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a b s t r a c t

In this paper we present a numerical method for a generalized Black–Scholes equation,
which is used for option pricing. The method is based on a central difference spatial
discretization on a piecewise uniform mesh and an implicit time stepping technique. Our
scheme is stable for arbitrary volatility and arbitrary interest rate, and is second-order
convergent with respect to the spatial variable. Furthermore, the present paper efficiently
treats the singularities of the non-smooth payoff function. Numerical results support the
theoretical results.
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1. Introduction

An option is a financial contract that gives its owner the right to buy or sell a specified amount of a particular asset at a
fixed price, called the exercise price, on or before a specified date, called the maturity date. Options that can be exercised at
any time up to thematurity are called American, while options that can only be exercised on thematurity data are European.
Options which provide the right to buy the underlying asset are known as calls, whereas options conferring the right to
sell the underlying asset are referred to as puts. It was shown in [1] that these option prices satisfy a second-order partial
differential equation with respect to the time horizon t and the underlying asset price x. This equation is now known as the
Black–Scholes equation, and can be solved exactly when the coefficients are constant or space-independent. However, in
many practical situations, numerical solutions are normally sought. Therefore, efficient and accurate numerical algorithms
are essential for solving this problem accurately.

There are several methods in the open literature for the valuation of European and American options. The lattice
technique was proposed in [2] to solve the Black–Scholes equations and was improved in [3]. That approach is equivalent
to an explicit time-stepping scheme. Classical finite difference methods applied to constant-coefficient heat equations have
also been developed (cf. [4–7]). The reason for this is that when the coefficients of the Black–Scholes equation are constant
or space-independent, the equation can be transformed into a diffusion equation. However, when a problem is space-
dependent, this transformation is impossible, and thus the Black–Scholes equation in the original form needs to be solved.

Other numerical schemes based on finite difference methods for the valuation of European and American options have
also been developed. Vazquez [8] studied an upwind numerical approach for an American and European option pricing
model. Ikonen and Toivanen [9] proposed a operator splitting method to solve the linear complementarity problems arising
from the pricing of American options. Zvan et al. [10] suggested a general finite element approach for PDE option pricing
models. In [11,12] numerical methods of option pricing models are studied by applying a standard finite volume method
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to obtain a difference scheme. The numerical schemes use central difference for a given mesh, but switch to upstream
weighting for a small number of nodes, which are second order spatial convergent. In this paper we change the grid spacing
to a piecewise uniform mesh which is constructed so that central difference is used everywhere.

It is well known thatwhen using the standard finite differencemethod to solve those problems involving the convection-
diffusion operator, such as the Black–Scholes partial differential operator, numerical difficulties can be caused. The main
reason is that when the volatility or the asset price is small, the Black–Scholes partial differential operator becomes a
convection-dominated operator. Hence, the implicit Euler scheme with central spatial difference method may lead to
nonphysical oscillations in the computed solution. The implicit Euler scheme with upwind spatial difference method does
not have this disadvantage, but this difference scheme is only first-order convergent. Recently, a stable fitted finite volume
method (cf., for example, [13,14]) is employed for the discretization of the Black–Scholes equation. But it is also first-order
convergent.

In this paper we present a numerical method for a generalized Black–Scholes equation, which is used for option pricing.
Themethod is based on a central difference spatial discretization on a piecewise uniformmesh and an implicit time stepping
technique. Thematrix associated with discrete operator is anM-matrix, which ensure that the scheme is stable for arbitrary
volatility and arbitrary interest rate without any extra conditions. The scheme is second-order convergent with respect to
the spatial variable. Furthermore, the present paper efficiently treats the singularities of the non-smooth payoff function.
Without loss of generality, we shall discuss the method using the model for European options in our paper. Naturally, the
method is applicable to the American option if it is used together with a technique for free boundary problems.

The rest of the paper is organized as follows. In the next section we discuss the continuous model of the Black–Scholes
equations. The discretization method is described in Section 3. In Section 4 we present a stability and error analysis for the
finite difference scheme. It is shown that the finite difference solution converges to the exact solution at the rate ofO(h2

+τ).
Numerical examples are presented in Section 5. Finally a discussion on results is indicated in Section 6.

2. The continuous problem

In this paper we consider the following generalized Black–Scholes equation

−
∂v

∂t
−

1
2
σ 2(x, t)x2

∂2v

∂x2
− r(t)x

∂v

∂x
+ r(t)v = 0, (x, t) ∈ R+

× (0, T ) (2.1)

equipped with the terminal and boundary conditions

v(x, T ) = max(x − K , 0), x ∈ R+, (2.2)
v(0, t) = 0, t ∈ [0, T ]. (2.3)

Here v(x, t) is the European call option price at asset price x and at time t , K is the exercise price, T is the maturity, r(t)
is the risk-free interest rate, and σ(x, t) represents the volatility function of the underlying asset. Here we assume that
σ 2

≥ α > 0, β∗
≥ r ≥ β > 0. When σ and r are constant functions, it becomes the classical Black–Scholes model.

Note that (2.1) degenerates when x goes to zero. Nevertheless, the existence and uniqueness of a classical solution of
(2.1)–(2.3) is well known. In fact, it can be transformed to a Cauchy problem for a uniformly parabolic operator.

Now, we see that the above model is described in a infinite domain R+
× (0, T ), which makes difficulties in constructing

numerical solutions. Thismotivates the consideration of the followingmodel defined on a truncated domainΩ = (0, Smax)×
(0, T ), where Smax is suitably chosen positive number:

−
∂w

∂t
−

1
2
σ 2(x, t)x2

∂2w

∂x2
− r(t)x

∂w

∂x
+ r(t)w = 0, (x, t) ∈ Ω, (2.4)

w(x, T ) = max(x − K , 0), x ∈ [0, Smax], (2.5)
w(0, t) = 0, t ∈ [0, T ], (2.6)

w(Smax, t) = Smax − Ke−
 T
t r(s)ds, t ∈ [0, T ]. (2.7)

The existence and uniqueness of a classical solution of (2.4)–(2.7) can be found in [15,16]. It is proved in [17] that if v and w
are solutions of (2.1)–(2.3) and (2.4)–(2.7), respectively, then

|v(x, t) − w(x, t)| ≤ K exp

−


ln Smax

x

2
2
[
min

Ω̄

σ 2

]
(T − t)

 , (x, t) ∈ Ω (2.8)

holds.
Since the final condition is not smooth, the resulting solution is not smooth enough for the convergence of finite difference

approximations. Hence we need to modify the model (2.4)–(2.7).
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Define πε(y) as

πε(y) =

y, y ≥ ε,

c0 + c1y + · · · + c9y9, −ε < y < ε,
0, y ≤ −ε,

where 0 < ε ≪ 1 is a transition parameter and πε(y) is a function which smooths out the original max(y, 0) around y = 0.
This requires that πε(y) satisfies

πε(−ε) = π ′

ε(−ε) = π ′′

ε (−ε) = π ′′′

ε (−ε) = π (4)
ε (−ε) = 0,

πε(ε) = ε, π ′

ε(ε) = 1, π ′′

ε (ε) = π ′′′

ε (ε) = π (4)
ε (ε) = 0.

Using these ten conditions we can easily find that

c0 =
35
256

ε, c1 =
1
2
, c2 =

35
64ε

, c4 = −
35

128ε3
,

c6 =
7

64ε5
, c8 = −

5
256ε7

, c3 = c5 = c7 = c9 = 0.

Replacing max(x − K , 0) in the terminal condition (2.5) by the fourth-order smooth function πε(x − K) we obtain

−
∂u
∂t

−
1
2
σ 2(x, t)x2

∂2u
∂x2

− r(t)x
∂u
∂x

+ r(t)u = 0, (x, t) ∈ Ω, (2.9)

u(x, T ) = πε(x − K), x ∈ [0, Smax], (2.10)
u(0, t) = 0, t ∈ [0, T ], (2.11)

u(Smax, t) = Smax − Ke−
 T
t r(s)ds, t ∈ [0, T ]. (2.12)

The existence and uniqueness of a classical solution of (2.9)–(2.12) can be found in [15,16], which also contain the proof of
the following estimate: There exists a positive constant C independent of πε(x − K) such that

|u(x, t) − w(x, t)| ≤ C‖πε(x − K) − max(x − K , 0)‖L∞ (2.13)
for (x, t) ∈ Ω̄ .

It follows from (2.8) and (2.13) that we can make the solution of our modified model (2.9)–(2.12) become close to that
of the original model (2.1)–(2.3) by choosing sufficiently large Smax and sufficiently small ε. In the remaining of this paper
we will consider the model (2.9)–(2.12).

3. Discretization

We now consider the approximation of the solution to the Black–Scholes equation by a central difference scheme on a
piecewise uniform mesh.

The use of central difference scheme on a uniformmeshmay produces nonphysical oscillations in the computed solution.
To overcome this oscillation we use a piecewise uniform mesh ΩN on the space interval [0, Smax]:

xi =



h i = 1,

h
[
1 +

α

β∗
(i − 1)

]
i = 2, . . . ,N/4 − 1,

K i = N/4,
K + ε i = N/4 + 1,

K + ε +
Smax − K − ε

3N/4 − 1
(I − N/4 − 1) i = N/4 + 2, . . . ,N,

where

h =
K − ε

1 +
α
β∗ (N/4 − 2)

.

Here we have used a griddedmesh at the region near x = K for treating the singularities of the non-smooth payoff function.
For the time discretization, we use a uniformmesh ΩM on [0, T ] withM mesh elements. Then the piecewise uniformmesh
ΩN×M on Ω = (0, Smax) × (0, T ) is defined to be the tensor product ΩN×M

= ΩN
× ΩM . It is easy to see that the mesh

sizes hi = xi − xi−1 and τj = tj − tj−1 satisfy

hi =


h i = 1,
α

β∗
h i = 2, . . . ,N/4 − 1,

ε i = N/4,N/4 + 1,
Smax − K − ε

3N/4 − 1
i = N/4 + 2, . . . ,N
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and

τ = τj = T/M, j = 1, . . . ,M,

respectively.
We discretize the Black–Scholes operator using the central difference scheme

LN,Mz ji = −
z j+1
i − z ji
τj+1

−
(σ

j
i )

2x2i
hi + hi+1


z ji+1 − z ji

hi+1
−

z ji − z ji−1

hi


− r jxi

z ji+1 − z ji−1

hi + hi+1
+ r jz ji (3.1)

on the above piecewise uniformmesh, which ensures that the matrix associated with the discrete operator is anM-matrix.
Hence the scheme is stable for arbitrary volatility and arbitrary interest rate.

Then our scheme reads: Find U j
i ∈ RN+1

× RM+1 with

LN,MU j
i = 0, 1 ≤ i < N, 0 ≤ j < M, (3.2)

UM
i = πε(xi − K), 1 ≤ i < N, (3.3)

U j
0 = 0, U j

N = Smax − Ke
−
 T
tj

r(s)ds
, 0 ≤ j ≤ M. (3.4)

4. Analysis of the method

Our analysis is based on discrete maximum principle, truncation error analysis and barrier function techniques.

Lemma 1 (Maximum Principle). The operator LN,M defined by (3.1) satisfies a discrete maximum principle, i.e. if {v
j
i} and {w

j
i}

are mesh functions that satisfy v
j
0 ≤ w

j
0, v

j
N ≤ w

j
N (j = 0, 1, . . . ,M), vM

i ≤ wM
i (i = 0, 1, . . . ,N) and LN,Mv

j
i ≤ LN,Mw

j
i

(i = 1, . . . ,N − 1, j = M − 1, . . . , 1, 0), then v
j
i ≤ w

j
i for all i, j.

Proof. It is easy to verify that the matrix associated with LN,M is an M-matrix, as in the proof of [18, Lemma 3.1]. �

The next lemma gives us a useful formula for the truncation error.

Lemma 2. Let v(x, t) be a smooth function defined on ΩN,M . Then the following estimate for the truncation error holds true:

|LN,Mv
j
i − (Lv)

j
i| ≤ C1

∫ tj+1

tj−1

∂2v

∂t2
(xi, t)

 dt + C1h
∫ xi+1

xi−1

[
x2i

∂4v

∂x4
(x, tj)

+ xi

∂3v

∂x3
(x, tj)

] dx,
1 ≤ i < N, 0 < j < M,

where C1 is a positive constant independent of the mesh.

Proof. It can be easily obtained by using Taylor’s formula with the integral form of the remainder. �

Now we can get the main result for our difference scheme.

Theorem 1. Let u be the solution of (2.9)–(2.12) and U be the solution of the finite difference scheme (3.2)–(3.4). Assume that
u satisfies x2 ∂4u

∂x4
∈ C(Ω̄) and x ∂3u

∂x3
∈ C(Ω̄). Then we have

|u(xi, tj) − U j
i | ≤ C(h2

+ τ), 0 ≤ i ≤ N, 0 ≤ j ≤ M,

where C is a positive constant independent of h and τ .

Proof. Applying Lemma 2 we have

|LN,M(uj
i − U j

i )| = |LN,Muj
i − (Lu)ji| ≤ C1

∫ tj+1

tj−1

∂2u
∂t2

(xi, t)
 dt + C1h

∫ xi+1

xi−1

[
x2i

∂4u
∂x4

(x, tj)
+ xi

∂3u
∂x3

(x, tj)
] dx

≤ C2(τ + h2), 1 ≤ i < N, 0 < j < M,

where we have used the assumptions x2 ∂4u
∂x4

∈ C(Ω̄) and x ∂3u
∂x3

∈ C(Ω̄), C2 is also a positive constant independent of the

mesh. Hence, using the barrier functionW j
i = C(τ + h2)(1+ T − tj) (with the constant C sufficient large), Lemma 1 implies

that for all i, j,

|u(xi, tj) − U j
i | ≤ C(h2

+ τ),

which completes the proof. �
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Fig. 1. Computed option value U for Test 1.

Fig. 2. Computed option value U for Test 2.

5. Numerical experiments

In this sectionwe verify experimentally the theoretical results obtained in the preceding section. Errors and convergence
rates for the difference scheme are presented for two test problems.

Test 1. European call option with parameters: T = 1, r = 0.06, σ = 0.2(1 + te−x), K = 25 and Smax = 100.
Test 2. European call option with parameters: T = 1, r = 0.06, σ = 0.4(2 + sin x), K = 25 and Smax = 100.
For Tests 1 and 2 we choose N = M = 64 and ε = 10−4. The computed option value U are depicted in Figs. 1 and 2,

respectively.
To demonstrate the theoretical rates of convergence numerically, we takeM = 1024 which is a sufficiently large choice

to bring out second-order convergence in space. The exact solutions of our test problems are not available. We use the
approximated solution of N = 2048,M = 1024 as the exact solution. We present the error estimates for different N .
Because we only know ‘‘the exact solution’’ on mesh points, we use the linear interpolation to get solutions at other points.
In this paper Ū(x, t) denotes ‘‘the exact solution’’ which is a linear interpolation of the approximated solution U2048,1024. We
measure the accuracy in the discrete maximum norm

eN,M
= max

i,j
|UN,M

ij − Ū(xi, tj)|,

and the convergence rate

r̄N,M
= log2


eN,M

e2N,M


.

The error estimates and convergence rates in our computed solutions of Tests 1 and2 are listed in Tables 1 and2, respectively.
From the figures it is seen that the numerical solutions by our method are non-oscillatory. From Tables 1 and 2 we see

that eN,M/e2N,M is close to 4 for sufficiently large M , which supports the convergence estimate of Theorem 1. They indicate
that the theoretical results are fairly sharp.
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Table 1
Numerical results for Test 1.

M N Error eN,M Rate rN,M

1024 128 6.8027e−2 1.122
256 3.1258e−2 1.312
512 1.2588e−2 1.880

1024 3.4189e−3 –

Table 2
Numerical results for Test 2.

M N Error eN,M Rate rN,M

1024 128 5.7124e−2 1.551
256 1.9498e−2 1.919
512 5.1550e−3 2.284

1024 1.0586e−3 –

6. Conclusion

In this paper we present a numerical method for a generalized Black–Scholes equation, which is used for option pricing.
Themethod is based on a central difference spatial discretization on a piecewise uniformmesh and an implicit time stepping
technique. Thematrix associated with discrete operator is anM-matrix, which ensure that the scheme is stable for arbitrary
volatility and arbitrary interest rate without any extra conditions. The scheme is second-order convergent with respect to
the spatial variable. Furthermore, the present paper efficiently treats the singularities of the non-smooth payoff function.
Numerical experiments, performed to demonstrate the effectiveness of the method, showed that the approach is stable and
accurate. This method can be applied to American option pricing model along with a technique for free boundary problems.
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