Acta Crystallographica Section E

## Structure Reports

 OnlineISSN 1600-5368

## Diethyl 2-(1,3-benzodioxol-5-yl)-5-(3,4-dimethoxy-phenyl)furan-3,4-dicarboxylate

Sheng-Li Hu, ${ }^{\text {a,b }} \ddagger$ Zhi-Guo Wang ${ }^{\text {a }}$ and An-Xin Wu* ${ }^{\text {a }}$

${ }^{\text {a Key }}$ Laboratory of Pesticides and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China, and ${ }^{\mathbf{b}}$ Department of Chemistry \& Enviromental Engineering, Hubei Normal University, Huangshi 435002, People's Republic of China
\# Present address: Key Laboratory of Pesticides \& Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China

Correspondence e-mail:
chwuax@mail.ccnu.edu.cn

## Key indicators

Single-crystal X-ray study
$T=292 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
$R$ factor $=0.045$
$w R$ factor $=0.126$
Data-to-parameter ratio $=14.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

In the title compound, $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{9}$, the substituted benzene rings are twisted away from the furan ring. The dihedral angle between the two benzene rings is $52.1(1)^{\circ}$. In the crystal structure, the molecules exist as hydrogen-bonded dimers, the molecules being connected through very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

## Comment

Furan-3,4-dicarboxylic acid and its esters have been used as starting materials in the synthesis of several bioactive natural products and several pharmacologically useful compounds, in the preparation of complexes with rare earth metal ions, and also as potential dienes in Diels-Alder reactions for the synthesis of several novel heterocycles (Deshpande et al., 2002). As part of a study of their applications, we report here the crystal structure of the title compound, (I).

(I)

In compound (I), the furan ring is planar and the two substituted benzene rings are twisted away from it (Fig. 1). The C12/C13/C14/C16/C18/C19 and C2-C7 benzene rings form dihedral angles with the furan ring of 39.5 (2) and 23.4 (1) ${ }^{\circ}$, respectively. The dihedral angle between the two benzene rings is $52.1(1)^{\circ}$. The $\mathrm{C} 2-\mathrm{C} 7$ aromatic ring is effectively coplanar with the five-membered $\mathrm{C} 1 / \mathrm{O} 1 / \mathrm{C} 2 / \mathrm{C} 3 / \mathrm{O} 2$ ring, as seen in the dihedral angle between their planes of $1.6(1)^{\circ}$. The conformation of the two substituted ester groups with respect to the central furan ring are different (see Table 1 for torsion angles). The crystal packing shows that the molecules exist as hydrogen-bonded dimers, the molecules being connected through very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 2). The dimers are interlinked also through very weak $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Fig. 2).

## Experimental

Compound (I) was synthesized according to the literature procedure of Wu et al. (1997). Single crystals of (I) suitable for X-ray diffraction were obtained by slow evaporation of a methanol solution at 298 K .

Received 4 July 2005 Accepted 28 July 2005 Online 6 August 2005


Figure 1
View of (I), showing the atom-labeling scheme. Displacement ellipsoids are drawn at the $50 \%$ probability level.


Figure 2
The molecular packing of (I). Dashed lines indicate hydrogen bonds. [Symmetry codes: $(a)-x, 1-y, 1-z ;(b) 1-x, 1-y,-z ;(c) 1-x, 2-$ $y,-z$.]

## Crystal data

$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{O}_{9}$
$M_{r}=468.44$
Triclinic, $P \overline{1}$
$a=7.8137$ (9) £
$b=11.0275(12) \AA$
$c=13.9703(15) \AA$
$\alpha=80.796(2)^{\circ}$
$\beta=75.547(2)^{\circ}$
$\gamma=76.001(2)^{\circ}$
$V=1124.7(2) \AA^{3}$

## Data collection

Bruker SMART APEX CCD areadetector diffractometer $\omega$ scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.969, T_{\text {max }}=0.969$
6449 measured reflections

$$
Z=2
$$

$D_{x}=1.383 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 2522
reflections
$\theta=2.3-27.2^{\circ}$
$\mu=0.11 \mathrm{~mm}^{-1}$
$T=292$ (2) K
Block, colorless
$0.30 \times 0.30 \times 0.30 \mathrm{~mm}$

4348 independent reflections
3217 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.040$
$\theta_{\text {max }}=26.0^{\circ}$
$h=-9 \rightarrow 9$
$k=-13 \rightarrow 13$
$l=-11 \rightarrow 17$

## Refinement

Refinement on $F^{2}$
H -atom parameters constrained
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.126$
$S=0.98$
4348 reflections
311 parameters

## $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0709 P)^{2}\right]$

where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\text {max }}=0.16 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-0.19 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

| C1-O2 | $1.420(3)$ | C10-C23 | $1.471(2)$ |
| :--- | :--- | :--- | :--- |
| C1-O1 | $1.429(2)$ | C11-O5 | $1.3630(19)$ |
| C2-O1 | $1.368(2)$ | C14-O4 | $1.3629(19)$ |
| C3-C4 | $1.369(3)$ | C16-O3 | $1.3693(19)$ |
| C6-C8 | $1.456(2)$ | C20-O9 | $1.189(2)$ |
| C8-C9 | $1.359(2)$ | C20-O8 | $1.317(2)$ |
| C8-O5 | $1.3760(19)$ | C23-O7 | $1.1984(19)$ |
| C10-C11 | $1.370(2)$ | C23-O6 | $1.336(2)$ |
|  |  |  |  |
| O2-C1-O1 | $108.47(15)$ | O5-C11-C10 | $108.69(13)$ |
| O1-C2-C3 | $109.74(15)$ | O5-C11-C12 | $114.49(13)$ |
| O2-C3-C2 | $109.97(16)$ | C2-O1-C1 | $105.66(15)$ |
| O5-C8-C6 | $114.98(14)$ | C11-O5-C8 | $108.91(12)$ |
|  |  |  |  |
| C7-C6-C8-C9 | $156.44(19)$ | C10-C9-C20-O9 | $-64.6(3)$ |
| C5-C6-C8-O5 | $156.00(15)$ | C10-C9-C20-O8 | $115.77(18)$ |
| C6-C8-C9-C20 | $2.5(3)$ | C11-C10-C23-O7 | $153.59(19)$ |
| C23-C10-C11-C12 | $-4.9(3)$ | C9-C10-C23-O7 | $-24.7(3)$ |
| C10-C11-C12-C19 | $146.03(19)$ | C9-C10-C23-O6 | $155.00(15)$ |
| O5-C11-C12-C13 | $138.58(15)$ | C10-C23-O6-C24 | $173.62(15)$ |
| C8-C9-C20-O9 | $111.3(2)$ | O9-C20-O8-C21 | $-1.2(3)$ |

Table 2
Hydrogen-bond geometry ( $\mathrm{A}^{\circ}{ }^{\circ}$ ).

| $D-\mathrm{H} \cdots A$ | $D-\mathrm{H}$ | $\mathrm{H} \cdots A$ | $D \cdots A$ | $D-\mathrm{H} \cdots A$ |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C} 4-\mathrm{H} 4 \cdots \mathrm{O} 9^{\mathrm{i}}$ | 0.93 | 2.54 | 3.285 (2) | 137 |
| C24-H24B $\cdots$ O7 $7^{\text {ii }}$ | 0.97 | 2.57 | 3.445 (3) | 151 |
| $\mathrm{C} 7-\mathrm{H} 7 \cdots \mathrm{O} 4^{\text {iii }}$ | 0.93 | 2.43 | 3.358 (2) | 172 |
| Symmetry codes: $-x+1,-y+2,-z$ | $-x$, | $z+1 ;$ | $-x+1$, | -z; (iii) |

H atoms were placed in idealized positions and constrained to ride on their parent atoms. Constrained $\mathrm{C}-\mathrm{H}$ distances: $0.93 \AA$ for aromatic $\mathrm{CH}, 0.97 \AA$ for methylene $\mathrm{CH}_{2}$ and $0.96 \AA$ for methyl $\mathrm{CH}_{3}$. Fixed isotropic $U_{\text {iso }}(\mathrm{H})$ parameters: $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C})$ for others. Methyl groups were allowed to rotate freely about their $\mathrm{C}-\mathrm{CH}_{3}$ bonds.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are grateful to the Central China Normal University, the National Natural Science Foundation of China (grant No. 20472022) and the Hubei Province Natural Science Fund (grants Nos. 2004ABA085 and 2004ABC002) for financial support.

## References

Bruker (2000). SMART (Version 5.618) and SAINT (Version 6.02). Bruker AXS Inc., Madison, Wisconsin, USA.

## organic papers

Deshpande, A. M., Natu, A. A. \& Argade, N. P. (2002). Synthesis, 8, 1010-1012. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.
Wu, A., Wang, M. \& Pan, X. (1997). Synth. Commun. 12, 2087-2091.

