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a b s t r a c t

In this paper, we present an efficient branch and bound method for general linear fractional
problem (GFP). First, by using a transformation technique, an equivalent problem (EP) of
GFP is derived, then by exploiting structure of EP, a linear relaxation programming (LRP)
of EP is obtained. To implement the algorithm, the main computation involve solving a
sequence of linear programming problem, which can be solved efficiently. The proposed
algorithm is convergent to the global maximum through the successive refinement of
the solutions of a series of linear programming problems. Numerical experiments are
reported to show the feasibility of our algorithm.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

In this paper, we consider general linear fractional problem (GFP) as the following form:
GFP :
v ¼max gðxÞ ¼

Pp
i¼1

Pn

j¼1
cijxjþdiPn

j¼1
eijxjþfi

;

s:t: Ax 6 b; x P 0;

8><>:

where A 2 Rm�n; b 2 Rm; cij; di; eij; f i are all arbitrary real number, K , fx 2 RnjAx 6 b; x P 0g is bounded with intK 6¼ ;, andPn

j¼1eijxj þ fi 6¼ 0, for 8x 2 K, i ¼ 1; . . . ; p; j ¼ 1; . . . ;n.
Linear sum of ratios problem is a special class optimization among fractional programming, which has attracted the inter-

est of researchers and practitioners for a number of years. First reason is that it frequently appears in application and many
other nonlinear problems can be transformed into this form. Another reason is, from a research point view, these problems
poses significant theoretical and computational difficulties, i.e., it is known to generally possess multiple local optima that
are not globally optima. So it is necessary to put forward good method.

During the past years, various algorithms have been proposed for solving special cases of problem GFP, which are in-
dented only for the sum of linear ratios problem with the assumption that

Pn
j¼1cijxj þ di P 0, and

Pn
j¼1eijxj þ fi > 0 for any

x 2 K. For instance, when K is a polyhedral, and m ¼ 2, an algorithm has been developed which use the parametric simplex
method [1]. When K is a polyhedral, but m P 2, some algorithms which search iteratively the non-convex outcome space
until a global optimal solution is found have been proposed [2,3]. In addition, under the assumption that

Pn
j¼1cijxjþ

di P 0, and
Pn

j¼1eijxj þ fi 6¼ 0, a branch and bound algorithm has been proposed [4].
The purpose of this paper is to present a new global optimization method for a more general linear fractional program-

ming by solving a sequence of linear programming problem over partitioned subsets. The main feature of this algorithm, (1)
In GFP, we only request

Pn
j¼1eijxj þ fi 6¼ 0, then the model of this paper is more general than other paper considered. (2) The
. All rights reserved.
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algorithm economized the required computations by conducting the branch and bound search in Rp, rather in Rn. (3) The
linear relaxation of EP is obtained which is easier in computation than the method in [5] and does not generate new vari-
ables. (4) The proposed branch and bound algorithm is convergent to the global maximum through the successive refine-
ment of the linear relaxation of feasible region of the objection function and constraint functions and the solutions of a
series of LRP. (5) Numerical experiments are given to show the feasibility of our algorithm.

This paper is organized as follows. In Section 2, by using a transformation technique, problem EP is derived that is equiv-
alent to problem GFP. The rectangular branching process, the upper and lower bounding process used in this approach are
defined and studied in Section 3. The algorithm is introduced in Section 4, and its convergence is shown. Section 5 report
some numerical results obtained by solving some examples. Finally, the summary of this paper is given.

2. Preliminaries

In this section, we first give an important theorem, which is the foundation of the global optimization algorithm.

Theorem 1. Assume
Pn

j¼1eijxj þ fi 6¼ 0 for 8x 2 K, then
Pn

j¼1eijxj þ fi > 0 or
Pn

j¼1eijxj þ fi < 0.

Proof. By the intermediate value theorem, the conclusion is obvious.
For 8x 2 K, let Iþ ¼ ij

Pn
j¼1eijxj þ fi > 0; i ¼ 1; . . . ; p

n o
; I� ¼ ij

Pn
j¼1eijxj þ fi < 0; i ¼ 1; . . . ; p

n o
. Then, we have
Xp

i¼1

Pn
j¼1cijxj þ diPn
j¼1eijxj þ fi

¼
X
i2Iþ

Pn
j¼1cijxj þ diPn
j¼1eijxj þ fi

þ
X
i2I�

�ð
Pn

j¼1cijxj þ diÞ
�ð
Pn

j¼1eijxj þ fiÞ
: ð1Þ
Obviously, in (1), denominators are all positive. Hence, in problem GFP, we can assume that
Pn

j¼1eijxj þ fi > 0 is always
holds. In addition, sice
min
Xp

i¼1

Pn
j¼1cijxj þ diPn
j¼1eijxj þ fi

¼min
Xp

i¼1

Pn
j¼1cijxj þ diPn
j¼1eijxj þ fi

þMi

 !
¼min

Xp

i¼1

Pn
j¼1cijxj þ di þMi

Pn
j¼1eijxj þ fi

� �
Pn

j¼1eijxj þ fi
; ð2Þ
where Miði ¼ 1; . . . ; pÞ is a positive number, if Mi large enough,
Pn

j¼1cijxj þ di þMið
Pn

j¼1eijxj þ fiÞ > 0 can be satisfied. There-
fore, in the following, without loss of generality, we can assume that

Pn
j¼1cijxj þ di P 0 and

Pn
j¼1eijxj þ fi > 0 in GFP.

Next, we show how to convert problem GFP into an equivalent problem EP.
Let �li ¼minx2K

Pn
j¼1eijxj þ fi; �ui ¼maxx2K

Pn
j¼1eijxj þ fi; i ¼ 1; . . . ; p. Define H0 ¼ fy 2 Rpjl0i 6 yi 6 u0

i ; i ¼ 1; . . . ; pg with
l0i ¼ 1

�ui
;u0

i ¼ 1
�li
, then problem GFP can be converted into an equivalent non-convex programming problem as follows: !8
EPðH0Þ :

vðH0Þ ¼max u0ðx; yÞ ¼
Pp
i¼1

yi

Pn
j¼1

cijxj þ di ;

s:t: uiðx; yÞ ¼ yi

Pn
j¼1

eijxj þ fi

 !
6 1; i ¼ 1; . . . ;p;

x 2 K; y 2 H0:

>>>>>>><>>>>>>>:

The key equivalence result for problem GFP and EPðH0Þ is given by the following theorem.

Theorem 2. If ðx�; y�1; . . . ; y�pÞ is a global optimal solution for problem EPðH0Þ, then x� is a global optimal solution for problem GFP.
Converse, if x� is a global optimal solution for problem GFP, then ðx�; y�1; . . . ; y�pÞ is a global optimal solution for problem EPðH0Þ,
where y�i ¼

Pn
j¼1eijx�j þ fi; i ¼ 1; . . . ; p:

Proof. The proof of this theorem follows easily from the definitions of problems GFP and EPðH0Þ, therefore, it is omitted. h

From Theorem 2, in order to globally solve problem GFP, we may globally solving problem EPðH0Þ instead.

3. Basic operations

In this section, based on the above equivalent problem, a branch and bound algorithm is proposed for solving the global
optimal solution of GFP. The main idea of this algorithm consists of three basic operations: successively refined partitioning
of the feasible set, estimation of upper and lower bounds for the optimal value of the objective function. Next, we begin the
establishment of algorithm with the basic operations needed in a branch and bound scheme.

3.1. Branching process

In this algorithm, the branching process is performed in Rp, rather in Rn, that iteratively subdivides the p-dimensional
rectangle H0 of problem EPðH0Þ into smaller subrectangles that are also of dimension p. Let H ¼ fy 2 Rpjli 6 yi 6 ui;

i ¼ 1; . . . ; pg denote the initial rectangle H0 or subrectangle of it, the branching rule as follows:
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(i) Let si ¼ 1
2 ðli þ uiÞ; i ¼ 1; . . . ; p;

(ii) Let
H1 ¼ fy 2 Rpjli 6 yi 6 si; i ¼ 1; . . . ;pg;
H2 ¼ fy 2 Rpjsi 6 yi 6 ui; i ¼ 1; . . . ; pg:
It follows easily that this branching process is exhaustive, i.e. if fHkg denotes a nested subsequence of rectangles (i.e.
Hkþ1 � Hk, for all k) formed by branching process, then there exists a unique point y 2 Rp such that

T
kHk ¼ fyg.
3.2. Upper bound and lower bound

For each rectangle H ¼ fy 2 Rpjli 6 yi 6 ui; i ¼ 1; . . . ; pgðH � H0Þ formed by the branching process, the upper bound pro-
cess is used to compute an upper bound UBðHÞ for the optimal value vðHÞ of problem EPðHÞ
EPðHÞ :

vðHÞ ¼max u0ðx; yÞ ¼
Pp
i¼1

yi

Pn
j¼1

cijxj þ di

 !
;

s:t: uiðx; yÞ ¼ yi

Pn
j¼1

eijxj þ fi

 !
6 1; i ¼ 1; . . . ;p;

x 2 K; y 2 H:

8>>>>>>><>>>>>>>:

It will be seen from below, the upper bound UBðHÞ can be found by solving an ordinary linear program.
In the following, for convenience of expression, let
Tþi ¼ fjjcij > 0; j ¼ 1; . . . ; ng; i ¼ 1; . . . ;p;

T�i ¼ fjjcij < 0; j ¼ 1; . . . ; ng; i ¼ 1; . . . ;p;

Dþ ¼ fijdi > 0; i ¼ 1; . . . ;pg;
D� ¼ fijdi < 0; i ¼ 1; . . . ;pg;
Eþi ¼ fjjeij > 0; j ¼ 1; . . . ; ng; i ¼ 1; . . . ;p;

E�i ¼ fjjeij < 0; j ¼ 1; . . . ; ng; i ¼ 1; . . . ;p:
First, consider objective function u0ðx; yÞ, we have
u0ðx; yÞ ¼
Xp

i¼1

yi

Xn

j¼1

cijxj þ di

 !
6

Xp

i¼1

X
j2Tþ

i

cijxjui þ
X
j2T�i

cijxjli

0@ 1AþX
i2Dþ

diui þ
X
i2D�

dili , uu
0ðxÞ:
Then, consider constraint function uiðx; yÞ; i ¼ 1; . . . ; p;
uiðx; yÞ ¼ yi

Xn

j¼1

eijxj þ fi

 !
P
X
j2Eþ

i

eijxjli þ
X
j2E�i

eijxjui þ bi,ul
iðxÞ;
where
bi ¼
fili; if f i P 0;
fiui if f i < 0:

�

Based on the above discussion, we can construct a linear relaxation programming (LRP) as follows, which provides an upper
bound for the optimal value vðHÞ of problem EPðHÞ.
LRPðHÞ :

UBðHÞ ¼ max uu
0ðxÞ;

s:t: ul
iðxÞ 6 1; i ¼ 1; . . . ;p;

x 2 K:

8><>:

Remark 1. Let v½P� denotes the optimal value of the problem P, then, from the above discussion, the optimal values of LRPðHÞ
and EPðHÞ satisfy v½LRPðHÞ�P v½EPðHÞ� for 8H � H0.

Remark 2. Obviously, if H � H � H0, then UBðHÞ 6 UBðHÞ.

Another basic operation is to determinate a lower bound for the optimal value vðH0Þ of problem EPðH0Þ. By the upper
bound process, through solving LRPðHÞ, we will have a optimal solution ~x�. Let ~y�i ¼ 1Pn

j¼1
eij~x�j þfi

, obviously, ð~x�; ~y�Þ is a feasible

solution of problem EPðH0Þ, hence, u0ð~x�; ~y�Þ provides a lower bound for the optimal value vðH0Þ of problem EPðH0Þ.
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4. Algorithm and its convergence

Based upon the results and operations given in Section 3, the branch and bound algorithm for problem GFP may be stated
as follows:

Branch and bound algorithm

Step 0 Choose �P 0. Let H0 be denoted by
H0 ¼ fy 2 Rpjl0
i 6 yi 6 u0

i ; i ¼ 1; . . . ;pg;
Find an optimal solution x0 and the optimal value UBðH0Þ for problem LRPðH0Þ. Set UB0 ¼ UBðH0Þ; xc ¼ x0: Set
yc
i ¼

1Pn
j¼1eijxc

j þ fi
; i 2 f1;2; . . . ;pg; LB0 ¼ u0ðxc; ycÞ:
If UB0 � LB0 6 �, stop. ðxc; ycÞ and xc are global �-optimal solutions for problems EPðH0Þ and GFP, respectively. Otherwise, set
P0 ¼ fH0g; F ¼ ;; k ¼ 1; and go to Step 1.
Step 1 Set LBk ¼ LBk�1. Subdivide Hk�1 into two p-dimensional rectangles Hk;1; Hk;2 � Rp via the branching rule. Set

F ¼ F
S
fHk�1g.

Step 2 For j ¼ 1;2, compute UBðHk;jÞ and, if UBðHk;jÞ 6¼ �1, find an optimal solution xk;j for problem LRPðbHÞwith bH ¼ Hk;j. Set
t = 0.

Step 3 Set t ¼ t þ 1. If t > 2, go to Step 5. Otherwise, continue.
Step 4 If UBðHk;tÞ 6 LBk, set F ¼ F

S
fHk;tg, and go to step 3. Otherwise, Set
yk;t
i ¼

1Pn
j¼1eijx

k;t
j þ fi

; i 2 f1; . . . ;pg:
Let
LBk ¼maxfLBk;u0ðxk;t ; yk;tÞg:
If
LBk > u0ðxk;t ; yk;tÞ;
go to Step 3. If
LBk ¼ u0ðxk;t ; yk;tÞ;
set
xc ¼ xk;t; ðxc; ycÞ ¼ ðxk;t ; yk;tÞ;
and set
F ¼ F
[
fH 2 Pk�1jUBðHÞ 6 LBkg;
and continue.
Step 5 Set Pk ¼ fHjH 2 ðPk�1

S
fHk;1;Hk;2gÞ; H 62 Fg.

Step 6 Set UBk ¼maxfUBðHÞjH 2 Pkg, and let Hk 2 Pk satisfy UBk ¼ UBðHkÞ. If UBk � LBk 6 �, stop. ðxc; ycÞ and xc are global �-
optimal solutions for problems EPðH0Þ and GFP, respectively. Otherwise, set k ¼ kþ 1 and go to Step 1.

The convergence properties of the algorithm are given in the following theorem.

Theorem 3

(a) If the algorithm is finite, then upon termination, ðxc; ycÞ and xc are global �-optimal solutions for problems EPðH0Þ and GFP,
respectively.

(b) For each k P 0, let xk denote the incumbent solution xc for problem GFP at the end of Step k. If the algorithm is infinite, every
accumulation point of which is a global optimal solution for problem GFP, and
lim
k!1

UBk ¼ lim
k!1

LBk ¼ v:
Proof

(a) If the algorithm is finite, then it terminates in Step k P 0. Upon termination, since ðxc; ycÞ is found by solving problem
EPðHÞ, for some H � H0, for an optimal solution xc and setting
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yc
i ¼

1Pn
j¼1eijxc

j þ fi
; i 2 f1; . . . ;pg;
xc is a feasible solution for problem GFP, and ðxc; ycÞ is a feasible solution for problem EPðH0Þ. Upon termination of the algo-
rithm, UBk � LBk 6 � is satisfied. From Step 0 and Step 1 and Step 4, this implies that UBk �u0ðxc; ycÞ 6 �. By the algorithm, it
shows that
UBk P v:
Since ðxc; ycÞ is a feasible solution for problem EPðH0Þ,
u0ðxc; ycÞ 6 v:
Taken together, this implies that
v 6 UBk 6 u0ðxc; ycÞ þ � 6 vþ �:
Therefore,
v� � 6 u0ðxc; ycÞ 6 v: ð3Þ
Since yc
i ¼ 1Pn

j¼1
eijxc

j
þfi
; i ¼ 1; . . . ; p, we have
gðxcÞ ¼ u0ðxc; ycÞ:
From (3), this implies that
v� � 6 gðxcÞ 6 v;
and the proof of part (a) is complete.
(b) Suppose that the algorithm is infinite. Then it generates a sequence of incumbent solutions for problem EPðH0Þ, which

we may denote by fðxk; ykÞg. For each k P 1, ðxk; ykÞ is found by solving problem EPðHkÞ, for some rectangle Hk � H0, for
an optimal solution xk 2 K, and setting yk

i ¼ 1Pn

j¼1
eijxk

j
þfi
; i 2 f1; . . . ; pg. Therefore, the sequence fxkg consists of feasible

solutions for problem GFP. Let �x be an accumulation point of fxkg, and assume without loss of generality that
lim
k!1

xk ¼ �x:
Then, since K is a compact set, �x 2 K. Furthermore, since fxkg is infinite, we may assume that without loss of generality that,
for each k, Hkþ1 � Hk. From Horst and Tuy [6], since the rectangles Hk, k P 1, are formed by rectangular bisection, this implies
that, for some point �y 2 Rp
lim
k!1

Hk ¼
\

k

Hk ¼ f�yg: ð4Þ
Let H ¼ f�yg and, for each k, let Hk be given by
Hk ¼ fy 2 Rpjlk
i 6 yi 6 uk

i ; i ¼ 1; . . . ;pg:
Since Hkþ1 � Hk � H0, for each k, by Remark 2 and Step 4, this implies that fUBðHkÞg is a nonincreasing sequence of real num-
bers bounded below by v. Therefore, limk!1UBðHkÞ is a finite number and satisfies
lim
k!1

UBðHkÞP v: ð5Þ
For each k, from Step 2, UBðHkÞ equal to the optimal value of the problem LRPðHkÞ and xk is an optimal solution for this prob-
lem. From (4), we have
lim
k!1

lk ¼ lim
k!1

uk ¼ f�yg ¼ H:
Since limk!1xk ¼ �x; lk
i 6

1Pn

j¼1
eijxk

j
þfi
6 uk

i , and the continuity of
Pn

j¼1eijxj þ fi,
1Pn
j¼1eij�xj þ fi

¼ �yi; i ¼ 1; . . . ;p:
This implies that ð�x; �yÞ is a feasible solution for problem EPðH0Þ. Therefore,
u0ð�x; �yÞ 6 v:
Combing (5), we obtain that
u0ð�x; �yÞ 6 v 6 lim
k!1

UBðHkÞ: ð6Þ
Since
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lim
k!1

UBðHkÞ ¼
Xp

i¼1

X
j2Tþi

cijxjuk
i þ

X
j2T�i

cijxjl
k
i

0@ 1AþX
i2Dþ

diuk
i þ

X
i2D�

dil
k
i ¼

Xp

i¼1

ci �yi

Xn

j¼1

eij�xj þ fi

 !
¼ u0ð�x; �yÞ: ð7Þ
From (6) and (7), we have
lim
k!1

UBðHkÞ ¼ v ¼ u0ð�x; �yÞ;
therefore, ð�x; �yÞ is a global optimal solution for problem EPðH0Þ. By Theorem 2, this implies that �x is a global optimal solution
for problem GFP.For each k, since xk is the incumbent solution for problem GFP at the end of Step k,
LBk ¼ gðxkÞ; forall k P 1:
By the continuity of g, we have
lim
k!1

gðxkÞ ¼ gð�xÞ:
Since �x is a global optimal solution for problem GFP,
gð�xÞ ¼ v:
Therefore, limk!1LBk ¼ v, and the proof is complete. h
5. Numerical experiment

To verify the performance of the proposed global optimization algorithm, some test problems are implemented on micro-
computer, and the convergence tolerance set to � = 1.0e � 4 in our experiment. The results are summarized in Tables 1 and 2.

Example 1
min
4x1 þ 3x2 þ 3x3 þ 50

3x2 þ 3x3 þ 50
þ 3x1 þ 4x3 þ 50

4x1 þ 4x2 þ 5x3 þ 50
þ x1 þ 2x2 þ 4x3 þ 50

x1 þ 5x2 þ 5x3 þ 50
þ x1 þ 2x2 þ 4x3 þ 50

5x2 þ 4x3 þ 50
;

s:t: 2x1 þ x2 þ 5x3 6 10;
x1 þ 6x2 þ 2x3 6 10;
9x1 þ 7x2 þ 3x3 P 10;
x1; x2; x3 P 0;
Example 2
min
3x1 þ 5x2 þ 3x3 þ 50
3x1 þ 4x2 þ 5x3 þ 50

þ 3x1 þ 4x2 þ 50
4x1 þ 3x2 þ 2x3 þ 50

þ 4x1 þ 2x2 þ 4x3 þ 50
5x1 þ 4x2 þ 3x3 þ 50

;

s:t: 2x1 þ x2 þ 5x3 6 10;
x1 þ 6x2 þ 2x3 6 10;
9x1 þ 7x2 þ 3x3 P 10;
x1; x2; x3 P 0;
tational results of test problems

Example

1 2 3

58 80 32
18 64 32
2.968694 8.566259 1.089285

l solution and optimal value for test problems

e Optimal solution Optimal value v

x1 x2 x3

0 0.625 1.875 4.0000
0 3.3333 0 3.0029
3 4 5
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Example 3
min
37x1 þ 73x2 þ 13
13x1 þ 13x2 þ 13

þ 63x1 � 18x2 þ 39
13x1 þ 26x2 þ 13

;

s:t: 5x1 � 3x2 ¼ 3;
1:5 6 x1 6 3:
In Table 1, the notations has been used for column headers: Iter: number of algorithm iteration; Lmax: the maximal length
of the enumeration tree; time: the execution time of the algorithm in second.

From Tables 1 and 2, it is seen that our algorithm can globally solve the problem GFP effectively. Test results also indicate
that the proposed algorithm can be used successfully to globally solve the problem GFP.

6. Concluding remarks

In this paper, we present a branch and bound algorithm for solving general linear fractional problem GFP. To globally
solve problem GFP, we first convert it into an equivalent problem EPðH0Þ, then, through using linearization method, we ob-
tain a linear relaxation programming problem of EPðH0Þ. In the algorithm, First, the branching process takes place in the
space Rp rather than in the space Rn. This economizes the computation required to solve problem GFP. This mainly due to
the fact that the number of ratios in the objective function of problem GFP is smaller than the number of decision variables
n in the problem. Second, the upper bounding subproblems are linear programming problems that are quite similar to one
another. These characteristics of the algorithm offer computational advantages that can enhance the efficiencies of the
algorithm.

It is hoped that in practice, the proposed algorithm and ideas used in this paper will offer valuable tools for solving gen-
eral linear fractional programming.
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