j
2)

and

F l ⊗Al(e
i
1 ⊗ ej2) = (F lei1)⊗ (Ale

j
2) = I[1,N ](i+ l)ei+l

1 ⊗ (Ale
j
2)

thus

T (ei1 ⊗ ej2) =

bN∑

l=0

I[1,N ](i− l)ei−l
1 ⊗ (A−le

j
2) +

bN∑

l=1

I[1,N ](i+ l)ei+l
1 ⊗ (Ale

j
2)

=

bN∑

l=−bN

I[1,N ](i+ l)ei+l
1 ⊗ (Ale

j
2),

so

T k(ei1 ⊗ ej2) =

bN∑

l1,...,lk=−bN

k∏

r=1

I[1,N ](i+

r∑

q=1

lq)e
i+

r∑

q=1
lq

1 ⊗ (Alk · · ·Al1e
j
2).

As
{
ei1 ⊗ ej2

∣∣ 1 ≤ i ≤ N ; 1 ≤ j ≤ m
}
is a standard basis of RmN , we have

the trace formula

tr(T k)

=

N∑

i=1

m∑

j=1

(ei1 ⊗ ej2)
T
T k(ei1 ⊗ ej2)

=
N∑

i=1

bN∑

l1,...,lk=−bN

k∏

r=1

I[1,N ](i+
r∑

q=1

lq)
m∑

j=1

((ei1)
T ⊗ (ej2)

T
) · (e

i+
r∑

q=1
lq

1 ⊗ (Alk · · ·Al1e
j
2))

=

N∑

i=1

bN∑

l1,...,lk=−bN

k∏

r=1

I[1,N ](i+

r∑

q=1

lq)δ
0,

k∑

q=1
lq

·
m∑

j=1

((ej2)
T
Alk · · ·Al1e

j
2)

=
N∑

i=1

bN∑

l1,...,lk=−bN

k∏

r=1

I[1,N ](i+
r∑

q=1

lq)tr(Alk · · ·Al1)δ
0,

k∑

q=1
lq

.
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For tr(Alk · · ·Al1) = tr(Al1 · · ·Alk), we get

tr(T k) =

N∑

i=1

bN∑

j1,...,jk=−bN

tr(Aj1 · · ·Ajk)

k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

k∑

q=1
jq

.

Note that

tr(Al1 · · ·Alk) =
m∑

t1,...,tk=1

at1t2(l1) · · · atkt1(lk),

and we directly get

tr(T k) =

N∑

i=1

bN∑

j1,...,jk=−bN

m∑

t1,...,tk=1

at1t2(j1) · · · atkt1(jk)
k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

k∑

q=1
jq

.

Proof of Lemma 2.3. Φ = P ⊗ Im where Im is the m×m unit matrix and
P is an N ×N matrix and

P =




0 · · · 0 1
0 · · · 1 0
...

. . .
...

...
1 · · · 0 0


 .

So if A is an N × N matrix and B is an m × m matrix, then we have
Φ(A⊗B) = (P ⊗ Im)(A⊗B) = (PA)⊗B. Note that Pei1 = eN+1−i

1 .
As in the proof of Lemma 2.2, we have

ΦT (ei1⊗ej2) = (P⊗Im)(

bN∑

l=−bN

I[1,N ](i+l)e
i+l
1 ⊗(Alej2)) =

bN∑

l=−bN

I[1,N ](i+l)e
N+1−(i+l)
1 ⊗(Alej2),

and then
Hk(ei1 ⊗ ej2) =




bN∑
j1,...,jk=−bN

k∏
r=1

I[1,N ](i−
r∑

q=1
(−1)qlq)e

i−
k∑

q=1
(−1)qjq

1 ⊗ (Alk · · ·Al1)e
j
2 k even,

bN∑
j1,...,jk=−bN

k∏
r=1

I[1,N ](i−
r∑

q=1
(−1)qlq)e

N+1−(i−
k∑

q=1
(−1)qjq)

1 ⊗ (Alk · · ·Al1)e
j
2 k odd.
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Thus we get

tr(Hk)

=

N∑

i=1

m∑

j=1

(ei1 ⊗ ej2)
T
Hk(ei1 ⊗ ej2)

=





N∑
i=1

bN∑
j1,...,jk=−bN

tr(Aj1 · · ·Ajk)
k∏

l=1

I[1,N ](i−
l∑

q=1
(−1)qjq)δ

0,
k∑

q=1
(−1)qjq

k even

N∑
i=1

bN∑
j1,...,jk=−bN

tr(Aj1 · · ·Ajk)
k∏

l=1

I[1,N ](i−
l∑

q=1
(−1)qjq)δ

2i−1−N,
k∑

q=1
(−1)qjq

k odd

where

tr(Aj1 · · ·Ajk) =

m∑

t1,...,tk=1

at1t2(j1) · · · atkt1(jk).

3 Limit Distributions of Random Block Toeplitz

and Hankel Matrices

Let ♯V denote the number of elements in an arbitrary finite set V . We now
review the concept of partition (see [15]). Let [n] = {1, 2, ..., n}.
(1) We call π = {V1, V2, ..., Vr} a partition of [n] if

r⋃
j=1

Vj = [n] and Vi
⋂
Vj =

∅ if i 6= j.
(2) For ∀p ∈ [n], we define π(p) = i if p ∈ Vi. We write p ∼π q if π(p) = π(q).
(3) Let P(n) denote the set of all the partition of [n]. We define P2(n) ={
π = {V1, V2, ..., Vr} ∈ P(n)

∣∣ ♯Vi = 2,∀i
}
and P1

2 (n) =
{
π = {V1, V2, ..., Vr} ∈

P2(n)
∣∣Vi has exactly one even element and one odd element,∀i

}
.

Definition 3.1. Let k ∈ N, π = {V1, V2, ..., Vk} ∈ P2(2k), Vr = {ar, br} (1 ≤
r ≤ k), then π determines a system of linear equations with unknown vari-
ables t1, t2, ..., t2k (set t2k+1 = t1):

{
tai = tbi+1 1 ≤ i ≤ k

tbi = tai+1 1 ≤ i ≤ k
. (3.1)

The number of linearly independent equations of this system is denoted by
f(π). Clearly we have 0 ≤ f(π) ≤ 2k.

8



Theorem 3.2. Let TN = (Ai−j)
N
i,j=1 be an mN×mN random block Toeplitz

matrix where As = (aij(s))
m
i,j=1, A−s = (As)

T , and aij(s)’s are random vari-

ables satisfying the four conditions mentioned in introduction. Let XN =
TN√
mN

, then eigenvalue distribution µ
XN

converges almost surely to a sym-

metric probability distribution γ(m)
T

which is determined by its even moments

m2k(γ
(m)
T

) =
∑

π∈P2(2k)

mk−1−f(π)

∫

[0,1]×[−1,1]k

2k∏

j=1

I[0,1](x0+

j∑

q=1

ǫπ(q)xπ(q))

k∏

l=0

dxl

where

ǫπ(q) =

{
1 if q is the smaller element of Vπ(q),

−1 if q is the larger element of Vπ(q).
(3.2)

Proof of Theorem 3.2. The kth moment of µ
XN

is given by

mk,N =

∫
xkdµ

XN
=

1

mN
E(trXk

N ) =
1

mN
(mN)−

k
2E(trT k

N ).

Using Lemma 2.2, we get

mk,N =
1

mN
(mN)−

k
2

N∑

i=1

bN∑

j1,...,jk=−bN

m∑

t1,...,tk=1

E(at1t2(j1) · · · atkt1(jk))
k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

k∑

q=1
jq

.

We will calculate the limit lim
N→∞

mk,N .

Observe that

|E(at1t2(j1) · · · atkt1(jk))| ≤ Dk (∀j1, ..., jk, t1, ..., tk),

whereDk = (max{C1, ..., Ck})k. If |jp| 6= |jq|, then atptp+1(jp) and atqtq+1(jq)
are independent. Let p ∈ {1, 2, ..., k}. By the independence conditions and
E(aij(s)) = 0, we observe that if E(at1t2(j1) · · · atkt1(jk)) 6= 0, then for any
p ∈ {1, ..., k}, ∃q ∈ {1, ..., k}, q 6= p, s.t. |jq| = |jp|. So there are at most [k2 ]
different elements in V = {|j1|, ..., |jk |}. Further, we have

∣∣∣
bN∑

j1,...,jk=−bN

E(at1t2(j1) · · · atkt1(jk))
∣∣∣ =

∣∣∣
[ k
2
]∑

s=1

∑

♯V =s

E(at1t2(j1) · · · atkt1(jk))
∣∣∣

≤
[ k
2
]∑

s=1

ηk,s
(bN + 1)!

(bN + 1− s)!
2kDk

9



where ηk,s = ♯
{
π = {U1, ..., Us} ∈ P(k)

∣∣∣ ♯Ui ≥ 2,∀i
}
.

So
∣∣∣

bN∑
j1,...,jk=−bN

E(at1t2(j1) · · · atkt1(jk))
∣∣∣ = O(N [ k

2
]) and thenmk,N = O(N [ k

2
]− k

2 ).

Thus for odd k, mk,N = o(1). Now we only have to consider m2k,N .
π is a partition of [2k] = {1, 2, ..., 2k} and p ∼π q ⇐⇒ |jp| = |jq|, then

we have

m2k,N

=

N∑

i=1

∑

π∈P(2k)

bN∑

j1,...,j2k=−bN
p∼πq ⇐⇒ |jp|=|jq|

m∑

t1,...,t2k=1

E(at1t2(j1) · · · at2kt1(j2k))
(mN)k+1

2k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

2k∑

q=1
jq

+ o(1). (3.3)

Again by the assumptions in the introduction, the contribution of the par-
titions which are not pair partition to m2k,N is o(1). So we only have to
consider the pair partitions. Suppose π ∈ P2(2k). If p ∼π q, then jp = jq or

jp = −jq. Under the condition
2k∑
q=1

jq = 0 according to (3.3), considering the

main contribution to the trace, we should take jp = −jq. Otherwise there
exists p0, q0 ∈ [2k] such that

jp0 = jq0 =
1

2
(jp0 + jq0 −

2k∑

q=1

jq).

We can choose other k− 1 distinct numbers, which determine jp0 = jq0 and
then there is a loss of at least one degree of freedom and the contribution of
such terms is O(N−1). Therefore we have

m2k,N

=

N∑

i=1

∑

π∈P2(2k)

bN∑

j1,...,j2k=−bN
p∼πq ⇐⇒ jp=−jq

m∑

t1,...,t2k=1

E(at1t2(j1) · · · at2kt1(j2k))
(mN)k+1

2k∏

l=1

I[1,N ](i+

l∑

q=1

jq)

+ o(1)

=
N∑

i=1

∑

π∈P2(2k)

bN∑

j1, ..., j2k = −bN
jt 6= 0, ∀t

p ∼π q ⇐⇒ jp = −jq

m∑

t1,...,t2k=1

E(at1t2(j1) · · · at2kt1(j2k))
(mN)k+1

2k∏

l=1

I[1,N ](i+
l∑

q=1

jq)

+ o(1).
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Now we have to calculate

m∑

t1,...,t2k=1

E(at1t2(j1) · · · at2kt1(j2k))

with the assumption that jt 6= 0, ∀t. For convenience we let t2k+1 = t1.
Suppose

E(at1t2(j1) · · · at2kt1(j2k)) 6= 0,

then for any p ∼π q we have atptp+1(jp) = atqtq+1(jq). Suppose p < q.

E(at1t2(j1) · · · at2kt1(j2k))
= E(atptp+1(jp)atqtq+1(jq)) ·E(at1t2(j1) · · · ̂atptp+1(jp) · · · ̂atqtq+1(jq) · · · at2kt1(j2k))
= 1 ·E(at1t2(j1) · · · ̂atptp+1(jp) · · · ̂atqtq+1(jq) · · · at2kt1(j2k))

where ̂marks omitted index. Note that jp = −jq, Ajp = (Ajq )
T and Ajp 6=

Ajq because jp = −jq 6= 0. atptp+1(jp) lies in the tp-th row and the tp+1-th
column of Ajp and atqtq+1(jq) lies in the tq-th row and the tq+1-th column of
Ajq . So tp = tq+1, tq = tp+1. As π = {V1, V2, ..., Vr} where Vi = {ai, bi} (1 ≤
i ≤ r), we have a system of equations:





ta1 = tb1+1

ta1+1 = tb1
· · ·
tak = tbk+1

tak+1 = tbk

.

By Definition 3.1, there are f(π) linearly independent equations in this
system. So there are 2k− f(π) variables taking values freely in {1, 2, ...,m}
and the number of solutions of this system of equations is m2k−f(π). In other
words, there are m2k−f(π) different (t1, ..., t2k)’s such that

E(at1t2(j1) · · · at2kt1(j2k)) 6= 0

and this implies
E(at1t2(j1) · · · at2kt1(j2k)) = 1.

So
m∑

t1,...,t2k=1

E(at1t2(j1) · · · at2kt1(j2k)) = m2k−f(π).

11



Thus we have

m2k,N

=
1

(mN)k+1

N∑

i=1

∑

π∈P2(2k)

m2k−f(π)
bN∑

j1, ..., j2k = −bN
jt 6= 0, ∀t

p ∼π q ⇐⇒ jp = −jq

2k∏

l=1

I[1,N ](i+

l∑

q=1

jq)

+ o(1)

=
1

(mN)k+1

N∑

i=1

∑

π∈P2(2k)

m2k−f(π)
bN∑

j1,...,j2k=−bN
p∼πq ⇐⇒ jp=−jq

2k∏

l=1

I[1,N ](i+

l∑

q=1

jq)

+ o(1).

Now for any r ∈ {1, ..., k}, let xr = jar , then jq =

{
xr if q = ar

−xr if q = br
.

Remember Eq.(3.2), and then we have jq =

{
xπ(q) if ǫπ(q) = 1

−xπ(q) if ǫπ(q) = −1
, so

jq = ǫπ(q)xπ(q) and

m2k,N = (mN)−k−1
N∑

i=1

∑

π∈P2(2k)

bN∑

x1,...,xk=−bN

m2k−f(π)
2k∏

l=1

I[1,N ](i+
l∑

q=1

ǫπ(q)xπ(q))+o(1),

thus

lim
N→∞

m2k,N =
∑

π∈P2(2k)

mk−1−f(π)

∫

[0,1]×[−1,1]k

2k∏

j=1

I[0,1](x0+

j∑

q=1

ǫπ(q)xπ(q))

k∏

l=0

dxl.

Letm2k =
∑

π∈P2(2k)

mk−1−f(π)

∫

[0,1]×[−1,1]k

2k∏

j=1

I[0,1](x0 +

l∑

q=1

ǫπ(q)xπ(q))

k∏

l=0

dxl

and m2k−1 = 0(k ∈ N), then for any k ∈ N we have lim
N→∞

mk,N = mk. It

is easy to see that m2k ≤ ∑
π∈P2(2k)

mk−1−f(π) ≤ (2k − 1)!! ·mk−1 and then

using Carleman’s theorem (see [6]) we know that the limit distribution γ(m)
T

is uniquely determined by its moments {mk}∞k=0.
Now we prove the almost sure convergence. It is sufficient to prove

∞∑

N=1

1

N4
E
((

trXk
N −E(trXk

N )
)4)

<∞. (3.4)
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trXk
N = (mN)−

k
2 trT k

N

= (mN)−
k
2

N∑

i=1

m∑

t1,...,tk=1

bN∑

j1,...,jk=−bN

at1t2(j1) · · · atkt1(jk)
k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

k∑

q=1
jq

.

For convenience we let

j = (j1, ..., jk), t = (t1, ..., tk),

A[i, t, j] = at1t2(j1) · · · atkt1(jk)
k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

k∑

q=1
jq

,

and we use
∑
i,t,j

to denote
N∑
i=1

m∑
t1,...,tk=1

bN∑
j1,...,jk=−bN

, then we have

1

N4
E
((

trXk
N − E(trXk

N )
)4)

=
1

N4
E
(
(mN)−

k
2

∑

i,t,j

A[i, t, j]−E
(
(mN)−

k
2

∑

i,t,j

A[i, t, j]
))4

=
1

N2k+4m2k
E
(∑

i,t,j

(A[i, t, j]− EA[i, t, j])
)4

=
1

N2k+4m2k
E
( 4∑

v=1

∑

iv,tv,jv

4∏

v=1

(A[iv , tv, jv]− EA[iv , tv, jv])
)

where
∑

iv,tv,jv
=

N∑
iv=1

m∑
tv1 ,...,t

v
k
=1

bN∑
jv1 ,...,j

v
k
=−bN

.

For given j1 = (j11 , ..., j
1
k), j

2 = (j21 , ..., j
2
k), j

3 = (j31 , ..., j
3
k), j

4 = (j41 , ..., j
4
k),

let
J = (j11 , ..., j

1
k , ..., j

4
1 , ..., j

4
k) ∈ {−bN , ..., bN}4k.

Set SJ = {|j11 |, ..., |j1k |, ..., |j41 |, ..., |j4k |}. We use p(J) to denote the number
of different elements of SJ.

We construct a set of numbers with multiplicities SJ = {j11 , ..., j1k , ..., j41 , ..., j4k}.
Please note that if |jv1u1

| = |jv2u2
| = a, then a appears twice in SJ. Let

S1, ..., Sp(J) be subsets of SJ such that:
(a) for all w, the elements of Sw have the same absolute value;
(b) if w1 6= w2, then the absolute value of the elements in Sw1 is different
from the absolute value of the elements in Sw2 ;

13



(c)
p⋃

r=1
Sr = SJ. It is easy to see that S1, ..., Sp(J) are uniquely determined

by J. Then we have

{−bN , ..., bN}4k =W1 ∪W2 ∪W3

where
W1 = {J ∈ {−bN , ..., bN}4k

∣∣p(J) ≤ 2k − 2},

W2 = {J ∈ {−bN , ..., bN}4k
∣∣p(J) = 2k − 1},

W3 = {J ∈ {−bN , ..., bN}4k
∣∣p(J) = 2k}.

Therefore we have

1

N4
E
((

trXk
N − E(trXk

N )
)4)

=
1

N2k+4m2k
E
( ∑

i1, i2, i3, i4

t
1, t2, t3, t4

∑

J∈W1

4∏

v=1

(A[iv , tv, jv]− EA[iv , tv, jv])
)

+
1

N2k+4m2k
E
( ∑

i1, i2, i3, i4

t
1, t2, t3, t4

∑

J∈W2

4∏

v=1

(A[iv , tv, jv]− EA[iv , tv, jv])
)

+
1

N2k+4m2k
E
( ∑

i1, i2, i3, i4

t
1, t2, t3, t4

∑

J∈W3

4∏

v=1

(A[iv , tv, jv]− EA[iv , tv, jv])
)

= Φ1 +Φ2 +Φ3.

For given j11 , ..., j
4
k , t

1
1, ..., t

4
k, i

1, ..., i4, supposeE(
4∏

v=1
(A[iv , tv, jv]−EA[iv , tv, jv])) 6=

0. Then
k∑

i=1
jvi = 0 (1 ≤ v ≤ 4) and from independence conditions we know

that:

∀jvu, ∃(u1, v1) 6= (u, v) s.t. |jvu| = |jv1u1
| (3.5)

and that

∀v1, ∃v2 6= v1 and u1, u2 s.t. |jv1u1
| = |jv2u2

|; (3.6)
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otherwise,

E
( 4∏

v=1

(A[iv , tv, jv]− EA[iv , tv, jv])
)

= E
(
(A[iv1 , tv1 , jv1 ]− EA[iv1 , tv1 , jv1 ])

)
·E

( ∏

1 ≤ v ≤ 4
v 6= v1

(A[iv , tv, jv]− EA[iv , tv, jv])
)

= 0.

We now evaluate Φ1, Φ2 and Φ3.
Evaluation of Φ1. Suppose p ∈ N and p ≤ 2k − 2. There are

at most Rk,p · (bN + 1)p · 24k different J’s that satisfy p(J) = p, where
Rk,p = ♯

{
π = {U1, .., Up}

∣∣π ∈ P(4k)
}
. So we have

Φ1 ≤
2k−2∑

p=1

1

N2k+4m2k
·N4 ·m4k · Rk,p · (bN + 1)p · 24k ·M

≤ C · b−2
N

where

M = sup
N

{
max

1 ≤ iv ≤ N

J ∈ {−bN , ..., bN}4k

t
v ∈ {1, ...,m}k

∣∣∣E[

4∏

v=1

(A[iv , tv, jv]− EA[iv , tv, jv])]
∣∣∣
}

and C is independent of N . From (1.1), (1.2) and (1.3), we know that such
M exists.

Evaluation of Φ2. Suppose J ∈ W2. For any v ∈ {1, 2, 3, 4}, if
∃u ∈ {1, 2, ..., k} such that ∀u1 6= u, |jvu| 6= |jvu1

|, then jvu and its absolute

value are determined by jv1 , ..., j
v
u−1, j

v
u+1, ..., j

v
k for

k∑
i=1

jvi = 0. Thus

♯
{
J = (j11 , ..., j

4
k) ∈W2

∣∣∣∀v,
k∑

l=1

jvl = 0 and ∃jv1u1
s.t. ∀u2 6= u1, |jv1u1

| 6= |jv1u2
|
}

≤ Qk · (bN + 1)2k−2 · 24k. (3.7)

where Qk = ♯
{
π = {V1, ..., V2k−1}

∣∣π ∈ P(4k)
}
. When J ∈ W2, there are

two situations. One is that ∃i1, i2 such that ♯Si1 = ♯Si2 = 3 and for any
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i /∈ {i1, i2}, ♯Si = 2. The other situation is that ∃i1 such that ♯Si1 = 4 and
for any i 6= i1, ♯Si = 2. In the first situation, suppose Si1 = {jax, jby , jcz},
Si2 = {jdw, jeu, jfv }. If a = b = c and d = e = f , then we can find g ∈
{1, 2, 3, 4}\{a, d}. Then for any r, there is one unique element which has
the same absolute value as jgr in SJ. Then from (3.6) we know that in
{jg1 , ..., j

g
k} there is at least one element which has a different absolute value

from the others and then (3.7) is obtained. If a 6= b and a 6= c, then jax has a
different absolute value from the other elements in {ja1 , ..., jak} and then (3.7)
is also obtained. In the second situation, suppose Si1 = {jax , jby, jcz , jdw}. If
{a, b, c, d} 6= {1, 2, 3, 4} then similarly to the first situation we can get (3.7).
If {a, b, c, d} = {1, 2, 3, 4}, then jax has different absolute value from the other
elements in {ja1 , ..., jak} thus we also get (3.7). From the above discussion we

know that for any J ∈W2 such that E(
4∏

v=1
(A[iv , tv, jv]−EA[iv, tv, jv])) 6= 0,

(3.7) is satisfied. Then we get

Φ2

=
1

N2k+4m2k
E(

∑

i1, i2, i3, i4

t
1, t2, t3, t4

∑

J∈W2

E(

4∏

v=1

(A[iv , tv, jv]− EA[iv , tv, jv]))

≤ 1

N2k+4m2k
N4m4kQk(bN + 1)2k−224kM

≤ D · b−2
N

where D is independent of N .

Evaluation of Φ3. When J ∈ W3, we have ♯Si = 2 for all
i ∈ {1, ..., 2k}. Like the situations mentioned above, we have: ∃u1 ∈
{1, 2, ..., k} such that ∀u2 6= u1, |j1u1

| 6= |j1u2
|, then j1u1

and its absolute

value are determined by j11 , ..., j
1
u1−1, j

1
u1+1, ..., j

1
k for

k∑
i=1

j1i = 0. Suppose

|jeu3
| = |j1u1

| and f ∈ {1, 2, 3, 4}\{1, e}, then ∃u4 ∈ {1, 2, ..., k} such that

∀u5 6= u4, |jfu5 | 6= |jfu4 |, then jfu4 and its absolute value are determined by

jf1 , ..., j
f
u4−1, j

f
u4+1, ..., j

f
k for

k∑
i=1

jfi = 0. For j1u1
and jfu4 are determined, we
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have

♯
{
J = (j11 , ..., j

1
k , ..., j

4
k) ∈W3

∣∣∣E(

4∏

v=1

(A[iv , tv, jv]− EA[iv , tv, jv])) 6= 0
}

≤ (bN + 1)p−2 · 24k · ♯P2(4k)

and thus

Φ3

=
1

N2k+4m2k
E
( ∑

i1, i2, i3, i4

t
1, t2, t3, t4

∑

J∈W3

E
( 4∏

v=1

(A[iv , tv, jv]− EA[iv , tv, jv])
))

≤ 1

N2k+4m2k
N4m4k(bN + 1)p−2 · 24k · ♯P2(4k)M

≤ F · b−2
N

where F is independent of N . Finally,

1

N4
E((trXk

N − E(trXk
N ))4) = Φ1 +Φ2 +Φ3 ≤ (C +D + F ) · b−2

N .

For bN = N − 1, (3.4) is proved and we have proved the theorem.

Remark 3.3 (Hankel block matrices and complex Toeplitz case). If
HN = (AN+1−i−j) is a block Hankel matrix which is defined as in the in-
troduction, then the eigenvalue distribution of HN/

√
mN converges almost

surely to a distribution γ
(m)
H which is determined by its even moments

m2k(γ
(m)
H

) =
∑

π∈P1
2 (2k)

r(m,π)

mk+1

∫

[0,1]×[−1,1]k

2k∏

j=1

I[0,1](x0 −
j∑

q=1

(−1)q xπ(q))
k∏

l=0

dxl

(3.8)

where r(m,π) = ♯
{
(t1, .., t2k)

∣∣E(at1t2(j1), ..., at2k t1(j2k)) 6= 0
}
.

Suppose π = {{a1, b1}, ..., {ak , bk}}, then
r(m,π)

= ♯
{
(t1, .., t2k)

∣∣1 ≤ tai , tbi ≤ m;

{
tai = tbi
tai+1 = tbi+1

or

{
tai = tbi+1

tai+1 = tbi
(1 ≤ i ≤ k)

}

= ♯
{
(t1, .., t2k)

∣∣ 1 ≤ tai , tbi ≤ m; tai = t(bi+1); t(ai+1) = tbi (1 ≤ i ≤ k)
}

+ O(mk)

= m2k−f(π) +O(mk) (3.9)
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If the blocks of HN are Hermitian matrices, the results would be similar. If
the blocks in a block Toeplitz matrix T = (Ai−j)

N
i,j=1 are complex matrices

and A−s = (As)
T , then the results would also be similar.

Remark 3.4 (relation with dynamical system). f(π) has a relation with
dynamical system. Let π = {V1, V2, ..., Vk}, Vr = {ar, br} (1 ≤ r ≤ k),
then f(π) is the number of linearly independent equations of (3.1). Now we
consider a discrete dynamical system. Give [2k] = {1, ..., 2k} the discrete
topology. Let φ be a self-homeomorphism on [2k] and φ(ai) = bi+1, φ(bi) =
ai + 1 (1 ≤ i ≤ k). Consider a continuous map ψ : Z × [2k] → [2k] such
that ψ(s, t) = φs(t) (s ∈ Z, t ∈ [2k]) then ψ becomes a dynamical system.
Obviously we see that the number of orbits of this dynamical system equals
the number of independent variables in (3.1) and then equals 2k − f(π).

4 Block Toeplitz and Hankel Band Matrices

Definition 4.1. Let TN = (Ai−j)
N
i,j=1 be an mN × mN block Toeplitz

matrix. We call T a block Toeplitz band matrix if ∃ bN < N s.t. As = 0
when |s| > bN . We call bN the bandwidth of the matrix.

Theorem 4.2 (proportional growth). Let TN be a block Toeplitz band matrix

with the bandwidth bN ∼ bN, b ∈ (0, 1]. Take the normalization

XN = TN/
√
m(2− b)bN.

With the notation and assumptions of Theorem 3.2, µ
XN

converges almost

surely to a symmetric probability distribution γ(m)
T

(b) which is determined

by its even moments

m2k(γ
(m)
T

(b)) =
1

(2− b)k

∑

π∈P2(2k)

mk−1−f(π)

∫

[0,1]×[−1,1]k

2k∏

j=1

I[0,1](x0+b

j∑

i=1

ǫπ(i)xπ(i))
k∏

l=0

dxl

where ǫπ(i) = 1 if i is the smaller number of Vπ(i) and ǫπ(i) = −1 otherwise.

Theorem 4.3 (slow growth). Let TN be a block Toeplitz band matrices with

the bandwidth bN = o(N) but bN → ∞. Take the normalization

XN = TN/(
√

2mbN ).

18



With the notation and assumptions of Theorem 3.2, µ
XN

converges weakly

to a distribution γ(m) which is determined by its even moments

m2k(γ
(m)) =

∑

π∈P2(2k)

mk−1−f(π).

In addition, if there exist positive constants ǫ0 and C such that

bN ≥ C ·N 1
2
+ǫ0 ,

then µ
XN

converges almost surely to γ(m).

Proof of Theorem 4.2. It is easy to see that Lemma 2.2 is also right for block
Toeplitz band matrices but now bN is no longer N − 1. Let

mk,N =

∫
xkdµ

XN
=

1

mN
E(trXk

N ) =
1

mN
(m(2 − b)bN)−

k
2E(trT k

N ).

Using Lemma 2.2, we get

mk,N

=
1

(2− b)
k
2

1

mN

N∑

i=1

bN∑

j1,...,jk=−bN

m∑

t1,...,tk=1

E(at1t2(j1) · · · atkt1(jk))
(mbN)

k
2

k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

k∑

q=1
jq

=
1

(2− b)
k
2

(
1

b
)

k
2

N∑

i=1

bN∑

j1,...,jk=−bN

m∑

t1,...,tk=1

E(at1t2(j1) · · · atkt1(jk))
(mN)

k
2
+1

k∏

l=1

I[1,N ](i+
l∑

q=1

jq)δ
0,

k∑

q=1
jq

.

Similarly as in the proof of Theorem 3.2, we know that when k is odd,

N∑

i=1

bN∑

j1,...,jk=−bN

m∑

t1,...,tk=1

E(at1t2(j1) · · · atkt1(jk))
(mN)

k
2
+1

k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

k∑

q=1
jq

= o(1),

and then mk,N = o(1).
For m2k,N ,

N∑

i=1

bN∑

j1,...,j2k=−bN

m∑

t1,...,t2k=1

E(at1t2(j1) · · · at2kt1(j2k))
(mN)k+1

2k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

2k∑

q=1
jq

= N−k−1
N∑

i=1

∑

π∈P2(2k)

bN∑

x1,...,xk=−bN

mk−1−f(π)
2k∏

l=1

I[1,N ](i+
l∑

q=1

ǫπ(q)xπ(q)) + o(1).
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So

m2k,N

=
1

(2− b)k
(
1

b
)
k

N−k−1
N∑

i=1

∑

π∈P2(2k)

bN∑

x1,...,xk=−bN

mk−1−f(π)
2k∏

l=1

I[1,N ](i+

l∑

q=1

ǫπ(q)xπ(q)) + o(1),

thus

lim
N→∞

m2k,N =
1

(2− b)k

∑

π∈P2(2k)

mk−1−f(π)

∫

[0,1]×[−1,1]k

2k∏

j=1

I[0,1](x0+b

j∑

q=1

ǫπ(q)xπ(q))
k∏

l=0

dxl.

Let m2k = lim
N→∞

m2k,N and m2k−1 = 0(k ∈ N), then for any k ∈ N we have

lim
N→∞

mk,N = mk. It is easy to see that

m2k ≤
∑

π∈P2(2k)

mk−1−f(π) ≤ (2k − 1)!! ·mk−1

and then using Carleman’s theorem (see [6]) we know that the limit distri-
bution γ(m)

T
(b) is determined by its even moments {m2k}. Similar to the

proof of Theorem 3.2 we can easily prove that µ
XN

converges almost surely

to γ(m)
T

(b). Then Theorem 4.2 is proved.

Proof of Theorem 4.3. Let

mk,N

=

∫
xkdµ

XN
=

1

mN
E(trXk

N ) =
1

mN
(2mbN )−

k
2E(trT k

N )

=
(mN)

k
2
+1

mN(2mbN )
k
2

N∑

i=1

bN∑

j1,...,jk=−bN

m∑

t1,...,tk=1

E(at1t2(j1) · · · atkt1(jk))
(mN)

k
2
+1

k∏

l=1

I[1,N ](i+
l∑

q=1

jq)δ
0,

k∑

q=1
jq

.

Similarly as in the proof of Theorem 3.2, we know that when k is odd,
mk,N = o(1). For m2k,N ,

N∑

i=1

bN∑

j1,...,j2k=−bN

m∑

t1,...,t2k=1

E(at1t2(j1) · · · at2kt1(j2k))
(mN)k+1

2k∏

l=1

I[1,N ](i+

l∑

q=1

jq)δ
0,

2k∑

q=1
jq

= N−k−1
N∑

i=1

∑

π∈P2(2k)

bN∑

x1,...,xk=−bN

mk−1−f(π)
2k∏

l=1

I[1,N ](i+
l∑

q=1

ǫπ(q)xπ(q)) + o(1).
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So

mk,N

=
mk+1

mN(2mbN )k

N∑

i=1

∑

π∈P2(2k)

bN∑

x1,...,xk=−bN

mk−1−f(π)
2k∏

l=1

I[1,N ](i+
l∑

q=1

ǫπ(q)xπ(q)) + o(1)

=
1

N · 2k · bkN

N∑

i=1

∑

π∈P2(2k)

bN∑

x1,...,xk=−bN

mk−1−f(π)
2k∏

l=1

I[1,N ](i+

l∑

q=1

ǫπ(q)xπ(q)) + o(1).

Thus

lim
N→∞

m2k,N =
1

2k

∑

π∈P2(2k)

mk−1−f(π)

∫

[0,1]×[−1,1]k

k∏

l=0

dxl

=
∑

π∈P2(2k)

mk−1−f(π).

Let m2k = lim
N→∞

m2k,N and m2k−1 = 0(k ∈ N), then for any k ∈ N we have

lim
N→∞

mk,N = mk. It is easy to see that

m2k ≤
∑

π∈P2(2k)

mk−1−f(π) ≤ (2k − 1)!! ·mk−1

and then using Carleman’s theorem (see [6]) we know that µ
XN

converges

weakly to a distribution γ(m) which is determined by its even moments
{m2k}. Similarly as in the the proof of Theorem 3.2 we know that

1

N4
E
((

trXk
N −E(trXk

N )
)4) ≤ B · b−2

N

where B is a constant and is independent of N . For bN ≥ C · N 1
2
+ǫ0 , we

have

1

N4
E
((

trXk
N − E(trXk

N )
)4) ≤ B · C−2 ·N−1−2ǫ0 .

Therefore

∞∑

N=1

1

N4
E
((

trXk
N −E(trXk

N )
)4)

<∞

and then µ
XN

converges almost surely to the limit distribution γ(m).
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Remark 4.4. In [15], the authors proved that the limit of eigenvalue distri-
bution for band Toeplitz random matrix with bandwidth bN = o(N) is the
standard normal distribution N(0,1). But in this paper, the matrix is block
Toeplitz and the conclusion will be different. The expectation of γ(m) is 0
and the variance of γ(m) is

∑
π∈P2(2)

m−f(π) = 1. The forth moment of γ(m) is

∑
π∈P2(4)

m1−f(π) = 2+ 1
m2 which is not the forth moment of N(0,1) if m 6= 1.

So γ(m) is not N(0,1) when m 6= 1.

5 Convergence to Semicircle Law

Suppose π = {{a1, b1}, ..., {ak , bk}} ∈ P2(2k), the system of linear equations
determined by π is (see Definition 3.1)

{
tai = tbi+1 1 ≤ i ≤ k

tbi = tai+1 1 ≤ i ≤ k

where t2k+1 = t1. This system can be rewritten as





ts1(1) = ts1(2) = · · · = ts1(r1) = ts1(1)

· · ·
tsp(1) = tsp(2) = · · · = tsp(rp) = tsp(1)

such that {s1(1), ..., s1(r1)} ∪ · · · ∪ {sp(1), ..., sp(rp)} = {1, 2, ..., 2k} and
{si(1), ..., si(ri)} ∩ {sj(1), ..., sj(rj)} = ∅ if i 6= j. We call tsi(1) = tsi(2) =
· · · = tsi(ri) = tsi(1) a circle of π. We use g(π) to denote the number of the
circles of π. For example, if π = {{1, 2}, {3, 4}, {5, 6}, {7, 8}} ∈ P2(8), then
the system of linear equations determined by π is





t1 = t3

t2 = t2

t3 = t5

t4 = t4

t5 = t7

t6 = t6

t7 = t1

t8 = t8

.
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This system can be rewritten as





t1 = t3 = t5 = t7 = t1

t2 = t2

t4 = t4

t6 = t6

t8 = t8

.

So this π has five circles: t1 = t3 = t5 = t7 = t1, t2 = t2, t4 = t4, t6 = t6 and
t8 = t8, thus g(π) = 5. These circles can be denoted by

b

b

b

b

t1 t5

t3

t7

• t2 • t4 • t6 • t8

For f(π) denotes the number of independent equations of the system, it
is easy to see that g(π) = 2k − f(π) for any π ∈ P2(2k).

Lemma 5.1. For any π ∈ P2(2k), g(π) ≤ k + 1.

The proof of Lemma 5.1 can be found in [22].
We now review the concept of noncrossing partition (see [21]). A parti-

tion π ∈ P(n) is called noncrossing if whenever four elements 1 ≤ a < b <
c < d ≤ n are such that a ∼π c and b ∼π d, then a ∼π b ∼π c ∼π d.

Lemma 5.2. For any π ∈ P2(2k), g(π) = k + 1 if and only if π is non-

crossing.

The proof of Lemma 5.2 can be found in [20].

Theorem 5.3. Suppose γ(m)
T

is defined as in Theorem 3.2. As m → ∞,

γ(m)
T

converges weakly to the semicircle law w(x), i.e.,

w(x) =

{
1
2π

√
4− x2 |x| ≤ 2,

0 |x| > 2.

Proof of Theorem 5.3. From Theorem 3.2 we know that the odd moments
of γ(m)

T
are all zero and its even moments are

m2k(γ
(m)
T

) =
∑

π∈P2(2k)

mk−1−f(π)

∫

[0,1]×[−1,1]k

2k∏

j=1

I[0,1](x0+

j∑

q=1

ǫπ(q)xπ(q))
k∏

l=0

dxl
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where

ǫπ(q) =

{
1 if q is the smaller element of Vπ(q),

−1 if q is the larger element of Vπ(q).

From Lemma 5.1 and Lemma 5.2 we know that if π ∈ P2(2k), then
f(π) = k − 1 if π is noncrossing, otherwise f(π) > k − 1. So we have

lim
m→∞

m2k(γ
(m)
T

) =
∑

π∈P2(2k)
π is noncrossing

∫

[0,1]×[−1,1]k

2k∏

j=1

I[0,1](x0+

j∑

q=1

ǫπ(q)xπ(q))

k∏

l=0

dxl.

From [4] we know that when π is noncrossing,

∫

[0,1]×[−1,1]k

2k∏

j=1

I[0,1](x0 +

j∑

q=1

ǫπ(q)xπ(q))

k∏

l=0

dxl = 1.

So

lim
m→∞

m2k(γ
(m)
T

) =
∑

π∈P2(2k)
π is noncrossing

1.

From [11] we know that

♯{π ∈ P2(2k)
∣∣π is noncrossing} = Ck

where Ck is Catalan number. So

lim
m→∞

m2k(γ
(m)
T

) = Ck.

For Ck is the 2k-th moment of w(x) whose odd moments are all zero, we
know that γ(m)

T
converges weakly to w(x) thus the theorem is proved.

Remark 5.4. If the assumptions in Theorem 4.3 are all satisfied, then it is
easy to see that as m → ∞, γ(m) converges weakly to the semicircle law
w(x).

Remark 5.5. For a block Hankel matrix as we discussed in Remark 3.3 we
also have that as m→ ∞, γ(m)

H
converges weakly to the semicircle law w(x)

because (see (3.9))

r(m,π) = ♯
{
(t1, .., t2k)

∣∣ 1 ≤ tai , tbi ≤ m; tai = t(bi+1); t(ai+1) = tbi (1 ≤ i ≤ k)
}

+ O(mk)

= m2k−f(π) +O(mk)
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and {π ∈ P2(2k)
∣∣π is noncrossing} ⊂ P1

2 (2k) and the fact that the integral
in (3.8) is 1 when π is noncrossing (see [4]). If the blocks ofHN are Hermitian
matrices, the results would be similar. If the blocks in a block Toeplitz
matrix T = (Ai−j)

N
i,j=1 are complex matrices and A−s = (As)

T , then the
results would also be similar.

Remark 5.6. If the blocks in a block Toeplitz matrix T = (Ai−j)
N
i,j=1 are

symmetric matrices and A−s = As, just like those discussed in [18], then the
eigenvalue distribution of T/

√
mN converges almost surely to a distribution

γ̃
T

(m) which is determined by its even moments

m2k(γ̃T

(m)) =
∑

π∈P2(2k)

r(m,π)

mk+1

∫

[0,1]×[−1,1]k

2k∏

j=1

I[0,1](x0+

j∑

q=1

ǫπ(q)xπ(q))
k∏

l=0

dxl

where r(m,π) is the same as (3.9). So we also have that as m → ∞, γ̃
T

(m)

converges weakly to the semicircle law w(x).
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