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A NOTE ON RELATIVE FLATNESS AND COHERENCE

Xiaoxiang Zhang and Jianlong Chen
Department of Mathematics, Southeast University, Nanjing, China

Let R be a ring and M a fixed right R-module. A new characterization of M-flatness
is given by certain linear equations. For a left R-module F such that the canonical map
M ⊗R F → HomR�M

∗� F� is injective, where M∗ = HomR�M�R�, the M-flatness of F
is characterized via certain matrix subgroups. An example is given to show that R need
not be M-coherent even if every left R-module is M-flat. Moreover, some properties
of M-coherent rings are discussed.

Key Words: Matrix subgroup; M-coherent ring; M-flat module.

2000 Mathematics Subject Classification: 16D50; 16P70.

Recently, Dauns introduced the notion of coherence of a ring R relative to a
right R-module M (Dauns, 2006). Let R be a ring, M a fixed right R-module and
��M� the full subcategory of the category of right R-modules subgenerated by M

(see Wisbauer, 1991, p. 118). Recall from Dauns (2006) that a left R-module F is
��M�-flat if for any exact sequence 0 → X → Y in ��M�, the sequence 0 → X ⊗R

F → Y ⊗R F is exact. Following Wisbauer (1991, 12.13), F is called M-flat if the
sequence 0 → KR ⊗ F → MR ⊗ F is exact for every submodule 0 ≤ K < M . It is a
trivial consequence of Wisbauer (1991, 12.15) that RF is M-flat if and only if it is
��M�-flat (see also Dauns, 2006, Proposition 1.6).

Following Dauns (2006), a right R-module N is M-coherent if for any
0≤A<B ≤ N such that B/A ↪→ mR for some m ∈ M , if B/A is finitely generated,
then B/A is finitely presented. R is defined to be M-coherent if the right R-module
RR is M-coherent.

The purpose of this note is to investigate M-flat modules and M-coherent rings
from some new aspects.

Throughout R is an associative ring with identity and all modules are unitary.
For a positive integer n, Rn (resp. Rn) denotes the direct sum of n copies of RR

(resp. RR) whose elements are written as “row (resp. column) vectors.” Similarly, Mn

stands for the direct sum of n copies of MR. For each m = �m1�m2� � � � � mn� ∈ Mn,
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3322 ZHANG AND CHEN

the right annihilator of m in Rn is symbolized by rRn
�m�, that is,

rRn
�m� =

{
�r1� r2� � � � � rn�

T ∈ Rn � �m1�m2� � � � � mn��r1� r2� � � � � rn�
T =

n∑
i=1

miri = 0
}
�

Note that rR�m� is nothing more than m⊥ in Dauns (2006) for every m ∈ M .
Let us start with the following result.

Theorem 1. Let M be a fixed right R-module. The following are equivalent for a left
R-module F .

(1) F is M-flat.
(2) For any a1� � � � � an ∈ R, and x1� � � � � xn ∈ F such that

∑n
i=1 aixi ∈ rR�m�F for some

m ∈ M , there exist y1� � � � � yk ∈ F and n× k matrix B = �bij�n×k over R such that
xi =

∑k
j=1 bijyj for each 1 ≤ i ≤ n and m

∑n
i=1 aibij = 0 for each 1 ≤ j ≤ k.

Proof. �1� ⇒ �2� For any a1� � � � � an ∈ R, and x1� � � � � xn ∈ F , if
∑n

i=1 aixi ∈
rR�m�F , we have

rR�m� ⊆ L = a1R+ · · · + anR+ rR�m� ≤ RR

with L/rR�m� finitely generated and

( n∑
i=1

aixi

)
+ rR�m�F = 0+ rR�m�F ∈ LF/rR�m�F�

It follows by Dauns (2006, Theorem 1.8(d)) that

n∑
i=1

�ai + rR�m��⊗ xi = 0 ∈ �L/rR�m��⊗ F�

Let a = �a1 + rR�m�� � � � � an + rR�m�� and let 	e1� � � � � en
 be the canonical basis of
the free right R-module Rn. There is an exact sequence

0 −→ rRn
�a�

�−→ Rn

�−→ L/rR�m� −→ 0

where � is the inclusion map and � is given by ��ei� = ai + rR�m� �i = 1� � � � � n�.
Tensoring by F yields the following exact sequence

rRn
�a�⊗ F

�⊗idF−→ Rn ⊗ F
�⊗idF−→ �L/rR�m��⊗ F −→ 0

where idF  F → F is the identity map. Since

��⊗ idF �

( n∑
i=1

ei ⊗ xi

)
=

n∑
i=1

�ai + rR�m��⊗ xi = 0 ∈ �L/rR�m��⊗ F�
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RELATIVE FLATNESS AND COHERENCE 3323

∑n
i=1 ei ⊗ xi ∈ Ker��⊗ idF � = Im��⊗ idF �. So we have b1 =

[
b11

���
bn1

]
� � � � � bk =

[
b1k

���
bnk

]
∈

rRn
�a� and y1� � � � � yk ∈ F such that

∑k
j=1 bj ⊗ yj =

∑n
i=1 ei ⊗ xi ∈ Rn ⊗ F . But

k∑
j=1

bj ⊗ yj =
k∑

j=1

[( n∑
i=1

eibij

)
⊗ yj

]
=

k∑
j=1

( n∑
i=1

eibij ⊗ yj

)

=
k∑

j=1

( n∑
i=1

ei ⊗ bijyj

)
=

n∑
i=1

( k∑
j=1

ei ⊗ bijyj

)
=

n∑
i=1

[
ei ⊗

( k∑
j=1

bijyj

)]
�

Hence xi =
∑k

j=1 bijyj for each i. Finally, it is easy to see that m
∑n

i=1 aibij = 0 for
each 1 ≤ j ≤ k.

�2� ⇒ �1� Suppose that L/rR�m� is finitely generated with m ∈ M and

rR�m� ⊆ L = a1R+ · · · + anR+ rR�m� ≤ R�

Then each element in �L/rR�m��⊗ F is of the form

n∑
i=1

�ai + rR�m��⊗ xi

with xi ∈ F�i = 1� � � � � n�. If
∑n

i=1�ai + rR�m��⊗ xi is contained in the kernel of the
natural map

�  �L/rR�m��⊗ F → LF/rR�m�F�

i.e.,
∑n

i=1 aixi ∈ rR�m�F , we have y1� � � � � yk ∈ F and n× k matrix B = �bij�n×k over R
such that xi =

∑k
j=1 bijyj for each 1 ≤ i ≤ n and m

∑n
i=1 aibij = 0 for each 1 ≤ j ≤ k

by (2). Consequently,

n∑
i=1

�ai + rR�m��⊗ xi =
n∑

i=1

�ai + rR�m��⊗
( k∑

j=1

bijyj

)

=
n∑

i=1

( k∑
j=1

�aibij + rR�m��⊗ yj

)
=

k∑
j=1

[( n∑
i=1

aibij + rR�m�

)
⊗ yj

]

=
k∑

j=1

�0+ rR�m��⊗ yj = 0 ∈ �L/rR�m��⊗ F�

This shows � is monic and hence F is M-flat by Dauns (2006, Theorem 1.8 (d)). �

Note that a left R-module F is M-flat if and only if 0 → K ⊗R F → M ⊗R F
is exact for every finitely generated submodule K of M (see Wisbauer, 1991,
12.15(1)). Let K = ∑n

i=1 miR and f  Rn → M be the composition of the canonical
epimorphism �  Rn → K and the inclusion map �  K → M . Applying HomR�−� R�
to f , we obtain f ∗  M∗ → Rn with image

Imf ∗ = {
�g�m1�� g�m2�� � � � � g�mn�� � g ∈ M∗ = HomR�M�R�

}
�
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3324 ZHANG AND CHEN

which is a matrix subgroup of Rn in the sense of Zimmermann (1997). We refer the
reader to Zimmermann (1997) for the general case. Following Zimmermann (1997),
we write m = �m1� � � � � mn� ∈ Mn and

HM�m�R� =
{
�g�m1�� g�m2�� � � � � g�mn�� � g ∈ M∗}�

Then we have the following commutative diagram with exact bottom row

(∑n
i=1 miR

)⊗R F
�⊗idF−−−−→ M ⊗R F��

��

0 −−−−→ HomR

(
HM�m�R�� F

) −−−−→ HomR�M
∗� F�

where �  M ⊗R F → HomR�M
∗� F� is given by

��m⊗ y�  g 
→ g�m�y

for all m ∈ M , y ∈ F and g ∈ M∗, and � 
(∑n

i=1 miR
)⊗R F → HomR

(
HM�m�R�� F

)
is

defined such that

�

( n∑
i=1

mi ⊗ yi

)
 �g�m1�� g�m2�� � � � � g�mn�� 
→

n∑
i=1

g�mi�yi�

for all yi ∈ F �i = 1� � � � � n� and g ∈ M∗. If � is injective then so is �⊗ idF .
And conversely if � and �⊗ idF are both injective, so is �. Therefore we have the
following proposition.

Proposition 2. Let M be a right R-module and F a left R-module such that
the canonical map �  M ⊗R F → HomR�M

∗� F� is injective, then the following are
equivalent for a left R-module F .

(1) F is M-flat.
(2) The canonical map � 

(∑n
i=1 miR

)⊗R F → HomR�HM�m�R�� F� is injective for all
positive integers n and all m = �m1� � � � � mn� ∈ Mn.

Remark 3. (1) It should be pointed out that the canonical map �  M ⊗R F →
HomR�M

∗� F� plays a prominent role in the theory of comodules. In particular,
modules M such that � is injective for all (cyclic) RF have drawn the attention of
many authors. We refer the readers to Brzeziński and Wisbauer (2003, pp. 438–440)
for details.

(2) The hypothesis “M ⊗R F → HomR�M
∗� F� is injective” is essential for

�1� ⇒ �2� in Proposition 2. To see this we need only take a finitely generated
right R-module M = ∑n

i=1 miR which is not torsionless. Then F = RR is M-flat
but it does not satisfy (2) in case m = �m1� � � � � mn� ∈ Mn. In fact, there exist
0 �=m= ∑n

i=1 miri ∈ M and for all g ∈ M∗, g�m� = 0 since M is not torsionless.
It follows that ��

∑n
i=1 mi ⊗ ri� = 0 but

∑n
i=1 mi ⊗ ri = �

∑n
i=1 miri�⊗ 1 = m⊗ 1 �= 0

in M ⊗ R.
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RELATIVE FLATNESS AND COHERENCE 3325

Observing the following commutative diagram with exact rows

rRn
�m�⊗R F −−−−→ Rn ⊗R F −−−−→ (∑n

i=1 miR�⊗R F −−−−→ 0��

��
��

0 −−−−→HomR�R
n/HM�m�R�� F� −−−−→HomR�R

n� F� −−−−→HomR�HM�m�R�� F�

where � is the canonical map such that ��a⊗ y�  b +HM�m�R� 
→ bay� for all
a ∈ rRn

�m�, y ∈ F , and b ∈ Rn, we have the following proposition.

Proposition 4. Let M be a right R-module and F a left R-module. Then the following
are equivalent for every m = �m1�m2� � � � � mn� ∈ Mn:

(1) The canonical map � 
(∑n

i=1 miR
)⊗R F → HomR�HM�m�R�� F� is injective;

(2) The canonical map �  rRn
�m�⊗R F → HomR�R

n/HM�m�R�� F� is surjective;
(3) Every f ∈ HomR�R

n/HM�m�R�� F� factors through a finitely generated free
R-module, i.e., there exists RR

k �1 ≤ k ∈ ��, g ∈ HomR�R
n/HM�m�R�� R

k� and
h∈HomR�R

k� F� such that f = hg;
(4) Rn/HM�m�R� is projective with respect to every short exact sequence of the form

0 → RL → RP → RF → 0� (∗)

i.e., (∗) is Rn/HM�m�R�-pure in sense of Rothmaler (1994).

Proof. (1) ⇔ (2) follows from the commutative diagram mentioned above.

(2) ⇒ (3) For each f ∈ HomR�R
n/HM�m�R�� F�, by (2), there exist bj =[ b1j

���
bnj

]
∈ rRn

�m��1 ≤ j ≤ k� and y1� � � � � yk ∈ F such that �
(∑k

j=1 bj ⊗ yj
) = f .

Now, define g ∈ HomR�R
n/HM�m�R�� R

k� via g�a+HM�m�R�� = aB for all a ∈ Rn,
where B = �b1� � � � � bk�, and define h ∈ HomR�R

k� F� via h�ej� = yj for all 1 ≤ j ≤ k,
where 	e1� � � � � ek
 is the canonical basis of Rk. It is easy to verify that h and g are
as desired.

(3) ⇒ (2) Suppose (3), then for each f ∈ HomR�R
n/HM�m�R�� F�, we have

f = hg for some h ∈ HomR�R
k� F� and g ∈ HomR�R

n/HM�m�R�� R
k�. Let B =[ g��1+HM�m�R��

���
g��n+HM�m�R��

]
, where 	�1� � � � � �n
 is the canonical basis of Rn, and let yj = h�ej�,

where 	e1� � � � � ek
 is the canonical basis of Rk. It follows that �
(∑k

j=1 bj ⊗ yj
) = f ,

where bj is the jth column of B �1 ≤ j ≤ k�. Therefore � is surjective.

(3) ⇒ (4) follows by the following commutative diagram
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3326 ZHANG AND CHEN

(4) ⇒ (3) Applying (4) to the exact sequence 0 → RL → RR
�I� → RF → 0,

where I is a suitable index set, we have the following commutative diagram

Since Rn/HM�m�R� is finitely generated, the image of f is contained in a finitely
generated free submodule Rk of RR

�I�. Then (3) follows easily. �

Corollary 5. Let M be a right R-module and F a left R module such that the canonical
map �  M ⊗R F → HomR�M

∗� F� is injective, then the following are equivalent:

(1) F is M-flat;
(2) The canonical map �  rRn

�m�⊗R F → HomR�R
n/HM�m�R�� F� is surjective for all

positive integers n and all m = �m1� � � � � mn� ∈ Mn;
(3) For all positive integers n and all m = �m1� � � � � mn� ∈ Mn, every R-homomorphism

from Rn/HM�m�R� to F factors through a finitely generated free R-module;
(4) Every exact sequence of the form 0 → RL → RP → RF → 0 is Rn/HM�m�R�-pure

for all positive integers n and all m = �m1� � � � � mn� ∈ Mn.

Next, we consider M-flatness for factor modules of M-flat modules.

Proposition 6. Suppose that M is a fixed right R-module and L is a submodule of
an M-flat left R-module F . If the canonical map �M/K�⊗ L → �M/K�⊗ F is injective
for each (finitely generated) KR < MR then F/L is M-flat. The converse holds if the
canonical map M ⊗ L → M ⊗ F is injective.

Proof. Let us denote M/K and F/L by M and F , respectively. Consider the
following exact commutative diagram for each (finitely generated) KR < MR

TorR1 �M� F�
d7−−−−→ TorR1 �M� F� −−−−→ M ⊗ L

d8−−−−→ M ⊗ F�d1

�d5

� �
TorR1 �M� F�

d3−−−−→ TorR1 �M� F� −−−−→ M ⊗ L
d4−−−−→ M ⊗ F� �

K ⊗ F −−−−→ K ⊗ F�d2

�d6

M ⊗ F −−−−→ M ⊗ F

where d2 is injective since F is M-flat by hypotheses and hence d1 is surjective. If
d4 is injective then d3 is surjective and so is d5. It follows that d6 is injective. This
shows that F is M-flat. Conversely, if d6 and d8 are injective then d5 and d7 are
surjective. Consequently, d3 is surjective and hence d4 is injective. �
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RELATIVE FLATNESS AND COHERENCE 3327

Remark 7. Note that the canonical map M ⊗ L → M ⊗ F in the above
proposition need not be injective in general even if every left R-module is M-flat.
Recall that a ring R is right FS (see Liu, 1995) if the socle of RR is flat as a
right R-module. Now, let us take a ring R which is not right FS (e.g., the ring
R in Example 10 below) and M = Soc�RR�, the socle of RR. Obviously, every left
R-module is M-flat since M is semisimple. But M is not flat hence M ⊗ L → M ⊗ F
need not be injective in general.

Corollary 8. Let L be a pure submodule of an M-flat left R-module F . Then both L
and F/L are M-flat.

Proof. Let L be a pure submodule of an M-flat left R-module F . Then for every
submodule K of M , we have the following commutative diagram

K ⊗ L
f−−−−→ K ⊗ F

h

� �g

M ⊗ L −−−−→ M ⊗ F

where f and g are monic and hence so is h. Therefore L is M-flat. Finally, F/L is
M-flat by Proposition 6. �

Given a ring R and a fixed right R-module M . Let M-� (respectively, � ) be
the class of all M-flat (respectively, flat) left R-modules. Then we have the following
proposition.

Proposition 9.

(1) R is von Neumann regular if and only if M-� = � for every right R-module M .
(2) R is right noetherian if and only if R is M-coherent for every �cyclic� right

R-module M .

Proof. (1) is obvious.

(2) If R is right noetherian, then R is right coherent and rR�m� is finitely
generated for all m ∈ M . Hence R is M-coherent by Dauns (2006, Observations
2.5(i)). Conversely, for each right ideal I of R, R is R/I-coherent and hence
I = rR�1+ I� is finitely generated. Therefore R is right noetherian. �

It is well known that R is right coherent if and only if every direct product
of flat left R-modules is flat. The following example shows that the analogous
statement for M-flatness and M-coherence fails. It also shows that the hypothesis
“rR�m� is finitely generated for all m ∈ M” is essential for Dauns (2006, Theorem 2.6)
and answers the question in Dauns (2006, p. 308).

Example 10. There is a ring R with a module MR such that every left R-module is
M-flat but R is not M-coherent.
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3328 ZHANG AND CHEN

Proof. Note that every left R-module is M-flat if and only if every submodule of M
is pure in M , i.e., M is regular in Mod-R in sense of Wisbauer (1991). Let �2 = �/2�
and A = ⊕�

i=1 �2 be the direct sum of countably infinite copies of �2. Then,

R = �2 ∝ A =
{[

a �

0 a

] ∣∣∣∣∣a ∈ �2� � ∈ A

}
�

the trivial extension of �2 by A is a commutative ring with Soc�R� = 0 ∝ A. Now, let
M = Soc�R� = 0 ∝ A. It follows that every left R-module is M-flat since M is
semisimple and hence regular in Mod-R. But the right annihilator of

m =
[
0 �1� 0� 0� � � � �

0 0

]

is not finitely generated. Therefore R is not M-coherent by Dauns (2006,
Consequences 2.3(1)). �

Note that M = Soc�R� is the unique maximal (right) ideal of the ring R in
Example 10. Moreover, the left annihilator of M in R is M itself. By Liu (1995,
Theorem 2.4), R is not (right) FS as we claimed in Remark 7.

Let L be a left R-module and � a class of left R-modules. Recall from
Enochs and Jenda (2000) that an R-homomorphism �  L → C with C ∈ � is called
a �-preenvelope of L if every � ∈ HomR�L�C

′� with C ′ ∈ � factors through �.
The class � is said to be preenveloping if every left R-module has a �-preenvelope.

Theorem 11. Let M be a right R-module. Then

(1) M-� is closed under direct products if and only if M-� is preenveloping.
(2) R� is M-flat for any set � if and only if every projective right R-module P has an

M-flat dual module P∗ if and only if every direct product of flat left R-modules is
M-flat.

Proof. (1) By Corollary 8, M-� is closed under pure submodules. Thus (1)
follows by a slight modification of the proof of Enochs and Jenda (2000, Proposition
6.5.1).

(2) For every projective right R-module P, we have P ⊕Q = R�I� for some
QR and indexed set I . It follows that P∗ ⊕Q∗ = �R�I��∗ = RI . If RI is M-flat then
so is P∗. Conversely, suppose every projective right R-module P has an M-flat dual
module P∗. Then for every index set I , the free right R-module R�I� has an M-flat
dual �R�I��∗ = RI .

To complete the proof, it remains only to show that every direct product of
flat left R-modules is M-flat provided R� is M-flat for any set � .

For any set 	F� � � ∈ �
 of flat left R-modules, we have pure exact sequences

0 → K� → R�I�� → F� → 0 �� ∈ ��
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and

0 → ∏
�∈�

K� →
∏
�∈�

R�I�� → ∏
�∈�

F� → 0

where
∏

�∈� R�I�� is a pure submodule of
∏

�∈� RI� . But
∏

�∈� RI� is M-flat by
hypothesis. Therefore

∏
�∈� R�I�� is M-flat by Corollary 8. Since 0 → ∏

�∈� K� →∏
�∈� R�I�� is pure,

∏
� F� is M-flat by Corollary 8 again. �

Remark 12. So far it is unknown to us whether M-� is closed under products
whenever R� is M-flat for any set � . To find a ring R with a right R-module M such
that R� is M-flat for any set � but M-� is not closed under products, we have to
consider those rings which are neither right noetherian nor von Neumann regular.
Moreover the module M should not be regular in Mod-R.

But by Dauns (2006, Theorem 2.6), we have the following corollary.

Corollary 13. The following are equivalent for a fixed right R-module M such that
rR�m� is finitely generated for all m ∈ M:

(1) R is M-coherent;
(2) M-� is preenveloping;
(3) P∗ ∈ M-� for every projective right R-module P.

Recall from Wisbauer (1991) that a right R module U is M-injective if every
diagram of right R-modules with exact row

0 −−−−→ K
f−−−−→ M�

U

can be extended commutatively by a morphism M → U . It is proved by Dauns
(2006, Theorem 1.7) that a left R-module F is M-flat if and only if the character
module F+ = Hom��F��/�� is M-injective. Note that this is in fact a special case of
Wisbauer (1991, 17.14). The following result is motivated by Cheatham and Strone
(1981, Theorem 1).

Proposition 14. Consider the following conditions for a fixed right R-module M:

(1) A right R-module N is M-injective if and only if N+ is M-flat;
(2) A right R-module N is M-injective if and only if N++ is M-injective;
(3) A left R-module F is M-flat if and only if F++ is M-flat;
(4) M-� is closed under direct products.

We have �1� ⇔ �2� ⇒ �3� ⇒ �4�.

Proof. �1� ⇔ �2� ⇒ �3� follows from Dauns (2006, Theorem 1.7).
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�3� ⇒ �4� We adopt the method in Cheatham and Strone (1981, Theorem 1).
For any index set I and Fi ∈ M-� �i ∈ I�, we have

0 −−−−→ ∏
i∈I Fi

f−−−−→ ∏
i∈I F

++
i��(⊕

i∈I Fi

)++ �−−−−→ (∏
i∈I F

+
i

)+ g−−−−→ (⊕
i∈I F

+
i

)+ −−−−→ 0

where
⊕

i∈I Fi is an M-flat left R-module. Then �
⊕

i∈I Fi�
++ is M-flat by (3).

Since
⊕

i∈I F
+
i is a pure submodule of

∏
i∈I F

+
i by Cheatham and Strone (1981,

Lemma 1(1)), it follows that g is split epic. Consequently,
(⊕

i∈I F
+
i

)+
is M-flat and

so is
∏

i∈I F
++
i . By Cheatham and Strone (1981, Lemma 1(2)), f is pure monic. This

guarantees that
∏

i∈I Fi is an M-flat left R-module. �

Remark 15. Note that (3) of Proposition 14 does not imply (1) even if R
is M-coherent. For instance, the endomorphism ring R of a countably infinite
dimensional vector space V over a field is von Neumann regular. Let M = RR then
(3) of Proposition 14 holds since every left R-module F is (M-)flat. By Cheatham
and Strone (1981, Theorem 2), (1) of Proposition 14 does not hold since R is not
right noetherian.
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