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There exist many types of possible periodic orbits that impact at the walls for the inverted pendulum
impacting between two rigid walls. Previous studies only focused on single impact periodic orbits and
symmetric periodic orbits that bounce back and forth between the two walls. They respectively
correspond to Types I and II orbits in the Chow, Shaw and Rand classification. In this paper we discuss
two types of double impact periodic orbits that have not been studied before. The equations need to be
solved for double impact orbits are transcendental and it is very hard to see the structure of the
solutions. Consequently the analysis of double impact orbits is much more difficult than that of Types I
and II orbits. A combination of analytical and numerical methods is employed to investigate the
existence, stability and bifurcations of these orbits. Grazing bifurcations, which do not present for Types

I and II orbits, are also observed.
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1. Introduction

An impact system, where a vibrator collides with one or more
rigid walls or with another moving object, is found in many
applications, such as impact print hammers [14], rigid blocks [15]
and walking machines [16], etc. Being an important class of
piecewise smooth (PWS) dynamical systems, impact systems
often exhibit very complicated dynamics. Besides the occurrence
of all kinds of traditional bifurcations, such as saddle-node
bifurcation, Hopf bifurcation as well as homoclinic bifurcation,
period doubling bifurcation [5,32-34], impacts also lead to many
new types of complicated bifurcation phenomena, such as graz-
ing, sticking and chattering [3,4,6-8,11,27-29,35,36], etc. In gen-
eral, such kinds of non-standard bifurcations arising from impact
systems and other types of PWS systems are difficult to deal with
because of the added non-linearities caused by the non-smooth-
ness. In recent decades, the study of those non-standard bifurca-
tions has become very active and some effective general methods
have been developed. For instance, normal form calculations for
impact oscillators were studied in [1,12] and a general methodol-
ogy of reducing multidimensional flows to low-dimensional maps
for piecewise non-linear oscillators was proposed in [30]. The
characteristic of normal form map for soft impact systems was
also analyzed in [26]. In fact there is an enormous literature on
this subject, in addition to the aforementioned works, see, for
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example, the monographs [2,20] and the references therein for
more on these issues.

In this paper we consider double impact periodic motions
(namely, motions which repeat after every second impact) of the
inverted pendulum impacting on rigid walls under external
periodic excitation as shown in Fig. 1. We can scale the gap size
between the two walls to be two and assume that the mathema-
tical model is given by the following piecewise linear (PWL)
differential equation:

as |x| <1,

as x| =1, a.n

X +20x—X = fcoswt,
{ X+ —TX,

where o > 0 is a linear damping coefficient and f > 0 is the forcing
amplitude, r e (0,1] is the coefficient of restitution representing
energy loss during impact.

The PWL system (1.1) was first proposed by Chow and Shaw in
[5] and also by Shaw and Rand in [34]. The subharmonic and
homoclinic bifurcations and chaos were discussed for (1.1) in
[5,34]. The impact inverted pendulum can be used in the model-
ing of many mechanical devices, such as rings, rigid standing
structures, a mooring buoy, etc. [8]. Due to this reason, it has been
extensively studied during the last 20 years. The existence and
stability of periodic motions were analyzed under impulsive
excitation in [23] and under general periodic excitation in [24].
Properties of cross-well chaos were studied in [32] and the
problem of chaos control was addressed in [21,22]. The asympto-
tic analysis of chattering oscillations is presented in [8]. All of
these works assume that the motion of the oscillator between the
walls is governed by a linear equation. Efforts were also made in
[9,10,25] to extend the Melnikov methods for homoclinic and
subharmonic bifurcations established for smooth systems to the
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Fig. 1. Inverted pendulum.

impact inverted pendulum when the motion of the oscillator
between the walls is governed by a general non-linear equation.

For the PWL system (1.1), there are many types of possible
periodic motions involving impacts at x=+1and — 1. Let T =2n/w
be the period of the excitation. Let m be a positive integer and the
triple (m,kq,k,) denote the periodic orbits of period mT of (1.1) that
impact at x=+1 k; times and —1 k, times per period. Clearly, the
(m,1,0)and (m, 0, 1) motions correspond to the Type I motions and
the symmetrical (m, 1, 1) motions correspond to the Type Il motions
in the classification given by Chow, Shaw and Rand in [5,34]. These
two types of motions are the simplest forms of motions of (1.1) and
have been thoroughly investigated by previous works mentioned
above. As pointed out by Lenci and Rega [24], although in principle,
the more general (m,kq,k;) periodic motions can be studied
analytically, the formulation becomes rapidly cumbersome and
the computations are extremely difficult for periodic motions
impacting multiple times in their period. Consequently, to the best
of our knowledge, for system (1.1) there is still no result on the
study of periodic motions impacting two or more times in their
period except for the symmetrical (m, 1, 1) motions in the
literature. It is worth noting that in [3], Budd and Lee studied the
double impact periodic orbits of a class of periodically forced
harmonic impact oscillators.

For system (1.1), there are two types of double impact periodic
orbits. The first type is the (m, 2, 0) (or (m, 0, 2)) motions. Namely,
the pendulum starting from the wall x=+1 (or x=—1) immedi-
ately changes its velocity by the impact law and impact to x=+1
(or x=—1) after traveling for a time umT for pe(0,1) without
touching the walls x= +1, then bounces back to x=+1 (or
x=—1) after traveling for a time (1—x)mT without touching the
walls x= + 1, then repeat the above motion. In order to emphasis
the distribution of the traveling times between each consecutive
impacts, we denote the motions as (m,2,0,u) or (m,0,2, ) motions.
By symmetry, for this type of double impact periodic orbits, we
only need to study the (m,2,0,1) motions. The second type is the
(m, 1, 1) motions. For this type of motions, the pendulum starting
from the wall x=+1 immediately changes its velocity by the
impact law and reaches the wall x=—1 after a time umT for
e (0,1), and then bounces back to the wall x=+1 after traveling
for another time of (1—p)ymT without touching the walls x= +1,
then repeat the above motion. We similarly denote this type of
motions as (m,1,1,) motions. Clearly, when y = 1, a (m,2,0,u) (or
(m,0,2,)) orbit is reduced to a single impact periodic orbit. In fact,
a(m,2,0,9) (or (m,0,2,1)) orbit for even m and a (m,1,1,) orbit are
respectively a Type I orbit and a Type II orbit studied in [5,34].
Hence in this paper, we assume that u # 1.

As shown in the sequel, unlike for a Type I orbit and a Type Il
orbit studied in [5,34], the equations need to be solved for double
impact orbits are transcendental and it is very hard to see the
structure of the solutions. Thus double impact orbits are much
more difficult to analyze. A combination of analytical and

numerical methods are used to investigate the existence, stability
and bifurcations of these orbits in detail. Grazing bifurcations,
which do not present for Types I and II orbits, are also observed.

This paper is organized as follows. In Section 2, we discuss the
existence of the aforementioned two types of double impact
periodic orbits. In Section 3, we discuss the double impact
periodic orbits for some special cases. The stability and bifurca-
tions of these orbits are given in Section 4. In Section 5, we
present analytical conditions for the existence of double impact
grazing periodic orbits. The grazing bifurcations are discussed in
Section 6. Finally, some concluding remarks are given in Section 7.

2. The existence of double impact periodic orbits

Let x =y, then the free motion between the two walls of PWL
system (1.1) can be rewritten in the form:

x=y
y=x=2oy+Bcoswep 3 as x| <1, 2.1)
¢=1

where ¢ =t(modT) and T =2n/w is the period of the excitation.
The impact law is given by

y—>-—r1y as|x|=1. 2.2)
Let Q=+1+02, y=p/q, q=+/(1+w?)*+402w?. Then the
solution of (2.1) corresponding to the initial conditions x = xg,
Yy =Yo, ¢ =@, is given by
X(t; X0,Y0,Pg) = e~ *=9[C; coshQ(t— @)+ C2sinhQ(t— )]
+ycos(wt+y),
V(& X0,Y0,00) = e~ 4= P0)[(—0oCy + QC2)coshQ(t—pg)
+(QC; —0Cy)sinhQ(t— )] —ywsin(wt + ),

23)

where y = arctan(2o.w /(14 w?))—7 € [-7,—7/2], C;, C; are given by

1 ,
C1 =Xo=yCos@Po+y), G = 5[0Ci+Yo+7@sin(@ Py +y)).

Because of the nature of the vector field (2.1) and (2.2), the
Poincaré section is taken to be the cylinder:

T ={(@xy)eS xIx Rx=1,y>0}=S! x RY,
where I :=[—1,1] and S! is the circle of period T. Let
It ={(exy)eS x I x Rx=1,y <0},

2, ={(@xy) eSS xIx Rjx=-1,y >0},

2T ={(exy)eS xIx Rx=-1,y <0}

be the other three half switch planes. Elements in 2 are denoted
by (@.y)eS' x RT and elements in £*, ¥, and X~ are still
denoted by (¢,x,y) with x=1, —1 and x=-1 respectively.
The Poincaré map IT: X+ 2 is given by the flow of systems
(2.1) and (2.2).

Let m be a positive integer and p e (0,1) and u # 1. Similar to
[5,34], the conditions for the existence of a (m,2,0,x) orbit are
given below in terms of (¢,,,ym) € 2:

X(@p+pumT; +1,-1y,,¢,) = +1, (2.4a)
X(Pm+mT; +1,=1§ 4, Qp +pmT) = +1, (2.4b)
Y@ +mT; +1,=1F 5 2, Qpy + umT) = Ym, (2.40)
X+t +1,—1Y @)l <1, teO,umT), (2.4d)

X(@p+umT+t; +1,—1Y 4, @ +umT)| <1, te(0,(1—pymT),

(2.4e)
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where ¥, 4 =¥(@,, +1mT; +1,—1y,,,¢,,). Similarly, the conditions
for the existence of a (m,1,1,) motion are given below in terms of
(Pmym)e2:

X(Qpm+pumT; +1,-1y,,0,,)=-1, (2.5a)
X( P +MT; =1, =19 g, @+ mT) = +1, (2.5b)
W @m+mT; =1,—1§ 1 g, @y + pmT) = ym, (2.5¢0)
X+t +1,—1Ym, @)l <1, teO,umT), (2.5d)

X(@+umT+t; —1,—19 g, P +umD) < 1, te(0,(1—ymT),

(2.5e)

where ¥, p=y(@,+umT; +1,—-1yn,@). When y,,=0 (resp.
Ymp=0), the corresponding (m,2,0,u) (resp. (m,1,1,u)) orbit is a
grazing periodic orbit, which will be discussed in detail in
Sections 5 and 6.

To simplify expressions in the sequel, we introduce the
following notations:

G(w) = ("™ 4 re~*#")sinh((1—pymTQ),

H(w) =201 4+1Q(G(1)—G(1—w)),

I = cosh(mTQ)—cosh(amT),

J=A=DI+1+71) (% sinh(mTQ)—sinh(ocmT)) ,

K+ (1) = (1+n)2esinh(umTQ)sinh((1—ymTQ) + Qsinh((1-2)ymTQ)]

+(1-r)Q2sinh(mT¢2),

L(u) = 2Qe™ T [sinh((1—p)ymTQ)—re~*"Tsinh(umTQ)],

My ()= +no[-K, (@) £ L],

N & (1) = 1+ £ K_(1)—L(1—pw),

Q(w) = e~ Tsinh(umTQ)+sinh((1—pymTQ),

R(w) = e~ %™ cosh(umTQ)—cosh((1—pwymTQ),

S+ (= + (1+1)e ™ [aQ(w)+ QR(w)],

U(p) = —[(1=1)? +26%(1 +12)]cosh(nTQ)—(1 + r)*>cosh((1—-2)mTQ)
—20Q(1-r%)sinh(mTQ)+2Q? (@™ +r2e~*mT),

A(p) = (U(p)—?*(1+1)*[cosh(mT)—cosh((1-2ymTQ)}sin(2 um)
—2wQ(1+1)?sinh((1-2)mTQ)cos(2pumm) + H(w),

Af () = U(wsinumm)+M . (cos2umm)+N - (w),

A5 (1) = —M ¢ (sin2umm) + U(uycos(2umm) F U(w),

A (W = +20*Q +n)[e* ™ Q(u) F sinh(mTQ)]sin(2umm)
+2wQS 4 (wcosumm) F 2w0S 4 (W).

Then the main result of this section is as follows:

Theorem 2.1. Let m be a positive integer and p e (0,1) and u # 1.
Let ¢ = cos(w @, +¥), Sm = sin(w@,,, +¥). Then for system (1.1):

(1) A point (¢,,,,ym) € 2 is a period-2 point of II and corresponds to
a (m,2,0,u) orbit if and only if (2.4d) and (2.4e) holds and the
following are satisfied:

_ATw
yZI(ON

_Aw
" AW

A(,u) #0, cnm

A AF(w?+ 45 (w?
" A 1A
(2) A point (¢,,,ym) € 2 is a fixed point of IT and corresponds to a

(m,1,1,u) orbit if and only if (2.5d) and (2.5e) holds and the
following are satisfied:

_ 4w _ 45w

A4 #0. - en = IO MY T
PR (D VAT W + 45 (w?
AW 1A ‘

To prove Theorem 2.1, we need the following result.

Lemma 2.1. For pe(0,1) and u# 3% My +N,(w+#0 and
U(w) # 0.

Proof. We only prove M, () + N (1) # 0 and U(w) # 0. The proof
for M_(p) £ N_(u) # 0 is similar to that of M (1) + N4 (i) #0.

Let g1(t) = cosh(tumT), g»(t) = cosh(t(1—u)ymT) and
sinh(toamT)

g3(t) = (1—r)sinh(umTQ)sinh((1 —ﬂ)mTQ)m'

(1+r)Esinh(tmTQ)
cosh(tmTQ)—cosh(tamT)’

84(1) =

where Z = [g1(2)—g1(®)][g2(2)—g2(2)] > 0. Then g3(t) and g4(7) are
both strictly decreasing for = > 0. Thus for u e (0,1) and p# 1, we
have

4
M, ()+N4 () =2(1+10Q > (g ()—8gi(1—1)) # 0.
k=3

Let

cosh(tumT)
sinh(umTQ)

sinh(tumT)

hi(t)=(1-1) Tsinh(umTQ)’

+a(1+r1)

cosh(t(1—wymT)
sinh((1—pymTQ)

sinh(t(1—pymT)

ha(v)=(1-1) Tsinh((1—-pymTQ)”

+o(1+r1)

Then h{(t) and hy(7) are both strictly increasing for 7 > 0. Note
that M, (w)—N, (@) =2(1 +1)wR6, where

2
O = sinh(umTQ)sinh((1—mTQ) >~ (h(0)—hi(Q)).
k=1
Hence M, (1)—N_ (1) < 0 because o < Q =+/1+02.
Finally, it is obvious that U(u) reaches its maximum at u = 1 for
e (0,1). Thus for u= 1 we have U(u)<U@) <0. The proof is
complete. O

Proof of Theorem 2.1. We only prove (1), the proof for (2) is
similar.

From (2.3), we obtain
Vma=Ymp=—V[AW)+wsinumm)lcm—wy[l (1) +coS(2Ummn)]sm
+rI(ym+ A(w), (2.6)

where
A(u) = %e*““msinh(,umTQ), I'(1) = aA(p)—e ™ cosh(umTQ).

Substitute (2.3) and (2.6) into (2.4a)-(2.4c), we obtain a system of
linear equations for ¢, s, and y,, of the form:

a1 (LW)Cm +az(W)Sm +a3()ym =b(w), 2.7
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where a;(1),a;(),as(1),b(w) e R> are column vectors, their
expressions are very complicated, and hence are omitted here
for brevity. Let A(x) be the coefficient matrix of (2.7) and A(w)
(k=1, 2, 3) be 3 x3 matrices obtained by replacing the k-th
column of A(u) with b(u). With Maple, we find that

7’ - Ve
detA(u) = e=0mT A1), detAq() = e=omT 4+ (1),
(1) 202 (w 110 502 )

Vi P gu-
detAz([u) — ﬁea(l u)mTAg— ('u)’ detA3(,u) — ﬁea(l H)mTA;— ('u)

If A(u) #0, then ¢y, s, and y,, can be solved from (2.7) using
Cramer’s rule. The condition for y can be found from the identity
2 +s=1.

We now prove that if A(u)=0, then (2.7) has no solution.
Consequently, the (m,2,0,u) orbit does not exist. In fact, if this is
not true, then (2.7) has infinitely many solutions, implying that
rank(A(w)) = rank(A(u) b(w) < 2. Thus A () =45 (W =45 (W)=
0. By Lemma 2.1, U(u) # 0. Hence from 4; (1) = 45 (1) = 0, we can
uniquely solve for §p, = sin(2umn), ¢, := cos(2umm):
UM (W +Ny () 1M M (W+N. (W)

U(?* +My (w? Uw?*+M,(w?
However, from §;+6§1 =1 we get M,.(W)+Ni@)My(W—

N, (w) =0, which is a contradiction to Lemma 2.1. The proof of
Theorem 2.1 is complete. [

Sm= Cm=

By Theorem 2.1 and (2.3), we can obtain the following result:

Corollary 2.1. A (m,2,0,u) orbit coexists with a (m,2,0,1—u) orbit
and they overlap. A (m,1,1,u) orbit coexists with a (m,1,1,1—p) orbit
and they are symmetric with respect to the origin.

Remark 2.1. It is easy to prove that A()=0. If m is odd, then
45 &)= —-2U@) # 0, implying that a (m,2,0, 1) orbit does not exist.
If m is even, a (m,2,0,1) orbit is simply a Type I orbit studied in
[5,34]. Similarly, if m is odd, a (m,1,1,}) orbit is a Type II orbit
studied in [5,34] and if m is even, a (m,1,1, 1) orbit does not exist.

Clearly, to apply Theorem 2.1 to obtain a double impact periodic
orbit of system (1.1), we need to verify the condition 4(u) # 0. Since
A(p) is a complicated transcendental function, it is impossible to
analytically find all zeros of A(x) and we must use numerical
methods such as Newton’s iterative method for this purpose. Conse-
quently, it is impossible to analytically get all double impact periodic
orbits of system (1.1). However, we have the following partial result:

Proposition 2.1. Let m be a positive integer. If m=2p is an even
number and

(GRS (O5507)-6)

,LLE}-A

=0
or if m=2p+1 is an odd number and

(OB u( 8, k%)

k=0 k=p+1

neFp:

then A(w) #0.

Proof. Since A(1-u)=-A4(u), we only need consider this

problem for p e (0, ). Let o(u) = U()—w?(1+r)*[cosh(mTQ)— cosh

(1=2wymTQ)]. Then for w # 1, ¢'(1) =0 if and only if u = 1 and for

=1, ¢'(w)=0. Thus for pe[0,4], o(1) < max(e(0),0()). It is ele-

mentary to prove that ¢(0) < 0, ¢(}) < 0. Hence for p1 €[0, 1], o(w) < 0.
Now let w(u) = A(u)—o(w)sin(2umm) and

wo(tt) = —2wQ(1 +1)?sinh((1-2)mT Q)+ H(uw).

Then

wo(u) = 2(1 +rwQsinh(umTQ)sinh((1—p)ymTQ)(Y{p)— Y1 —p)),
where

_ (1=nsinh(zamT)—(1 +r)[cosh(tmTQ)—cosh(ramT)]

- sinh(tmTQ) :

N7)

It is easy to see that ){7) is strictly decreasing for 7 > 0. Thus for
e (0,3), wo(u) > 0. Hence for u e (0,9),

w(i) = —2wQ(1 +1)?sinh((1-2pymTQ)cos2umm)+ H(u) > wwo(u) > 0.

Thus, when m=2p is even and pe(0,)Fa, o) <0,
sinumm) <0 and co(w) >0, implying that A(u)=w(u)+o(w)
sin(2umm) > 0. By the same argument, when m =2p+1 is odd, then
we have A(u) > 0 for ue (0,1)( Fp. The proof of Proposition 2.1 is
complete. [

With Maple we apply the above results to simulate two double
impact periodic orbits of system (1.1). Take m=3, «=4, r=0.5,
w=167. In order to simulate a (3,2,0,0.252) orbit and a (3,2,
0,0.748) orbit, we substitute these data into Theorem 2.1(1)
and obtain f~6.0964759. For the (3,2,0,0.252) orbit, ¢, ~
0.06175778951 and ym ~ 0.07481707689. For the (3,2,0,0.748)
orbit, ¢, ~0.03125778948 and y,; ~ 0.1736134324. By the results
on stability analysis given in section 3, it is not difficult to prove that

a

_025 i 1 1 L L L
0.988 0.99 0.992 0.994 0.996 0.998 1
T

005

0.1

0.15

0.2

025 1 L 1 1 1 1
0.988 099 0.992 0.994 0.996 0.9%8 1
T

Fig. 2. (a)A (3, 2,0,0.252) orbit, (b) a (3, 2, 0, 0.748) orbit with m=3, « =4, r=0.5,
w=16m.
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Fig. 3. (a) A (4, 1, 1, 0.442) orbit, (b) a (4, 1, 1, 0.558) orbit with m=4, o = % r=1,
=27

the resulted (3,2,0,0.252) orbit and (3,2,0,0.748) orbit are stable.
The result is shown in Fig. 2. It is clear from Fig. 2 that the
two orbits overlap. Similarly, take m=4, a= 4, r=1, w=2n,
we obtain f~1.350303765. For the (4,1,1,0.442) orbit, ¢, ~
0.2038771111 and yn, ~ 1.335757915. For the (4,1,1,0.558) orbit,
¢m~0.4718771104 and ym, ~1.293757915. With these data we
simulate the stable (4,1,1,0.442) orbit and (4,1,1,0.558) orbit, which
is shown in Fig. 3. It is clear from Fig. 3 that these two orbits are
symmetric with respect to the origin.

3. Some special cases

As seen in Theorem 2.1, the analytical conditions for the
existence of general double impact periodic orbits of system
(1.1) are very complicated. In this section, we discuss some
special cases, namely, the (m,2,0,k/2m) orbits for odd k (k # m)
and the (m,1,1,k/m) orbits for integer k (k #m/2). We will give
more concrete conditions for the existence of these orbits.

For ¢ >0 and 7 €[0,1], we define two functions:

p(0) = Q20+ 27T2[Q + 20+ Qe @+ DT _3 Qe @-0T ]

Y (1) = (1 +1)[asinh(mTQ)—Qsinh(amT)]—tIQ.

Obviously, S (0) = 2y(r), ¥(0) > 0 and (1) = — 1 e™?p(im). Further-
more, it is elementary to prove the following result.

Lemma 3.1. For o e (0,1/+/3], p(c) >0 when ¢ > 0. For aa>1/+/3,
p(o) has a unique positive zero g, > 0. Furthermore, p(c) > 0 when
o € (0,04) and p(g) <0 when ¢ > 0.

By Lemma 3.1, it is easy to see that when «e(0,1/+/3], or
o>1/v/3 and 1<m<a,, Y(1)<O0, implying that y(r) has a
unique zero ry € (0,1). When o > 1/+/3 and m > o, (1) > 0, hence
Y (1) > 0 for T €[0,1).

Lemma 3.2. S_(u) is strictly decreasing for pe(0,1) and has a
unique zero u; e(0,1). Furthermore, u; e(3,1). Sy (w) is strictly
increasing for pe(0,1). When oe(0,1/+/3] and re(0,r], or
o>1/v/3, 1<m<o, and re (O], or a>1/v/3 and m=>o,,
S.(w>0 for pe(0,1]. When oe(0,1/4/3] and re(rsy,1], or
o>1/v/3, 1<m<o, and re(r,1], Sy (u) has a unique zero
ui €(0,1). Furthermore, uj e(0,1), S.(u)<0 when pe(0,u;)
and S (1) > 0 when pe (ut,1).

Proof. We only prove the statement for S, (u). The proof for S_(u)
is similar and is actually easier.

It is easy to see that §', (1) > 0 for u e (0,1), thus S (p) is strictly
increasing. Note that S, (0) = 2y/(r) and

S, <%> =QA-nNI+20Q2(1+71) {cosh (mTTQ> +cosh (%Tﬂ

1 . mT\ 1 . oamT
X {ﬁ sinh (T) = sinh (T)} >0,
since Q2>o. Due to the properties of (1) (re[0,1]) stated

above, the assertions of Lemma 3.2 are true. Lemma 3.2 is thus
proved. 0O

Moreover, from (2.6) we see that if a (m,2,0,k/2m) orbit exists,
then

If a (m,1,1,k/m) orbit exists, then

5 (i)

S <] ——k>
ym—40~)Q—k f }7111,8—40‘)Q km .
Y| (—) Y| <—>
m m

Thus, by Lemma 3.2 and Theorem 2.1, we obtain the following
result.

Theorem 3.1. Let m > 0, k > 0 be integers. Then for (1.1):

(1) If k is odd and a (m,2,0,k/2m) orbit exists, then ke
[1,2mp ) U @m(1—p;),2m—1], e e (0,1/+/3] and 7 e (rs,1], or o>
1/4/3, 1 <m <, and r e (4, 1]. In this case, a point (¢, ym) € 2 is a
period-2 point of I1 and corresponds to a (m,2,0,k/2m) orbit if and only
if (2.4d) and (2.4e) holds and the following are satisfied:

k k k
47 (2m) 45 (2m) 45 (2m)

Cm= y Sm= y YVm= ——7 <>
n)  1Gm)  4n)
2m 2m 2m

where A(k/2m) = 20Q(1+1)?sinh(m—k)TQ)+H(k/2m), A; (k/2m)
=—M, (k/2m)+N, (k/2m), A5 (k/2m) = —2U(k/2m), A5 (k/2m) =
—4wQS 1 (k/2m).
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(2) If a (m1,1,k/m) orbit exists, then ke[l,m(1—u;)V
(mu;;,m—1]. In this case, a point (¢,,,ym) € 2 is a fixed point of II
and corresponds to a (m,1,1,k/m) orbit if and only if (2.5d) and
(2.5e) holds and the following are satisfied:

o) a5l
TORT R C
ey

o

where A(k/m) = —2wQ(1+r)?sinh(m—2k)TQ)+H(k/m), A7 (k/m)
= M_(k/m)+N_(k/m), 45 (k/m) =2U(k/m), A5 (k/m) = 4wQS_(k/m).

Cm =

By Corollary 2.1, under the assumptions of Theorem 3.1, a
(m,2,0,k/2m) orbit coexists with a (m,2,0,1—k/2m) orbit and they
overlap; a (m,1,1,k/m) orbit coexists with a (m,1,1,1—k/m) orbit
and they are symmetric with respect to the origin.

Remark 3.1. If k is even, then a (m,2,0,k/2m) orbit does not exist.
In fact, if this is not true, then by Theorem 2.1, we have s,,=0,
¢m=1, yn=0 and f=gq, the corresponding orbit is given by

a
08

06t
0.4F
0.2+ Yo
> 0f
—TYm
02¢
04F

06}

08— L

08
06F
Ym
04r

02f

02t
04} —Ym,

06}

1 L 1
0.85 09 0.95 1
Z

08

Fig. 4. (a) A (4,2,0,}) orbit, (b) a (4,2,0, orbit with m=4, «=1/+/3, r=023,
w=20.

(x(t,+1,0,0,).¥(t; +1,0,0,,)) = (cos(wt +),—wsin(wt +y)), but it
is not of type (m,2,0,).

In Fig. 4, take m=4, k=1, « =1/+/3, r=0.8, ® =20 and using
the same method as described in Section 2, we simulate a
(4,2,0,1) orbit (see Fig. 4(a)) and a (4,2,0,) orbit (see Fig. 4(b)).
For both orbits, we have f~8.025072. For the (4,2,0,}) orbit,
¢, ~0.1875739775 and y, ~0.1365415013. For the (4,2,0, %)
orbit, ¢, ~ 0.0304943449 and y;;, ~0.5060179103. It is clear from
Fig. 4 that the two orbits overlap.

In Fig. 5, take m=5, k=1, a= 35, r=1, o = 37, we simulate a
(5,1,1,1) orbit (see Fig. 5(a)) and a (5,1,1,%) orbit (see Fig. 5(b)).
For both orbits, we have f~ 6.1614336. For the (5,1,1,%) orbit,
¢m~0.07131158154 and y, ~1.601727958. For the (5,1,1,%)
orbit, ¢, #0.6713115816 and y,, ~ 1.273692693. It is clear from
Fig. 5 that the two orbits are symmetric with respect to the origin.

4. Stability and bifurcation analysis

To determine the stability of the double impact periodic
motions of system (1.1), we compute the eigenvalues of the
Jacobian matrix DIT of the corresponding Poincaré map
II : ¥+ X. They are the solutions of the equation:

22 —Tr(DIT)A+det(DIT) = 0,

a

; —?‘ym

L L L n L L L 1
08 06 -04 02 0 02 04 06 08 1

Ym

—TYm

o
=
o
(s3]
o
=
o
L)
oF
o
[N
o
S
o
[s7]
o
1]

Fig. 5. (a) A (5,1,1,1) orbit, (b) a (5,1,1,9) orbit with m=5, = 3, r=1, v = 3.
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which are given by

Jia= % {Tr(DH) + \/Tr(DIT2—4det(DIT)|, 4.1)
where det(DIT) and Tr(DII) are respectively the determinant and
the trace of DII. If |11 2] < 1, then the orbit is stable, if there exists
a |4l >1 (k=1 or 2), then the orbit is unstable.

Let [41] =max(|41],142]). If |21 =1 and |43| <1, then 41, e R. In
order to investigate the local bifurcations of the corresponding
periodic orbit, we apply center manifold theory to reduce the
Poincaré map II: X+—2X to a one-dimensional map using the
method given in [13,31,33]. We first choose a bifurcation parameter
among o, ff, w and r, denoted by { and fix other parameters. If at the
bifurcation value {,, 41 = + 1, then for |{—{)|«1, using a center
manifold reduction, IT : 2+ X' is reduced to a map of the form:

wi— p1(OW+pa(OW? +p3(OW? +0(w*) = f(C,w), (4.2)

where we R and { = {~{p. If for { ={, 41 =—1, then p;(0)=—1.
In this case, if at ({,w)=(0,0):

_APf 1 (62f>2

16%f
== — #0, ==
M aC ow? owat 2

3 ow3

e £0,  (43)

2

then the orbit undergoes period doubling bifurcation. Particularly,

In this section we adopt the same notations as in Sections 2
and 3, and assume that the double impact periodic orbits are not
grazing orbits, namely, y,, 4 # 0 for a (m,2,0,u) orbit and y,,, 5 # 0
for a (m,1,1,u) orbit. Let

Fif (W) =1F y[2awsinummn)+(1 +w?)cosQummn)icn
+ y[(1 +w?)sin2 umm)—2cmcos(2 umm)isy,

Fo(u) = 1—y(1 + 0?)Cm— 200 .

4.1. (m,2,0,u) orbits

For a (m,2,0,u) orbit, the Poincaré map IT : X+ X is given by
I =115 oI oI15 oI}, where IIf : 27" is defined by the
impact law (2.2), I15 : ¥t X is defined by the free-flight motion
(2.1). Then DII=DII; -DII{ -DIIf -DIIf . Using the implicit
differentiation method shown in [5,34], tr(DII) and det(DII)
evaluated at (¢,,ym)€ 2 that corresponds to a (m,2,0,u) orbit
are given by

det(DIT) = r*e—2*mT,

the bifurcation is supercritical for #, > 0 and subcritical for #, < 0. Tr(DIT) = et {rQ [Zchosh(mTQ)—(l +rsinh(mTQ) FiF(w o
If for { =y, 21 =1, then p;(0)=1. Let QY Yma
f *f of Fi (W
=—2_(0,0), =—2-1(0,0), g3 :=—=(0,0). 44 1+7)|(1+r)sinh((1—g)ymTQ)sinh(umTR) -1 -
9= e OO @2 200 a3 :=7,50.0 (4.4) +(+){(+)1 ((1—pomTQsinhmT) -~
If g; # 0 and g, # 0, then one has transcritical bifurcation. If g; # 0, —rQsinh(mTQ)} sz)}_
> =0 and g3 # 0, then one has pitchfork bifurcation.
b
0.475 0.47
047} 0.465}
0.465 046}
0461 0.455
> >
0.4551 0.45}
0454 0.445}
04451 044}
0.44 i . : . ; i . 0,435 . . . ) . . .
057 05 059 06 061 062 063 05 058 05 06 061 062 O0E3
v r
0.475
047
0.485}
046
> 0455+
0.45}
0.445-
044}
0.435 . . .

057 0.58 059

086 0.61 062 0.63
T

Fig. 6. The period doubling bifurcation diagrams with o« = 1.2, w =4n. (a) For the (3, 2, 0, 0.4) orbit. (b) For the (3, 2, 0, 0.6) orbit. (c) Superposition of (a) and (b).
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It is easy to see that DII for the (m,2,0,u) orbit and the
(m,2,0,1—p) orbit have the same determinate and trace. Hence
they have the same stability.

For oo>0 and re(0,1], det(DIT) < 1. Hence a (m,2,0,u) orbit
cannot undergo Hopf bifurcations. Due to the complexity of
computations, it is very difficult to analytically study the bifurca-
tion phenomena of (m,2,0,u) orbits when max(|41l,|42])=1.
Herein we focus our attention on a concrete example using
numerical methods.

Take m=3, «=1.2, w=4n and =04 and choose r as
bifurcation parameter. By Theorem 2.1 and Corollary 2.1, the
(3, 2, 0, 0.4) orbit coexists with the (3,2,0,0.6) orbit when

g~ 4163426513, /7, (1)
~ 1211.970489938r+1.003316548"

where y, (1) =(?+1.716809451r+1.056066497)( r2—3.160420
784r+3.164381306). By direct computation, we find that when
r= r;d ~0.63027619, DII for the (3, 2, 0, 0.4) orbit and the (3, 2, 0,
0.6) orbit have eigenvalue —1. Apply center manifold theory
stated above, we find that in Egs. (4.2) and (4.3), for the (3, 2, 0,
0.4) orbit, n, ~—-0.17220137, 1, ~54011.5939 >0, and for the
(3,2,0,0.6) orbit, , ~ —0.17220137, n, ~ 25977.29826 > 0. Thus
supercritical period doubling bifurcations of the orbits occur at
r=ry,. Similarly, when r=r{ ~0.76355112, DII for the (3, 2, 0,
0.4) orbit and the (3, 2, 0, 0.6) orbit have eigenvalue +1. In
Egs. (4.2) and (4.4), for the (3, 2, 0, 0.4) orbit, q; ~ —-0.1072822,
g2 ~ —236.7943606, for the (3, 2, 0, 0.6) orbit, g; ~ —0.1072822,
G2 ~213.3580012. Hence the orbits undergo transcritical
bifurcation.

To confirm the theoretical bifurcation values r:r;d and r}
given above, we present some numerical results as follows.

The period doubling bifurcation diagrams for the (3, 2, 0, 0.4)
orbit and the (3, 2, 0, 0.6) orbit are shown in Fig. 6(a) and (b)
respectively. From the figures we see that for both orbits, the
period doubling cascade leading to chaos when r € (0.569,0.638).
These two bifurcation diagrams are superposed in Fig. 6(c). It is
clear from Fig. 6(c) that the chaos attractors of the two orbits
interlace with one another.

Fig. 7(a) shows the superposition of the stable branches of the
transcritcal bifurcation diagrams for the (3, 2, 0, 0.4) orbit (the
lower branch) and the (3, 2, 0, 0.6) orbit (the upper branch). It can
be observed that a stable periodic orbit bifurcates from each of
these two orbits when r=rl, then the stable orbit undergoes
period doubling bifurcation at r~0.878. Fig. 7(b) shows the
magnification of (a) for r € [0.8640,0.9285] and we see the two
chaos attractors interlace with one another.

4.2. (m,1,1,u) orbits

For a (m,1,1,u) orbit, the Poincaré map IT : ¥+ X is given by
Il =II;-II5-II5-II7, where II7:X—2X* and I3 :X_—2X7
are defined by the impact law (2.2), II; : 2" —X~ and Il :
2, —2 are defined by the free-flight motion (2.1). Thus
DIl =DII, - DII5 - DI, - DII7. Tr(DIT) and det(DII) evaluated at
(¢ m»ym) € Z that corresponds to a (m,1,1,u) orbit are given by

det(DIT) = rie—2*mT

e—ymT
Q%y

{TQ {ZTQCOSh(mTQ)wL(l +r)sinh(mTQ)w Vi

m,B

Tr(DIT) =

m
Fr(w
ym,B

—(1+1) {(l +r)sinh((1—wymT2)sinh(umTQ)

—+ rQsinh(mTQ)} Fz(,u)}.

a
0.42 r . . . . T T T

041 E

0.4} E

039

038}

035
074 076 078 08 082 084 086 08 09 092 094

o

w

o

[52]
T

0.86 0.87 0.88 0.89 09 0.91 0.92 0.93

0.355

P

Fig. 7. (a) The transcritical bifurcation diagram for the (3, 2, 0, 0.4) orbit (the lower
branch) and the (3, 2, 0, 0.6) orbit (the upper branch) with «=1.2, w=4m.
(b) Magnification of (a) for r € [0.8640,0.9285].

Like for the (m,2,0,u) orbit, DII for a (m,1,1,u) orbit and a
(m,1,1,1—p) orbit have the same determinate and trace. Hence they
have the same stability. Furthermore, a (m,1,1,u) orbit cannot
undergo Hopf bifurcations.

In the following we focus on a concrete example to observe
the bifurcation phenomena for (m,1,1,u) orbits when max
(1211142 = 1.

Take m=2, o= £, w=4n and u = 0.36. Choose r as bifurcation
parameter. By Theorem 2.1 and Corollary 2.1, the (2, 1, 1, 0.36)
orbit coexists with the (2, 1, 1, 0.64) orbit when

. 60.46218915/7_(1)
~ 1211.979869866r + 1.004356884"

where y_(r)=(r>+1.998745274r+1.000232132) (r*—2.066994
008r+1.636537837). We find that when r= rﬁd ~ 0.4174924875,
DII for the (2, 1, 1, 0.36) orbit and the (2, 1, 1, 0.64) orbit have
eigenvalue — 1. We find that in Egs. (4.2) and (4.3), for the (2, 1, 1,
0.36) orbit, n; ~—1.121806, 1, ~6688.398819 > 0, and for the
(2, 1, 1, 0.64) orbit, n; ~ —1.121806, 1, ~ 252.5065259 > 0. There-
fore supercritical period doubling bifurcations for the orbits occur.
When r = rZ ~ 0.4950471839, DII for the (2, 1, 1, 0.36) orbit and the
(2, 1, 1, 0.64) orbit have eigenvalue +1. In Egs. (4.2) and (4.4),
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Fig. 8. The period doubling bifurcation diagrams with o = %, w =4m. (a) For the (2,

for the (2, 1, 1, 0.36) orbit, g; ~ —0.696589, q, ~ —32.83644736, for
the (2, 1, 1, 0.64) orbit, q; ~ —0.696589, g, ~ —40.2364845. Hence
the orbits undergo transcritical bifurcation.

The bifurcation diagrams Fig. 8(a) and (b) show the period
doubling cascade leading to chaos for the (2, 1, 1, 0.36) orbit
and the (2, 1, 1, 0.64) orbit when r e (0.3765,0.4200). The two
diagrams are superposed in Fig. 8(c). It is clear that the chaos
attractors of the two orbits interlace with each other.

The superposition of the stable branches of the transcritcal
bifurcation diagrams for the (2, 1, 1, 0.36) orbit (the upper branch)
and the (2, 1, 1, 0.64) orbit (the lower branch) is shown in
Fig. 9(a). It can be observed that a stable periodic orbit bifurcates
from each of these two orbits when r=rZ, then the stable
orbit undergoes period doubling bifurcation at r~0.565.
Fig. 9(b) shows the magnification of (a) for r[0.56,0.59] and
we see the two chaos attractors interlace with each other.

5. Existence of grazing periodic orbits

In this section we discuss the existence of grazing periodic
orbits of system (1.1). With the same notations as in previous
sections, as pointed out in Section 2, when y,,=0 (resp.
Ymp=0), the corresponding (m,2,0,u) (resp. (m,1,1,u)) orbit is a
grazing periodic orbit. Let

V() = —e"™ [ Q(1—p0)+ QR(1—p0),

1, 1, 0.36) orbit. (b) For the (2, 1, 1, 0.64) orbit. (c) Superposition of (a) and (b).

W () = of + ™™ sinh(mTQ)—e™™ Q(1—w)],

X=1I+ %sinh(mTQ)fsinh(ocmT),

Ag() = V(wsinumm)—we*™ Q(1—pycos(2umm) + we* ™ sinh(mTQ),
Ag () = V(sinumm) + W ;. ()cos(2ummn),
AS (W) = —W ;. (wsinumm)+V(wcos2umm) F V(i)

450 = 21455 G0+ Qe (1 F cosumm)X],

Q
Zs () =Ag; () + 77 €™ (1 F cos2umm)).

It is easy to see that
Ag(u) = Ay (1) + we™ ™ (1—cos(2umm))sinh(mTQ)
= A () +we™ ™ (1+ cos(2umm))sinh(nTQ).

The main result of this section is given as follows.

Theorem 5.1. Let m be a positive integer and pe (0,1) and u# 1.
Then for system (1.1):

(1) A point (¢,,,ym) € 2 is a period-2 point of IT and corresponds to
a grazing periodic orbit of type (m,2,0,u) if and only if (2.4d) and
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Fig. 9. (a) The transcritical bifurcation diagram for the (2, 1, 1, 0.36) orbit (the
upper branch) and the (2, 1, 1, 0.64) orbit (the lower branch) with o = %_ w=47.
(b) Magnification of (a) for r €[0.56,0.59].

(2.4e) holds and the following are satisfied:

A5 AL
_ _ “al _ g2
L =0 = T A
A5 g+ Anw? 1)
" A T A(0) ‘ '

The grazing point is x° = (1,0,¢,, + umT).
(2) There is no grazing periodic orbit of type (m,1,1,L).

Proof. (1) We first prove that Ag(u)>0 for we(0,1). Let
D(p) = e~ M7 Ag(p). Then

D' () = mTsinumm)e™ =T [(62 + Q% + 0?)Q(1— )+ 20 Q2R(1— ).
Note that Q(1—p) > 0, we have
(0 + Q@ + ©*)Q(1— 1)+ 20QR(1 — 1) > 20Q[Q(1 — )+ R(1— )] > 0.

Hence D'(u)=0 if and only if sinummn)=0, i.e. u=k/2m for
k=0,1,...,2m. These are all of the extreme points of D(w) in [0,1].
It is elementary to prove that D(k/2m) >0 for k=1, ...,2m-1 and
D(0)=D(1) =0, implying that 44(u) > 0.

The results given in (1) can be obtained by solving Egs. (2.4a)—(2.4c)
combined with y,, , =0. The expression for y,, 4 given by (2.6) is
used. The details are omitted here for brevity.

(2) We prove the statement by contradiction. If there is a fixed
point (¢,,,,ym) € 2 of IT that corresponds to a grazing periodic orbit
of type (m,1,1,u), then similar to (1), we have

Agy (W) Agr (1)
Z_ = 0, m = gl ) m= & ’
G0=0.6m= 2 g 7450
g Aaw’+ 4w 52
T Ay /= Ag(p) : :

Since for t € (0,mT), this grazing orbit reaches the wall x=—1
after a time umT with zero approaching velocity and there is no
other contact point of the orbit to the impacting walls x= + 1, the
orbit can be described by the solution x(¢,+t; +1,—1y,,
O Y( @+t +1,—1V,,0,)) (0<t<mT) of Eq. (2.1). Under the
conditions (5.2), we have

5(t)

-, 53
Ag(10) ©-3)

X((Pm+t; +1:_rymv(pm) =1+

where
3(t) = Ag; ((coswt—1)—Ag, (wsinwt—we ™ =01 4 cos(2umm))
[e*sinh(mTQ)—e* T sinh(Qt)—sinh(Q(mT—1))].

It is elementary to prove that

3(0) =/ Ag (W + A (W Em(®—[4g (1) —(1 + cosumm)W_(w)],

where Cp(t) = cos(w@,, +¥+wt). Clearly when m>1, or m=1
and ¢, = cos(w@,, +y)# 1, there exists a t.e(0,mT) such that
Cm(tc)=1. Hence

8(te) = \/ Agy () + Ay ()° —[A g (10— (1 + cOSmum)W_ ()],
On the other hand, for any p e (0,1), we have

A1 (WP + Agy (> —[ 453 (W—(1 +cosumm)W_ ()]
= (1+cosumm))*V(w)? > 0.

Thus 6(¢)=0. If m=1 and cn=1, then by (5.2), 45w =
Z_(w) =0, implying that u = 1, which contradicts to the assump-
tion that u # 1.

Therefore, for any m>1 and e (0,1) and p # 1, there exists a
tc € (0,mT) such that o(t;)>0. Since Ag(u)>0 for ue[0,1] as
shown in (1), by (5.3), we have x(¢,,+tc; +1,— 1y, 0,) > 1, ie.
the pendulum touches the wall x=+1 for t. € (0,mT). This contra-
dicts to the definition of the (m,1,1, ) orbit, implying that there is
no grazing periodic orbit of type (m,1,1,u). O

It is easy to see that when m=1, u= 1 and =g, there is a
corresponding  grazing orbit (x(t; +1,0,¢,,).y(t; +1,0,¢,,)) =
(cos(wt+),—wsin(wt + 1)), but it is not of type (m,1,1, ).

Remark 5.1. In order to obtain a grazing orbit of type (m,2,0,),
we need to verify that Z, (u) =0. Clearly Z, (k/m)=0 for any
integer k (1 < k <m). However, we can prove that for = k/m and
u# 1 (5.1) is not satisfied, implying that grazing orbit of type
(m,2,0,k/m) does not exist. In fact, we must use numerical
methods to find the zeros of Z, (1) in order to obtain a grazing
orbit of type (m,2,0, ).

In Fig. 10, take m=4, a=+/5, r=1, w=2n, we simulate a
grazing periodic orbit of type (4,2,0,u). Substitute these data
into (5.1) we obtain u©~0.7926290493, [~ 14.83636873,
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Fig. 10. A grazing periodic orbit of type (4,2,0,u) with m=4, « = /5,  =2n,r = %

@, ~0.2454859631 and yn, ~
orbit can be easily plotted.

1.762324933. Hence the grazing

6. Grazing bifurcations

Let (¢,,,ym) € 2 be a period-2 point of IT: X+ 2 that corre-
sponds to a grazing periodic orbit of type (m,2,0,u°) and
x°=(1,0,¢,,+1°mT) be the corresponding grazing point. As
explained in [2, pp. 261-262], since the Poincaré section X is
part of the impact surface, the corresponding Poincaré map IT :
2+ 2 can only describe orbits that intersect X. Therefore it is not
suitable for analyzing grazing bifurcations. In order to investigate
the dynamics near the grazing point X°, in this section we choose
the so-called normal Poincaré section:

In={xy.0)eRx R xS'ly=0}

and construct the normal Poincaré map IIy: 2y 2y near
x0 e Xy. Since the orbits near the grazing orbit intersect with Xy
transversally, the normal Poincaré map IIy is well defined.
Elements in Xy are denoted by (x,¢) € R x S'. Under this coordi-
nate system, x°=(1, P+ U OmT) e Xy. Then according to [2, p.
282], HN(x @,1t) = PDM-IT n(x,, 1) for (x, @) € Zy near x’ e Xy and
u near £, where PDM : Zy— Xy and Iy : Zy— Xy are respec-
tively the Poincaré discontinuity map and the natural Poincaré map
(see [2, Chapter 6] for the definitions of these two maps).
To simplify notations, let

i = (Ag(p)—(1+@*) A (W—200 A5 (),

1
QA (1)
¥, () = cosh(umTQ)+ %sinh(umTQ),

¥3() = oW () +sinumm)V ().

Let a®=—1-Bcos(wp,,+2p°mn), N =
M(u) = b(u)(0,1)T, where

a1 () = e ™ [(14r)sinh(umTQ) ¥ (1) P2 (1—p)—1P(1)],

(@j()252  and

@V
Ag()

[a11(w)—1][1—cos(2umm)]+

() = (141w {e—amTM

Ag(p) Q
{l}’](,u)smh(ymTQ)smh((l wmT)— smh(mTQ)}Jre*“’""T

inh TQ .
o R 4 - sinhgamT ) P |

—amT (] . .
a1 (1) = eTEIOH) { ¥4 (1) [sinh(umTQ)sinh((1—ymTQ)
+ QW5 (1-2p0)] - 1L+r sinh(mTQ)},
V(W A+nw [ _um
AW =1 +7 A (0) [1 cos(Zumm)]az (1) + @50 {e )

_ omT
[vq (u)%(—u)sinh«l—mmm)—M} e

1+r
inh TQ
[ora-magigo+ (T v v ) a0

mTe ™I [ /sinh(umTQ) N
o () (o4

+ Vo~ I Ag (1) = Agh (1) e ™ 3 (s0) | —mT.

b(w=— (w—r4 g*g(u))

Then using the method given in Chapter 6 of [2], we obtain the
following result:

Theorem 6.1. For system (1.1), let (¢,,,ym) € 2 be a period-2 point
of Il : XX that corresponds to a grazing periodic orbit of type
(m,2,0,u°) and x° = (1,¢,, +u°mT) e Zy be the corresponding graz-
ing point. For X = (x,q)e Xy near x° and we(0,1) near u°, let
X =x—x%" .= ®,®)T and [t = u—u°. Then the normal Poincaré map
Iy : Xy 2y can be written to leading-order in the form
NUOX+MO)R, if K(X) <0,

INX ) = ZK(X)

N(OX +MO)—(1+1) O, if K®)>0,

6.1

where kX) = a1 (U)X +a12(1°)@, a® = —1—Bcos(w,, +2u’mm).

By the results of [2, p. 284], we have

Theorem 6.2. Let the assumptions be given as Theorem 6.1. Let E be
the2 x 2 unit matrix, C=(—1,0)". Suppose that N(u®) has real
eigenvalues J,, such that 0< A, <1 and A; </q. Furthermore,
suppose that 8, =CT(E-N(u®))"'M(u®)#0 and {,=CTN"(u°)
(0,—1)T>0 for all n>0. Then as J.(u—u®)>0 evolves into
Su(u—u°) <0,

(1)if A1 € ¢,1), there is a chaotic attractor close to the origin for all
small negative values of d4(u—u°);

(2) if 21 € &, 2), for all small negative values of d.(u—p°), there is
an alternating series of chaotic and stable periodic motions, accu-
mulating in a period-adding cascade as p— u°;

(3) if 21 €(0,}), the chaotic motion disappears and is replaced by
periodic bands that overlap and increase in period as p— 1i°.

In general, it is hard to verify that {, >0 for all n. In the
following we give a simple criterion.

Proposition 6.1. If N(u°) has real eigenvalues /., and A, such that
A1 > Jg, then for all n, {, has the same sign as a;»(u°).

Proof. Let py(A) be the characteristic polynomial of N(u°). By the
Hamilton-Cayley theorem, we have py(N(u°))=0. On the other
hand, for any n, there is a polynomial g,(4) such that

A= qu(DpND+ A+ b, (6.2)
where
)Ln )n ﬂ]ﬂz()n 1 «n l)

4

=T, 2=

From (6.2) we get N"(u0) = £;N(u°)+ &E. Thus {, = £;a;2(u°) has
the same sign as a;p(u°) since ¢; > 0. The proof is complete. [

j.z /q
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From the above analysis, it is clear that the matrix N(u°) and the
vector M(u%) are important to the investigation of the dynamics of
system (1.1) near the grazing point X°. But their expressions are very
complicated. In order to observe the grazing bifurcation phenomena
more directly, in the following we use the Monte Carlo numerical
simulation method described in [2, pp. 115-117], to compute the
bifurcation diagrams by varying r, », and « each in turn.

(1) Take m=4, «=+/5, w=2n and vary r from 0.6 to 1. For
each fixed r, we apply Theorem 5.1 to find u° and (¢,,,ym) € ~ that
correspond to a grazing orbit of type (m,2,0,u°). The results for
each of r=0.6, 0.8 and 1 are listed in Table 1. The leading
eigenvalue Z; of N(u°) is also listed. Furthermore, we find that
J1 increases as r increases and for each fixed r, a;>(u®) >0 and
dx > 0. From the bifurcation diagrams, Fig. 11, we can clearly see
the phenomena described in Theorem 6.2.

(2) Take m=4, a=+/5,r= 1and vary o from 47 to 2.87. Then
for each fixed w, a;2(u°) >0, 6,>0 and A; increases as w

Table 1
m=4, x=+/5 and o =2m.

J. Shen, Z. Du / International Journal of Non-Linear Mechanics 46 (2011) 1177-1190

increases. In Table 2, for each of w =4m, 3.57 and 2.87, we list
10, (@, ym) € £ and 4, that correspond to a grazing orbit of type
(m,2,0,u°). The bifurcation diagrams are shown in Fig. 12.

(3) Take m=4, w= 2, r= 1 and vary « from +/3.3 to +/5.1.
Then for each fixed «, a;2(u®) >0, 6, >0 and J; decreases as o
increases. For each of & =+/3.3, ¥/3.9 and /5.1, the values for O,
(pmym)€ 2 and 2y that correspond to a grazing orbit of type
(m,2,0,u°) are listed in Table 3. The bifurcation diagrams are
shown in Fig. 13.

7. Concluding remarks

Two types of double impact periodic orbits for an impact inverted
pendulum have been studied in detail in this paper. Although the
system is piecewise linear, the equations describe the orbits are
transcendental and it is impossible to obtain closed form of the

r ul P Ym e
0.6 0.7998270978 0.2210359996 1.582061169 0.1255261463 € (0,}—,)
0.8 0.8048909996 0.2041532252 1.459253484 0.4604937708 ¢ (2
1.0 0.8096781048 0.1884186203 1349144215 0.8281814973¢(31)
a b x10°
1 T T T T 1
0 ; .
/‘ D I )
KR 4
AF .
2k 4
] 2 ¢ J
18 3
] 3l |
4 F 4
. 75 [ T
L L L L L K L L 1 i 1 1 1 1
-0.04 -0.03 -0.02 0.01 0 0.01 0.02 D16 014 012 01 003 006 004 -DO2 0 002
H 7
C xuf
0.5
0F 4
05 4
1 4
)
15 g
2t 4
25| g
3 \ . ) L . \ . ) L
016 -0.14 012 01 002 004

008 -006 -0.04 -0.02 1]

Iz

Fig. 11. Bifurcation diagrams in (f,X) = (u—u°,x—1) space for Iy with m=4,0=~/5,w =2m; (a) r=0.6,u° ~0.7998270978; (b) r=0.8,u° ~ 0.8048909996; (c) r=1,

10~ 0.8096781048.
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Table 2
m=4,0=+5and r= 3.

) u° P Ym P

an 0.8160321611 01056102995 1.266173452 09478542624 (2, 1)

3.5m 0.8108127352 0.1262727208 1.387390066 0.60979627746(%%)

28n 0.8028005239 0.1671601393 1.577149228 0,17160029455(07}1)
a

-12
-0.04 0.03 0.02 -0.01 0 00 0.02

-0.04 -0.03 -0.02 -0.01 0 0.0 0.02

0.02

Fig. 12. Bifurcation diagrams in (,X)=(u—u%x—1) space for IIy with m=4,0=+5r=1; (a) w=2.87u’~0.8028005239; (b) w=3.57,1°~0.8108127352;

(¢) @ =4m,u°~0.8160321611.

Table 3
m=4, o=2Lrandr=1

& uo Pm Ym 21

V33 0.8130301395 0.1496802316 1.560141371 0.9746621480¢(3,1)
V39 0.8091313374 0.1553090275 1.561728126 0.62300145906(}1,%)
V51 0.8030458715 0.1637033224 1.561107855 0.1771390216€(0.})

corresponding Poincaré maps. Thus we cannot give an exact expres-
sions for the orbits and numerical techniques must be used. From
concrete numerical examples, we see that these orbits lose stability
through period doubling or transcritical bifurcations. For the double
impact periodic orbits that impact at only one of the two walls,

grazing bifurcations are also observed. We believe that these results
are also true for systems whose free motions between the walls are
governed by non-linear equations. However, since the solutions
between impacts for non-linear impact systems are generally
unknown, perturbation methods must be used.
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Fig. 13. Bifurcation diagrams in (,x)=(u—u°x—1) space for IIy with m=4,0=ZLnr=1; (a) a=+51,u’~0.8030458715; (b) or=+/3.9,u°~0.8091313374;

(c) o= v/3.3,1° ~ 0.8130301395.

References

[1] M.D. Bernardo, CJ. Budd, A.R. Champneys, Normal form maps for grazing
bifurcations in n-dimensional piecewise-smooth dynamical systems, Physica
D 160 (2001) 222-254.
[2] M.D. Bernardo, CJ. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-Smooth
Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008.
[3] CJ. Budd, A.G. Lee, Double impact orbits of periodically forced impact
oscillators, Proc. R. Soc. London A 452 (1996) 2719-2750.
[4] W. Chin, E. Ott, H.E. Nusse, C. Grebogi, Grazing bifurcations in impact
oscillators, Phys. Rev. E 50 (1994) 4427-4444.
[5] S.-N. Chow, S.W. Shaw, Bifurcations of subharmonics, J. Differ. Equat. 65
(1986) 304-320.
[6] H. Dankowicz, ]. Jerrelind, Control of near-grazing dynamics in impact
oscillators, Proc. R. Soc. London Ser. A 461 (2005) 3365-3380.
[7] H. Dankowicz, X. Zhao, Local analysis of co-dimension-one and co-dimension-two
grazing bifurcations in impact microactuators, Physica D 202 (2005) 238-257.
[8] L. Demeio, S. Lenci, Asymptotic analysis of chattering oscillations for an
impacting inverted pendulum, Q. J. Mech. Appl. Math. 59 (3) (2006) 419-434.
[9] Z. Du, Y. Li, W. Zhang, Type I periodic motions for nonlinear impact
oscillators, Nonlinear Anal. Ser. A 67 (2007) 1344-1358.
[10] Z. Du, W. Zhang, Melnikov method for homoclinic bifurcation in nonlinear
impact oscillators, Comput. Math. Appl. 50 (2005) 445-458.
[11] S. Foale, S.R. Bishop, Dynamical complexities of forced impacting systems,
Philos. Trans. R. Soc. London Ser. A 338 (1992) 547-556.
[12] M.H. Friederiksson, A.B. Nordmark, On normal form calculations in impact
oscillators, Proc. R. Soc. London A 456 (2000) 315-329.
[13] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.
[14] F. Hendricks, Bounce and chaotic motion in impact print hammers, IBM J. 27
(1983) 273-280.
[15] SJ. Hogan, On the dynamics of rigid-block motion under harmonic forcing,
Proc. R. Soc. London Ser. A 425 (1989) 441-476.
[16] P. Holmes, R.J. Full, D. Koditschek, ]. Guckenheimer, Dynamics of legged
locomotion: models, analysis and challenges, SIAM Rev. 48 (2006) 207-304.
[20] M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin, Heidelberg,
2000.

[21] S. Lenci, On the suppressions of chaos by means of bounded excitations in an
inverted pendulum, SIAM ]. Appl. Math. 58 (1998) 1116-1127.

[22] S. Lenci, G. Rega, A procedure for reducing the chaotic response region in an
impact mechanical system, Nonlinear Dyn. 15 (1998) 391-409.

[23] S. Lenci, G. Rega, Periodic solutions and bifurcations in an impact inverted
pendulum under impulsive excitation, Chaos Solitons Fractals 11 (2000)
2453-2472.

[24] S. Lenci, G. Rega, Regular nonlinear dynamics and bifurcations of an impact-
ing system under general periodic excitation, Nonlinear Dyn. 34 (2003)
249-268.

[25] Y. Li, Z. Du, W. Zhang, Asymmetric type Il periodic motions for nonlinear
impact oscillators, Nonlinear Anal. Ser. A 68 (2008) 2681-2696.

[26] Y. Ma, ]. Ing, S. Banerjee, M. Wiercigroch, E. Pavlovskaia, The nature of the
normal form map for soft impacting systems, Int. J. Non-linear Mech. 43
(2008) 504-513.

[27] J. Molenaar, J.G. de Weger, W. van de Water, Mappings of grazing impact
oscillators, Nonlinearity 14 (2001) 301-321.

[28] A.B. Nordmark, Non-periodic motion caused by grazing incidence in an
impact oscillator, J. Sound Vib. 145 (1991) 279-297.

[29] A.B. Nordmark, Existence of periodic orbits in grazing bifurcations of
impacting mechanical oscillators, Nonlinearity 14 (2001) 1517-1542.

[30] E. Pavlovskaia, M. Wiercigroch, Low-dimensional maps for piecewise smooth
oscillators, J. Sound Vib. 305 (2007) 750-771.

[31] SSW. Shaw, The dynamics of a harmonically excited system having rigid
amplitude constraints, Part 1: subharmonic motions and local bifurcations,
J. Appl. Mech. 52 (1985) 453-458.

[32] SW. Shaw, A.G. Haddow, S.-R. Hsieh, Properties of cross-well chaos
in an impacting system, Philos. Trans. R. Soc. London A 347 (1994)
391-410.

[33] S.W. Shaw, P.J. Holmes, A periodically forced piecewise linear oscillator,
J. Sound Vib. 90 (1983) 129-155.

[34] S.W. Shaw, R.H. Rand, The transition to chaos in a simple mechanical system,
Int. . Non-linear Mech. 24 (1989) 41-56.

[35] P. Thota, H. Dankowicz, Continuous and discontinuous grazing bifurcations in
impacting oscillators, Physica D 214 (2006) 187-197.

[36] P. Thota, H. Dankowicz, Analysis of grazing bifurcations of quasiperiodic
system attractors, Physica D 220 (2006) 163-174.



	Double impact periodic orbits for an inverted pendulum
	Introduction
	The existence of double impact periodic orbits
	Some special cases
	Stability and bifurcation analysis
	(m&maccomma;2&maccomma;0&maccomma;mu) orbits
	(m&maccomma;1&maccomma;1&maccomma;mu) orbits

	Existence of grazing periodic orbits
	Grazing bifurcations
	Concluding remarks
	References




