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a b s t r a c t

There exist many types of possible periodic orbits that impact at the walls for the inverted pendulum

impacting between two rigid walls. Previous studies only focused on single impact periodic orbits and

symmetric periodic orbits that bounce back and forth between the two walls. They respectively

correspond to Types I and II orbits in the Chow, Shaw and Rand classification. In this paper we discuss

two types of double impact periodic orbits that have not been studied before. The equations need to be

solved for double impact orbits are transcendental and it is very hard to see the structure of the

solutions. Consequently the analysis of double impact orbits is much more difficult than that of Types I

and II orbits. A combination of analytical and numerical methods is employed to investigate the

existence, stability and bifurcations of these orbits. Grazing bifurcations, which do not present for Types

I and II orbits, are also observed.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

An impact system, where a vibrator collides with one or more
rigid walls or with another moving object, is found in many
applications, such as impact print hammers [14], rigid blocks [15]
and walking machines [16], etc. Being an important class of
piecewise smooth (PWS) dynamical systems, impact systems
often exhibit very complicated dynamics. Besides the occurrence
of all kinds of traditional bifurcations, such as saddle–node
bifurcation, Hopf bifurcation as well as homoclinic bifurcation,
period doubling bifurcation [5,32–34], impacts also lead to many
new types of complicated bifurcation phenomena, such as graz-
ing, sticking and chattering [3,4,6–8,11,27–29,35,36], etc. In gen-
eral, such kinds of non-standard bifurcations arising from impact
systems and other types of PWS systems are difficult to deal with
because of the added non-linearities caused by the non-smooth-
ness. In recent decades, the study of those non-standard bifurca-
tions has become very active and some effective general methods
have been developed. For instance, normal form calculations for
impact oscillators were studied in [1,12] and a general methodol-
ogy of reducing multidimensional flows to low-dimensional maps
for piecewise non-linear oscillators was proposed in [30]. The
characteristic of normal form map for soft impact systems was
also analyzed in [26]. In fact there is an enormous literature on
this subject, in addition to the aforementioned works, see, for
ll rights reserved.

ds for the Central Universities
example, the monographs [2,20] and the references therein for
more on these issues.

In this paper we consider double impact periodic motions
(namely, motions which repeat after every second impact) of the
inverted pendulum impacting on rigid walls under external
periodic excitation as shown in Fig. 1. We can scale the gap size
between the two walls to be two and assume that the mathema-
tical model is given by the following piecewise linear (PWL)
differential equation:

€xþ2a _x�x¼ bcosot, as jxjo1,

_x/�r _x, as jxj ¼ 1,

(
ð1:1Þ

where a40 is a linear damping coefficient and b40 is the forcing
amplitude, rA ð0,1� is the coefficient of restitution representing
energy loss during impact.

The PWL system (1.1) was first proposed by Chow and Shaw in
[5] and also by Shaw and Rand in [34]. The subharmonic and
homoclinic bifurcations and chaos were discussed for (1.1) in
[5,34]. The impact inverted pendulum can be used in the model-
ing of many mechanical devices, such as rings, rigid standing
structures, a mooring buoy, etc. [8]. Due to this reason, it has been
extensively studied during the last 20 years. The existence and
stability of periodic motions were analyzed under impulsive
excitation in [23] and under general periodic excitation in [24].
Properties of cross-well chaos were studied in [32] and the
problem of chaos control was addressed in [21,22]. The asympto-
tic analysis of chattering oscillations is presented in [8]. All of
these works assume that the motion of the oscillator between the
walls is governed by a linear equation. Efforts were also made in
[9,10,25] to extend the Melnikov methods for homoclinic and
subharmonic bifurcations established for smooth systems to the
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Fig. 1. Inverted pendulum.
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impact inverted pendulum when the motion of the oscillator
between the walls is governed by a general non-linear equation.

For the PWL system (1.1), there are many types of possible
periodic motions involving impacts at x¼þ1 and �1. Let T ¼ 2p=o
be the period of the excitation. Let m be a positive integer and the
triple ðm,k1,k2Þ denote the periodic orbits of period mT of (1.1) that
impact at x¼þ1 k1 times and �1 k2 times per period. Clearly, the
(m, 1, 0) and (m, 0, 1) motions correspond to the Type I motions and
the symmetrical (m, 1, 1) motions correspond to the Type II motions
in the classification given by Chow, Shaw and Rand in [5,34]. These
two types of motions are the simplest forms of motions of (1.1) and
have been thoroughly investigated by previous works mentioned
above. As pointed out by Lenci and Rega [24], although in principle,
the more general ðm,k1,k2Þ periodic motions can be studied
analytically, the formulation becomes rapidly cumbersome and
the computations are extremely difficult for periodic motions
impacting multiple times in their period. Consequently, to the best
of our knowledge, for system (1.1) there is still no result on the
study of periodic motions impacting two or more times in their
period except for the symmetrical (m, 1, 1) motions in the
literature. It is worth noting that in [3], Budd and Lee studied the
double impact periodic orbits of a class of periodically forced
harmonic impact oscillators.

For system (1.1), there are two types of double impact periodic
orbits. The first type is the (m, 2, 0) (or (m, 0, 2)) motions. Namely,
the pendulum starting from the wall x¼þ1 (or x¼�1) immedi-
ately changes its velocity by the impact law and impact to x¼þ1
(or x¼�1) after traveling for a time mmT for mAð0,1Þ without
touching the walls x¼71, then bounces back to x¼þ1 (or
x¼�1) after traveling for a time ð1�mÞmT without touching the
walls x¼71, then repeat the above motion. In order to emphasis
the distribution of the traveling times between each consecutive
impacts, we denote the motions as ðm,2,0,mÞ or ðm,0,2,mÞmotions.
By symmetry, for this type of double impact periodic orbits, we
only need to study the ðm,2,0,mÞ motions. The second type is the
(m, 1, 1) motions. For this type of motions, the pendulum starting
from the wall x¼þ1 immediately changes its velocity by the
impact law and reaches the wall x¼�1 after a time mmT for
mAð0,1Þ, and then bounces back to the wall x¼þ1 after traveling
for another time of ð1�mÞmT without touching the walls x¼71,
then repeat the above motion. We similarly denote this type of
motions as ðm,1,1,mÞ motions. Clearly, when m¼ 1

2, a ðm,2,0,mÞ (or
ðm,0,2,mÞÞ orbit is reduced to a single impact periodic orbit. In fact,
a ðm,2,0, 1

2Þ (or ðm,0,2, 1
2ÞÞ orbit for even m and a ðm,1,1, 1

2Þ orbit are
respectively a Type I orbit and a Type II orbit studied in [5,34].
Hence in this paper, we assume that ma 1

2.
As shown in the sequel, unlike for a Type I orbit and a Type II

orbit studied in [5,34], the equations need to be solved for double
impact orbits are transcendental and it is very hard to see the
structure of the solutions. Thus double impact orbits are much
more difficult to analyze. A combination of analytical and
numerical methods are used to investigate the existence, stability
and bifurcations of these orbits in detail. Grazing bifurcations,
which do not present for Types I and II orbits, are also observed.

This paper is organized as follows. In Section 2, we discuss the
existence of the aforementioned two types of double impact
periodic orbits. In Section 3, we discuss the double impact
periodic orbits for some special cases. The stability and bifurca-
tions of these orbits are given in Section 4. In Section 5, we
present analytical conditions for the existence of double impact
grazing periodic orbits. The grazing bifurcations are discussed in
Section 6. Finally, some concluding remarks are given in Section 7.
2. The existence of double impact periodic orbits

Let _x ¼ y, then the free motion between the two walls of PWL
system (1.1) can be rewritten in the form:

_x ¼ y

_y ¼ x�2ayþbcosoj
_j ¼ 1

9>=
>; as jxjo1, ð2:1Þ

where j¼ tðmodTÞ and T ¼ 2p=o is the period of the excitation.
The impact law is given by

y-�ry as jxj ¼ 1: ð2:2Þ

Let O¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2
p

, g¼ b=q, q¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þo2Þ

2
þ4a2o2

q
. Then the

solution of (2.1) corresponding to the initial conditions x¼ x0,
y¼ y0, j¼j0 is given by

xðt; x0,y0,j0Þ ¼ e�aðt�j0Þ½C1coshOðt�j0ÞþC2sinhOðt�j0Þ�

þgcosðotþcÞ,
yðt; x0,y0,j0Þ ¼ e�aðt�j0Þ½ð�aC1þOC2ÞcoshOðt�j0Þ

þðOC1�aC2ÞsinhOðt�j0Þ��gosinðotþcÞ,

8>>>><
>>>>:

ð2:3Þ

where c¼ arctanð2ao=ð1þo2ÞÞ�pA ½�p,�p=2�, C1, C2 are given by

C1 ¼ x0�gcosðoj0þcÞ, C2 ¼
1

O
½aC1þy0þgosinðoj0þcÞ�:

Because of the nature of the vector field (2.1) and (2.2), the
Poincaré section is taken to be the cylinder:

S :¼ fðj,x,yÞAS1 � I �Rjx¼ 1,y40g ¼ S1 �Rþ ,

where I :¼ ½�1,1� and S1 is the circle of period T. Let

Sþ� :¼ fðj,x,yÞAS1 � I �Rjx¼ 1,yo0g,

S�þ :¼ fðj,x,yÞAS1 � I �Rjx¼�1,y40g,

S�� :¼ fðj,x,yÞAS1 � I �Rjx¼�1,yo0g

be the other three half switch planes. Elements in S are denoted
by ðj,yÞAS1 �Rþ and elements in Sþ� , S�þ and S�� are still
denoted by ðj,x,yÞ with x¼1, �1 and x¼�1 respectively.
The Poincaré map P : S/S is given by the flow of systems
(2.1) and (2.2).

Let m be a positive integer and mAð0,1Þ and ma 1
2. Similar to

[5,34], the conditions for the existence of a ðm,2,0,mÞ orbit are
given below in terms of ðjm,ymÞAS:

xðjmþmmT; þ1,�rym,jmÞ ¼ þ1, ð2:4aÞ

xðjmþmT; þ1,�r ~ym,A,jmþmmTÞ ¼ þ1, ð2:4bÞ

yðjmþmT; þ1,�r ~ym,A,jmþmmTÞ ¼ ym, ð2:4cÞ

jxðjmþt; þ1,�rym,jmÞjo1, tAð0,mmTÞ, ð2:4dÞ

jxðjmþmmTþt; þ1,�r ~ym,A,jmþmmTÞjo1, tA ð0,ð1�mÞmTÞ,

ð2:4eÞ
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where ~ym,A ¼ yðjmþmmT; þ1,�rym,jmÞ. Similarly, the conditions
for the existence of a ðm,1,1,mÞmotion are given below in terms of
ðjm,ymÞAS:

xðjmþmmT; þ1,�rym,jmÞ ¼�1, ð2:5aÞ

xðjmþmT;�1,�r ~ym,B,jmþmmTÞ ¼ þ1, ð2:5bÞ

yðjmþmT;�1,�r ~ym,B,jmþmmTÞ ¼ ym, ð2:5cÞ

jxðjmþt; þ1,�rym,jmÞjo1, tAð0,mmTÞ, ð2:5dÞ

jxðjmþmmTþt;�1,�r ~ym,B,jmþmmTÞjo1, tA ð0,ð1�mÞmTÞ,

ð2:5eÞ

where ~ym,B ¼ yðjmþmmT; þ1,�rym,jmÞ. When ~ym,A ¼ 0 (resp.
~ym,B ¼ 0Þ, the corresponding ðm,2,0,mÞ (resp. ðm,1,1,mÞÞ orbit is a
grazing periodic orbit, which will be discussed in detail in
Sections 5 and 6.

To simplify expressions in the sequel, we introduce the
following notations:

GðmÞ ¼ ðeammTþre�ammT Þsinhðð1�mÞmTOÞ,

HðmÞ ¼ 2oð1þrÞOðGðmÞ�Gð1�mÞÞ,

I¼ coshðmTOÞ�coshðamTÞ,

J¼ ð1�rÞIþð1þrÞ
a
O

sinhðmTOÞ�sinhðamTÞ
� �

,

K7 ðmÞ ¼ ð1þrÞ½2asinhðmmTOÞsinhðð1�mÞmTOÞ7Osinhðð1�2mÞmTOÞ�

þð1�rÞOsinhðmTOÞ,

LðmÞ ¼ 2OeammT ½sinhðð1�mÞmTOÞ�re�amT sinhðmmTOÞ�,

M7 ðmÞ ¼ ð1þrÞo½�Kþ ðmÞ7LðmÞ�,

N7 ðmÞ ¼ ð1þrÞo½7K�ðmÞ�Lð1�mÞ�,

Q ðmÞ ¼ e�amT sinhðmmTOÞþsinhðð1�mÞmTOÞ,

RðmÞ ¼ e�amT coshðmmTOÞ�coshðð1�mÞmTOÞ,

S7 ðmÞ ¼OJ7 ð1þrÞeammT ½aQ ðmÞþORðmÞ�,

UðmÞ ¼�½ð1�rÞ2þ2a2ð1þr2Þ�coshðmTOÞ�ð1þrÞ2coshðð1�2mÞmTOÞ

�2aOð1�r2ÞsinhðmTOÞþ2O2
ðeamTþr2e�amT Þ,

DðmÞ ¼ fUðmÞ�o2ð1þrÞ2½coshðmTOÞ�coshðð1�2mÞmTOÞ�gsinð2mmpÞ

�2oOð1þrÞ2sinhðð1�2mÞmTOÞcosð2mmpÞþHðmÞ,

D7
1 ðmÞ ¼UðmÞsinð2mmpÞþM7 ðmÞcosð2mmpÞþN7 ðmÞ,

D7
2 ðmÞ ¼�M7 ðmÞsinð2mmpÞþUðmÞcosð2mmpÞ8UðmÞ,

D7
3 ðmÞ ¼ 72o2Oð1þrÞ½eammTQ ðmÞ8sinhðmTOÞ�sinð2mmpÞ

þ2oOS7 ðmÞcosð2mmpÞ82oOS7 ðmÞ:

Then the main result of this section is as follows:

Theorem 2.1. Let m be a positive integer and mAð0,1Þ and ma 1
2.

Let cm ¼ cosðojmþcÞ, sm ¼ sinðojmþcÞ. Then for system (1.1):

(1) A point ðjm,ymÞAS is a period-2 point of P and corresponds to

a ðm,2,0,mÞ orbit if and only if (2.4d) and (2.4e) holds and the

following are satisfied:

DðmÞa0, cm ¼
Dþ1 ðmÞ
gDðmÞ , sm ¼

Dþ2 ðmÞ
gDðmÞ ,
ym ¼
Dþ3 ðmÞ
DðmÞ

, g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ1 ðmÞ

2
þDþ2 ðmÞ

2
q

jDðmÞj
:

(2) A point ðjm,ymÞAS is a fixed point of P and corresponds to a

ðm,1,1,mÞ orbit if and only if (2.5d) and (2.5e) holds and the

following are satisfied:

DðmÞa0, cm ¼
D�1 ðmÞ
gDðmÞ

, sm ¼
D�2 ðmÞ
gDðmÞ

,

ym ¼
D�3 ðmÞ
DðmÞ , g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�1 ðmÞ

2
þD�2 ðmÞ

2
q

jDðmÞj :

To prove Theorem 2.1, we need the following result.

Lemma 2.1. For mAð0,1Þ and ma 1
2, M7 ðmÞ7N7 ðmÞa0 and

UðmÞa0.

Proof. We only prove Mþ ðmÞ7Nþ ðmÞa0 and UðmÞa0. The proof
for M�ðmÞ7N�ðmÞa0 is similar to that of Mþ ðmÞ7Nþ ðmÞa0.

Let g1ðtÞ ¼ coshðtmmTÞ, g2ðtÞ ¼ coshðtð1�mÞmTÞ and

g3ðtÞ ¼ ð1�rÞsinhðmmTOÞsinhðð1�mÞmTOÞ
sinhðtamTÞ

sinhðtmTOÞ
,

g4ðtÞ ¼
ð1þrÞXsinhðtmTOÞ

coshðtmTOÞ�coshðtamTÞ
,

where X¼ ½g1ðOÞ�g1ðaÞ�½g2ðOÞ�g2ðaÞ�40. Then g3ðtÞ and g4ðtÞ are

both strictly decreasing for t40. Thus for mAð0,1Þ and ma 1
2, we

have

Mþ ðmÞþNþ ðmÞ ¼ 2ð1þrÞoO
X4

k ¼ 3

ðgkðmÞ�gkð1�mÞÞa0:

Let

h1ðtÞ ¼ ð1�rÞ
coshðtmmTÞ

sinhðmmTOÞ
það1þrÞ

sinhðtmmTÞ

tsinhðmmTOÞ
,

h2ðtÞ ¼ ð1�rÞ
coshðtð1�mÞmTÞ

sinhðð1�mÞmTOÞ
það1þrÞ

sinhðtð1�mÞmTÞ

tsinhðð1�mÞmTOÞ
:

Then h1ðtÞ and h2ðtÞ are both strictly increasing for t40. Note

that Mþ ðmÞ�Nþ ðmÞ ¼ 2ð1þrÞoOY, where

Y¼ sinhðmmTOÞsinhðð1�mÞmTOÞ
X2

k ¼ 1

ðhkðaÞ�hkðOÞÞ:

Hence Mþ ðmÞ�Nþ ðmÞo0 because aoO¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þa2
p

.

Finally, it is obvious that UðmÞ reaches its maximum at m¼ 1
2 for

mA ð0,1Þ. Thus for ma 1
2, we have UðmÞoUð12Þo0. The proof is

complete. &

Proof of Theorem 2.1. We only prove (1), the proof for (2) is
similar.

From (2.3), we obtain

~ym,A ¼ ~ym,B ¼�g½LðmÞþosinð2mmpÞ�cm�og½GðmÞþcosð2mmpÞ�sm

þrGðmÞymþLðmÞ, ð2:6Þ

where

LðmÞ ¼ 1

O
e�ammT sinhðmmTOÞ, GðmÞ ¼ aLðmÞ�e�ammT coshðmmTOÞ:

Substitute (2.3) and (2.6) into (2.4a)–(2.4c), we obtain a system of

linear equations for cm, sm and ym of the form:

a1ðmÞcmþa2ðmÞsmþa3ðmÞym ¼ bðmÞ, ð2:7Þ



Fig. 2. (a) A (3, 2, 0, 0.252) orbit, (b) a (3, 2, 0, 0.748) orbit with m¼3, a¼ 4, r¼0.5,

o¼ 16p.
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where a1ðmÞ,a2ðmÞ,a3ðmÞ,bðmÞAR3 are column vectors, their

expressions are very complicated, and hence are omitted here

for brevity. Let AðmÞ be the coefficient matrix of (2.7) and AkðmÞ
(k¼1, 2, 3) be 3�3 matrices obtained by replacing the k-th

column of AðmÞ with bðmÞ. With Maple, we find that

detAðmÞ ¼ g2

2O2
eað1�mÞmTDðmÞ, detA1ðmÞ ¼

g
2O2

eað1�mÞmTDþ1 ðmÞ,

detA2ðmÞ ¼
g

2O2
eað1�mÞmTDþ2 ðmÞ, detA3ðmÞ ¼

g2

2O2
eað1�mÞmTDþ3 ðmÞ:

If DðmÞa0, then cm, sm and ym can be solved from (2.7) using

Cramer’s rule. The condition for g can be found from the identity

c2
mþs2

m ¼ 1.

We now prove that if DðmÞ ¼ 0, then (2.7) has no solution.

Consequently, the ðm,2,0,mÞ orbit does not exist. In fact, if this is

not true, then (2.7) has infinitely many solutions, implying that

rankðAðmÞÞ ¼ rankðAðmÞ bðmÞÞr2. Thus Dþ1 ðmÞ ¼Dþ2 ðmÞ ¼Dþ3 ðmÞ ¼
0. By Lemma 2.1, UðmÞa0. Hence from Dþ1 ðmÞ ¼Dþ2 ðmÞ ¼ 0, we can

uniquely solve for ~sm :¼ sinð2mmpÞ, ~cm :¼ cosð2mmpÞ:

~sm ¼�
UðmÞðMþ ðmÞþNþ ðmÞÞ

UðmÞ2þMþ ðmÞ2
, ~cm ¼ 1�

Mþ ðmÞðMþ ðmÞþNþ ðmÞÞ
UðmÞ2þMþ ðmÞ2

:

However, from ~s2
mþ ~c

2
m ¼ 1 we get ðMþ ðmÞþNþ ðmÞÞðMþ ðmÞ�

Nþ ðmÞÞ ¼ 0, which is a contradiction to Lemma 2.1. The proof of

Theorem 2.1 is complete. &

By Theorem 2.1 and (2.3), we can obtain the following result:

Corollary 2.1. A ðm,2,0,mÞ orbit coexists with a ðm,2,0,1�mÞ orbit

and they overlap. A ðm,1,1,mÞ orbit coexists with a ðm,1,1,1�mÞ orbit

and they are symmetric with respect to the origin.

Remark 2.1. It is easy to prove that Dð12Þ ¼ 0. If m is odd, then
Dþ2 ð12Þ ¼�2Uð12Þa0, implying that a ðm,2,0, 1

2Þ orbit does not exist.
If m is even, a ðm,2,0, 1

2Þ orbit is simply a Type I orbit studied in
[5,34]. Similarly, if m is odd, a ðm,1,1, 1

2Þ orbit is a Type II orbit
studied in [5,34] and if m is even, a ðm,1,1, 1

2Þ orbit does not exist.

Clearly, to apply Theorem 2.1 to obtain a double impact periodic
orbit of system (1.1), we need to verify the condition DðmÞa0. Since
DðmÞ is a complicated transcendental function, it is impossible to
analytically find all zeros of DðmÞ and we must use numerical
methods such as Newton’s iterative method for this purpose. Conse-
quently, it is impossible to analytically get all double impact periodic
orbits of system (1.1). However, we have the following partial result:

Proposition 2.1. Let m be a positive integer. If m¼2p is an even

number and

mAFA :¼
[p�1

k ¼ 0

2kþ1

2m
,
kþ1

m

� � ![ [2p�1

k ¼ p

k

m
,
2kþ1

2m

� �0
@

1
A� 1

2

� �
,

or if m¼ 2pþ1 is an odd number and

mAFB :¼
[p�1

k ¼ 0

2kþ1

2m
,
kþ1

m

� � ![ [2p

k ¼ pþ1

k

m
,
2kþ1

2m

� �0
@

1
A,

then DðmÞa0.

Proof. Since Dð1�mÞ ¼�DðmÞ, we only need consider this
problem for mA ð0, 1

2Þ. Let RðmÞ ¼UðmÞ�o2ð1þrÞ2½coshðmTOÞ� cosh
ðð1�2mÞmTOÞ�. Then for oa1, R0ðmÞ ¼ 0 if and only if m¼ 1

2 and for
o¼ 1, R0ðmÞ � 0. Thus for mA ½0, 1

2�, RðmÞrmaxðRð0Þ,Rð12ÞÞ. It is ele-
mentary to prove that Rð0Þo0, Rð12Þo0. Hence for mA ½0, 1

2�, RðmÞo0.

Now let $ðmÞ ¼DðmÞ�RðmÞsinð2mmpÞ and

$0ðmÞ ¼�2oOð1þrÞ2sinhðð1�2mÞmTOÞþHðmÞ:
Then

$0ðmÞ ¼ 2ð1þrÞoOsinhðmmTOÞsinhðð1�mÞmTOÞðUðmÞ�Uð1�mÞÞ,
where

UðtÞ ¼ ð1�rÞsinhðtamTÞ�ð1þrÞ½coshðtmTOÞ�coshðtamTÞ�

sinhðtmTOÞ
:

It is easy to see that UðtÞ is strictly decreasing for t40. Thus for

mA ð0, 1
2Þ, $0ðmÞ40. Hence for mA ð0, 1

2Þ,

$ðmÞ ¼�2oOð1þrÞ2sinhðð1�2mÞmTOÞcosð2mmpÞþHðmÞZ$0ðmÞ40:

Thus, when m¼2p is even and mAð0, 1
2Þ
T
FA, RðmÞo0,

sinð2mmpÞr0 and $ðmÞ40, implying that DðmÞ ¼$ðmÞþRðmÞ
sinð2mmpÞ40. By the same argument, when m¼ 2pþ1 is odd, then

we have DðmÞ40 for mA ð0, 1
2Þ
T
F B. The proof of Proposition 2.1 is

complete. &

With Maple we apply the above results to simulate two double
impact periodic orbits of system (1.1). Take m¼3, a¼ 4, r¼0.5,
o¼ 16p. In order to simulate a ð3,2,0,0:252Þ orbit and a ð3,2,
0,0:748Þ orbit, we substitute these data into Theorem 2.1(1)
and obtain b� 6:0964759. For the ð3,2,0,0:252Þ orbit, jm �

0:06175778951 and ym � 0:07481707689. For the ð3,2,0,0:748Þ
orbit, jm � 0:03125778948 and ym � 0:1736134324. By the results
on stability analysis given in section 3, it is not difficult to prove that



Fig. 3. (a) A (4, 1, 1, 0.442) orbit, (b) a (4, 1, 1, 0.558) orbit with m¼4, a¼ 1
13, r¼1,

o¼ 2p.
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the resulted ð3,2,0,0:252Þ orbit and ð3,2,0,0:748Þ orbit are stable.
The result is shown in Fig. 2. It is clear from Fig. 2 that the
two orbits overlap. Similarly, take m¼4, a¼ 1

13, r¼1, o¼ 2p,
we obtain b� 1:350303765. For the ð4,1,1,0:442Þ orbit, jm �

0:2038771111 and ym � 1:335757915. For the ð4,1,1,0:558Þ orbit,
jm � 0:4718771104 and ym � 1:293757915. With these data we
simulate the stable ð4,1,1,0:442Þ orbit and ð4,1,1,0:558Þ orbit, which
is shown in Fig. 3. It is clear from Fig. 3 that these two orbits are
symmetric with respect to the origin.

3. Some special cases

As seen in Theorem 2.1, the analytical conditions for the
existence of general double impact periodic orbits of system
(1.1) are very complicated. In this section, we discuss some
special cases, namely, the ðm,2,0,k=2mÞ orbits for odd k ðkamÞ

and the ðm,1,1,k=mÞ orbits for integer k ðkam=2Þ. We will give
more concrete conditions for the existence of these orbits.

For s40 and tA ½0,1�, we define two functions:

pðsÞ ¼O�2aþe�2sTO½Oþ2aþOesðOþaÞT�3OesðO�aÞT �,

cðtÞ ¼ ð1þtÞ½asinhðmTOÞ�OsinhðamTÞ��tIO:

Obviously, Sþ ð0Þ ¼ 2cðrÞ, cð0Þ40 and cð1Þ ¼� 1
2 emTOpðmÞ. Further-

more, it is elementary to prove the following result.
Lemma 3.1. For aAð0,1=
ffiffiffi
3
p
�, pðsÞ40 when s40. For a41=

ffiffiffi
3
p

,
pðsÞ has a unique positive zero sn40. Furthermore, pðsÞ40 when

sA ð0,snÞ and pðsÞo0 when s4sn.

By Lemma 3.1, it is easy to see that when aAð0,1=
ffiffiffi
3
p
�, or

a41=
ffiffiffi
3
p

and 1rmosn, cð1Þo0, implying that cðtÞ has a
unique zero rnA ð0,1Þ. When a41=

ffiffiffi
3
p

and mZsn, cð1ÞZ0, hence
cðtÞ40 for tA ½0,1Þ.

Lemma 3.2. S�ðmÞ is strictly decreasing for mA ð0,1Þ and has a

unique zero m�
n
Að0,1Þ. Furthermore, m�

n
Að12 ,1Þ. Sþ ðmÞ is strictly

increasing for mAð0,1Þ. When aAð0,1=
ffiffiffi
3
p
� and rAð0,rn�, or

a41=
ffiffiffi
3
p

, 1rmosn and rAð0,rn�, or a41=
ffiffiffi
3
p

and mZsn,
Sþ ðmÞ40 for mAð0,1�. When aA ð0,1=

ffiffiffi
3
p
� and rAðrn,1�, or

a41=
ffiffiffi
3
p

, 1rmosn and rAðrn,1�, Sþ ðmÞ has a unique zero

mþ
n
A ð0,1Þ. Furthermore, mþ

n
Að0, 1

2Þ, Sþ ðmÞo0 when mAð0,mþ
n
Þ

and Sþ ðmÞ40 when mA ðmþ
n

,1Þ.

Proof. We only prove the statement for Sþ ðmÞ. The proof for S�ðmÞ
is similar and is actually easier.

It is easy to see that S0þ ðmÞ40 for mAð0,1Þ, thus Sþ ðmÞ is strictly

increasing. Note that Sþ ð0Þ ¼ 2cðrÞ and

Sþ
1

2

	 

¼Oð1�rÞIþ2aOð1þrÞ cosh

mTO
2

	 

þcosh

amT

2

	 
� �

�
1

O
sinh

mTO
2

	 

�

1

a
sinh

amT

2

	 
� �
40,

since O4a. Due to the properties of cðtÞ ðtA ½0,1�Þ stated

above, the assertions of Lemma 3.2 are true. Lemma 3.2 is thus

proved. &

Moreover, from (2.6) we see that if a ðm,2,0,k=2mÞ orbit exists,
then

ym ¼�4oO
Sþ

k

2m

	 


D
k

2m

	 
 , ~ym,A ¼ 4oO
Sþ 1�

k

2m

	 


D
k

2m

	 
 :

If a ðm,1,1,k=mÞ orbit exists, then

ym ¼ 4oO
S�

k

m

	 


D
k

m

	 
 , ~ym,B ¼ 4oO
S� 1�

k

m

	 


D
k

m

	 
 :

Thus, by Lemma 3.2 and Theorem 2.1, we obtain the following
result.

Theorem 3.1. Let m40, k40 be integers. Then for (1.1):

(1) If k is odd and a ðm,2,0,k=2mÞ orbit exists, then kA

½1,2mmþ
n
Þ [ ð2mð1�mþ

n
Þ,2m�1�, aAð0,1=

ffiffiffi
3
p
� and rAðrn,1�, or a4

1=
ffiffiffi
3
p

, 1rmosn and rAðrn,1�. In this case, a point ðjm,ymÞAS is a

period-2 point of P and corresponds to a ðm,2,0,k=2mÞ orbit if and only

if (2.4d) and (2.4e) holds and the following are satisfied:

cm ¼

Dþ1
k

2m

	 


gD k

2m

	 
 , sm ¼

Dþ2
k

2m

	 


gD k

2m

	 
 , ym ¼

Dþ3
k

2m

	 


D
k

2m

	 
 ,

g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ1

k

2m

	 
2

þDþ2
k

2m

	 
2
s

���D k

2m

	 
��� ,

where Dðk=2mÞ ¼ 2oOð1þrÞ2sinhððm�kÞTOÞþHðk=2mÞ, Dþ1 ðk=2mÞ

¼�Mþ ðk=2mÞþNþ ðk=2mÞ, Dþ2 ðk=2mÞ ¼�2Uðk=2mÞ, Dþ3 ðk=2mÞ ¼

�4oOSþ ðk=2mÞ.
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(2) If a ðm,1,1,k=mÞ orbit exists, then kA ½1,mð1�m�
n
ÞÞ[

ðmm�
n

,m�1�. In this case, a point ðjm,ymÞAS is a fixed point of P
and corresponds to a ðm,1,1,k=mÞ orbit if and only if (2.5d) and

(2.5e) holds and the following are satisfied:

cm ¼

D�1
k

m

	 


gD k

m

	 
 , sm ¼

D�2
k

m

	 


gD k

m

	 
 , ym ¼

D�3
k

m

	 


D
k

m

	 
 ,

g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�1

k

m

	 
2

þD�2
k

m

	 
2
s

D
k

m

	 
����
����

,

where Dðk=mÞ ¼�2oOð1þrÞ2sinhððm�2kÞTOÞþHðk=mÞ, D�1 ðk=mÞ

¼M�ðk=mÞþN�ðk=mÞ, D�2 ðk=mÞ ¼ 2Uðk=mÞ, D�3 ðk=mÞ ¼ 4oOS�ðk=mÞ.

By Corollary 2.1, under the assumptions of Theorem 3.1, a
ðm,2,0,k=2mÞ orbit coexists with a ðm,2,0,1�k=2mÞ orbit and they
overlap; a ðm,1,1,k=mÞ orbit coexists with a ðm,1,1,1�k=mÞ orbit
and they are symmetric with respect to the origin.

Remark 3.1. If k is even, then a ðm,2,0,k=2mÞ orbit does not exist.
In fact, if this is not true, then by Theorem 2.1, we have sm¼0,
cm¼1, ym¼0 and b¼ q, the corresponding orbit is given by
Fig. 4. (a) A ð4,2,0, 1
8Þ orbit, (b) a ð4,2,0, 7

8Þ orbit with m¼4, a¼ 1=
ffiffiffi
3
p

, r¼0.8,

o¼ 20.
ðxðt,þ1,0,jmÞ,yðt; þ1,0,jmÞÞ ¼ ðcosðotþcÞ,�osinðotþcÞÞ, but it
is not of type ðm,2,0,mÞ.

In Fig. 4, take m¼4, k¼1, a¼ 1=
ffiffiffi
3
p

, r¼0.8, o¼ 20 and using
the same method as described in Section 2, we simulate a
ð4,2,0, 1

8Þ orbit (see Fig. 4(a)) and a ð4,2,0, 7
8Þ orbit (see Fig. 4(b)).

For both orbits, we have b� 8:025072. For the ð4,2,0, 1
8Þ orbit,

jm � 0:1875739775 and ym � 0:1365415013. For the ð4,2,0, 7
8Þ

orbit, jm � 0:0304943449 and ym � 0:5060179103. It is clear from
Fig. 4 that the two orbits overlap.

In Fig. 5, take m¼5, k¼1, a¼ 1
32, r¼1, o¼ 5

3p, we simulate a
ð5,1,1, 1

5Þ orbit (see Fig. 5(a)) and a ð5,1,1, 4
5Þ orbit (see Fig. 5(b)).

For both orbits, we have b� 6:1614336. For the ð5,1,1, 1
5Þ orbit,

jm � 0:07131158154 and ym � 1:601727958. For the ð5,1,1, 4
5Þ

orbit, jm � 0:6713115816 and ym � 1:273692693. It is clear from
Fig. 5 that the two orbits are symmetric with respect to the origin.
4. Stability and bifurcation analysis

To determine the stability of the double impact periodic
motions of system (1.1), we compute the eigenvalues of the
Jacobian matrix DP of the corresponding Poincaré map
P : S/S. They are the solutions of the equation:

l2
�TrðDPÞlþdetðDPÞ ¼ 0,
Fig. 5. (a) A ð5,1,1, 1
5Þ orbit, (b) a ð5,1,1, 4

5Þ orbit with m¼5, a¼ 1
32, r¼1, o¼ 5

3p.
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which are given by

l1,2 ¼
1

2
TrðDPÞ7

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TrðDPÞ2�4detðDPÞ

q� �
, ð4:1Þ

where detðDPÞ and TrðDPÞ are respectively the determinant and
the trace of DP. If jl1,2jo1, then the orbit is stable, if there exists
a jlkj41 (k¼1 or 2), then the orbit is unstable.

Let jl1j ¼maxðjl1j,jl2jÞ. If jl1j ¼ 1 and jl2jo1, then l1,2AR. In
order to investigate the local bifurcations of the corresponding
periodic orbit, we apply center manifold theory to reduce the
Poincaré map P : S/S to a one-dimensional map using the
method given in [13,31,33]. We first choose a bifurcation parameter
among a, b, o and r, denoted by z and fix other parameters. If at the
bifurcation value zb, l1 ¼ 71, then for jz�zbj{1, using a center
manifold reduction, P : S/S is reduced to a map of the form:

w/p1ðzÞwþp2ðzÞw2þp3ðzÞw3þOðjwj4Þ :¼ f ðz,wÞ, ð4:2Þ

where wAR and z :¼ z�zb. If for z¼ zb, l1 ¼�1, then p1ð0Þ ¼�1.
In this case, if at ðz,wÞ ¼ ð0,0Þ:

Z1 :¼
@f

@z
@2f

@w2
þ2

@2f

@w@z
a0, Z2 :¼

1

2

@2f

@w2

	 
2

þ
1

3

@3f

@w3
a0, ð4:3Þ

then the orbit undergoes period doubling bifurcation. Particularly,
the bifurcation is supercritical for Z240 and subcritical for Z2o0.
If for z¼ zb, l1 ¼ 1, then p1ð0Þ ¼ 1. Let

q1 :¼
@2f

@w@z
ð0,0Þ, q2 :¼

@2f

@w2
ð0,0Þ, q3 :¼

@3f

@w3
ð0,0Þ: ð4:4Þ

If q1a0 and q2a0, then one has transcritical bifurcation. If q1a0,
q2 ¼ 0 and q3a0, then one has pitchfork bifurcation.
Fig. 6. The period doubling bifurcation diagrams with a¼ 1:2, o¼ 4p. (a) For the (3
In this section we adopt the same notations as in Sections 2
and 3, and assume that the double impact periodic orbits are not
grazing orbits, namely, ~ym,Aa0 for a ðm,2,0,mÞ orbit and ~ym,Ba0
for a ðm,1,1,mÞ orbit. Let

F 7
1 ðmÞ ¼ 18g½2aosinð2mmpÞþð1þo2Þcosð2mmpÞ�cm

7g½ð1þo2Þsinð2mmpÞ�2aocosð2mmpÞ�sm,

F2ðmÞ ¼ 1�gð1þo2Þcm�2gaosm:

4.1. ðm,2,0,mÞ orbits

For a ðm,2,0,mÞ orbit, the Poincaré map P : S/S is given by
P¼Pþ2 3Pþ1 3Pþ2 3Pþ1 , where Pþ1 : S/Sþ� is defined by the
impact law (2.2), Pþ2 : Sþ�/S is defined by the free-flight motion
(2.1). Then DP¼DPþ2 � DP

þ
1 � DP

þ
2 � DP

þ
1 . Using the implicit

differentiation method shown in [5,34], trðDPÞ and detðDPÞ
evaluated at ðjm,ymÞAS that corresponds to a ðm,2,0,mÞ orbit
are given by

detðDPÞ ¼ r4e�2amT ,

TrðDPÞ ¼
e�amT

O2ym

rO 2rOcoshðmTOÞ�ð1þrÞsinhðmTOÞ
F þ1 ðmÞ
~ym,A

� �
ym

�

þð1þrÞ ð1þrÞsinhðð1�mÞmTOÞsinhðmmTOÞ
Fþ1 ðmÞ
~ym,A

�

�rOsinhðmTOÞ
�

F2ðmÞ
�
:

, 2, 0, 0.4) orbit. (b) For the (3, 2, 0, 0.6) orbit. (c) Superposition of (a) and (b).



Fig. 7. (a) The transcritical bifurcation diagram for the (3, 2, 0, 0.4) orbit (the lower

branch) and the (3, 2, 0, 0.6) orbit (the upper branch) with a¼ 1:2, o¼ 4p.

(b) Magnification of (a) for rA ½0:8640,0:9285�.
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It is easy to see that DP for the ðm,2,0,mÞ orbit and the
ðm,2,0,1�mÞ orbit have the same determinate and trace. Hence
they have the same stability.

For a40 and rAð0,1�, detðDPÞo1. Hence a ðm,2,0,mÞ orbit
cannot undergo Hopf bifurcations. Due to the complexity of
computations, it is very difficult to analytically study the bifurca-
tion phenomena of ðm,2,0,mÞ orbits when maxðjl1j,jl2jÞ ¼ 1.
Herein we focus our attention on a concrete example using
numerical methods.

Take m¼3, a¼ 1:2, o¼ 4p and m¼ 0:4 and choose r as
bifurcation parameter. By Theorem 2.1 and Corollary 2.1, the
(3, 2, 0, 0.4) orbit coexists with the ð3,2,0,0:6Þ orbit when

b�
4:163426513

ffiffiffiffiffiffiffiffiffiffiffiffi
wþ ðrÞ

p
r2þ1:970489938rþ1:003316548

,

where wþ ðrÞ ¼ ðr2þ1:716809451rþ1:056066497Þð r2�3:160420
784rþ3:164381306Þ. By direct computation, we find that when
r¼ r1

pd � 0:63027619, DP for the (3, 2, 0, 0.4) orbit and the (3, 2, 0,
0.6) orbit have eigenvalue �1. Apply center manifold theory
stated above, we find that in Eqs. (4.2) and (4.3), for the (3, 2, 0,
0.4) orbit, Z1 ��0:17220137, Z2 � 54011:593940, and for the
(3, 2, 0, 0.6) orbit, Z1 ��0:17220137, Z2 � 25977:2982640. Thus
supercritical period doubling bifurcations of the orbits occur at
r¼ r1

pd. Similarly, when r¼ r1
tc � 0:76355112, DP for the (3, 2, 0,

0.4) orbit and the (3, 2, 0, 0.6) orbit have eigenvalue þ1. In
Eqs. (4.2) and (4.4), for the (3, 2, 0, 0.4) orbit, q1 ��0:1072822,
q2 ��236:7943606, for the (3, 2, 0, 0.6) orbit, q1 ��0:1072822,
q2 � 213:3580012. Hence the orbits undergo transcritical
bifurcation.

To confirm the theoretical bifurcation values r¼ r1
pd and r1

tc

given above, we present some numerical results as follows.
The period doubling bifurcation diagrams for the (3, 2, 0, 0.4)

orbit and the (3, 2, 0, 0.6) orbit are shown in Fig. 6(a) and (b)
respectively. From the figures we see that for both orbits, the
period doubling cascade leading to chaos when rAð0:569,0:638Þ.
These two bifurcation diagrams are superposed in Fig. 6(c). It is
clear from Fig. 6(c) that the chaos attractors of the two orbits
interlace with one another.

Fig. 7(a) shows the superposition of the stable branches of the
transcritcal bifurcation diagrams for the (3, 2, 0, 0.4) orbit (the
lower branch) and the (3, 2, 0, 0.6) orbit (the upper branch). It can
be observed that a stable periodic orbit bifurcates from each of
these two orbits when r¼ r1

tc , then the stable orbit undergoes
period doubling bifurcation at r� 0:878. Fig. 7(b) shows the
magnification of (a) for rA ½0:8640,0:9285� and we see the two
chaos attractors interlace with one another.
4.2. ðm,1,1,mÞ orbits

For a ðm,1,1,mÞ orbit, the Poincaré map P : S/S is given by
P¼P�4 3P

�
3 3P

�
2 3P

�
1 , where P�1 : S/Sþ� and P�3 : S��/S�þ

are defined by the impact law (2.2), P�2 : Sþ�/S�� and P�4 :
S�þ/S are defined by the free-flight motion (2.1). Thus
DP¼DP�4 � DP

�
3 � DP

�
2 � DP

�
1 . TrðDPÞ and detðDPÞ evaluated at

ðjm,ymÞAS that corresponds to a ðm,1,1,mÞ orbit are given by

detðDPÞ ¼ r4e�2amT ,

TrðDPÞ ¼
e�amT

O2ym

rO 2rOcoshðmTOÞþð1þrÞsinhðmTOÞ
F�1 ðmÞ
~ym,B

� �
ym

�

�ð1þrÞ ð1þrÞsinhðð1�mÞmTOÞsinhðmmTOÞ
F�1 ðmÞ
~ym,B

�

þrOsinhðmTOÞ
�

F2ðmÞ
�
:

Like for the ðm,2,0,mÞ orbit, DP for a ðm,1,1,mÞ orbit and a
ðm,1,1,1�mÞ orbit have the same determinate and trace. Hence they
have the same stability. Furthermore, a ðm,1,1,mÞ orbit cannot
undergo Hopf bifurcations.

In the following we focus on a concrete example to observe
the bifurcation phenomena for ðm,1,1,mÞ orbits when max
ðjl1j,jl2jÞ ¼ 1.

Take m¼2, a¼ 4
13, o¼ 4p and m¼ 0:36. Choose r as bifurcation

parameter. By Theorem 2.1 and Corollary 2.1, the (2, 1, 1, 0.36)
orbit coexists with the (2, 1, 1, 0.64) orbit when

b�
60:46218915

ffiffiffiffiffiffiffiffiffiffiffi
w�ðrÞ

p
r2þ1:979869866rþ1:004356884

,

where w�ðrÞ ¼ ðr2þ1:998745274rþ1:000232132Þ ðr2�2:066994
008rþ1:636537837Þ. We find that when r¼ r2

pd � 0:4174924875,
DP for the (2, 1, 1, 0.36) orbit and the (2, 1, 1, 0.64) orbit have
eigenvalue �1. We find that in Eqs. (4.2) and (4.3), for the (2, 1, 1,
0.36) orbit, Z1 ��1:121806, Z2 � 6688:39881940, and for the
(2, 1, 1, 0.64) orbit, Z1 ��1:121806, Z2 � 252:506525940. There-
fore supercritical period doubling bifurcations for the orbits occur.
When r¼ r2

tc � 0:4950471839, DP for the (2, 1, 1, 0.36) orbit and the
(2, 1, 1, 0.64) orbit have eigenvalue þ1. In Eqs. (4.2) and (4.4),



Fig. 8. The period doubling bifurcation diagrams with a¼ 4
13, o¼ 4p. (a) For the (2, 1, 1, 0.36) orbit. (b) For the (2, 1, 1, 0.64) orbit. (c) Superposition of (a) and (b).
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for the (2, 1, 1, 0.36) orbit, q1 ��0:696589, q2 ��32:83644736, for
the (2, 1, 1, 0.64) orbit, q1 ��0:696589, q2 ��40:2364845. Hence
the orbits undergo transcritical bifurcation.

The bifurcation diagrams Fig. 8(a) and (b) show the period
doubling cascade leading to chaos for the (2, 1, 1, 0.36) orbit
and the (2, 1, 1, 0.64) orbit when rAð0:3765,0:4200Þ. The two
diagrams are superposed in Fig. 8(c). It is clear that the chaos
attractors of the two orbits interlace with each other.

The superposition of the stable branches of the transcritcal
bifurcation diagrams for the (2, 1, 1, 0.36) orbit (the upper branch)
and the (2, 1, 1, 0.64) orbit (the lower branch) is shown in
Fig. 9(a). It can be observed that a stable periodic orbit bifurcates
from each of these two orbits when r¼ r2

tc , then the stable
orbit undergoes period doubling bifurcation at r� 0:565.
Fig. 9(b) shows the magnification of (a) for rA ½0:56,0:59� and
we see the two chaos attractors interlace with each other.
5. Existence of grazing periodic orbits

In this section we discuss the existence of grazing periodic
orbits of system (1.1). With the same notations as in previous
sections, as pointed out in Section 2, when ~ym,A ¼ 0 (resp.
~ym,B ¼ 0Þ, the corresponding ðm,2,0,mÞ (resp. ðm,1,1,mÞÞ orbit is a
grazing periodic orbit. Let

VðmÞ ¼�eamT ½aQ ð1�mÞþORð1�mÞ�,
W7 ðmÞ ¼o½7eammT sinhðmTOÞ�eamT Q ð1�mÞ�,

X ¼ Iþ
a
O

sinhðmTOÞ�sinhðamTÞ,

DgðmÞ ¼ VðmÞsinð2mmpÞ�oeamT Q ð1�mÞcosð2mmpÞþoeammT sinhðmTOÞ,

D7
g1 ðmÞ ¼ VðmÞsinð2mmpÞþW7 ðmÞcosð2mmpÞ,

D7
g2 ðmÞ ¼�W7 ðmÞsinð2mmpÞþVðmÞcosð2mmpÞ8VðmÞ,

D7
g3 ðmÞ ¼

o
r
½D7

g2 ðmÞþOeammT ð18cosð2mmpÞÞX�,

Z7 ðmÞ ¼D7
g2 ðmÞþ

O
1þr

eammT ð18cosð2mmpÞÞJ:

It is easy to see that

DgðmÞ ¼Dþg1ðmÞþoeammT ð1�cosð2mmpÞÞsinhðmTOÞ

¼D�g1ðmÞþoeammT ð1þcosð2mmpÞÞsinhðmTOÞ:

The main result of this section is given as follows.

Theorem 5.1. Let m be a positive integer and mA ð0,1Þ and ma 1
2.

Then for system (1.1):

(1) A point ðjm,ymÞAS is a period-2 point of P and corresponds to

a grazing periodic orbit of type ðm,2,0,mÞ if and only if (2.4d) and



Fig. 9. (a) The transcritical bifurcation diagram for the (2, 1, 1, 0.36) orbit (the

upper branch) and the (2, 1, 1, 0.64) orbit (the lower branch) with a¼ 4
13, o¼ 4p.

(b) Magnification of (a) for rA ½0:56,0:59�.
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(2.4e) holds and the following are satisfied:

Zþ ðmÞ ¼ 0, cm ¼
Dþg1ðmÞ
gDgðmÞ

, sm ¼
Dþg2ðmÞ
gDgðmÞ

,

ym ¼
Dþg3ðmÞ
DgðmÞ

, g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþg1ðmÞ

2
þDþg2ðmÞ

2
q

DgðmÞ
: ð5:1Þ

The grazing point is x0 ¼ ð1,0,jmþmmTÞ.

(2) There is no grazing periodic orbit of type ðm,1,1,mÞ.

Proof. (1) We first prove that DgðmÞ40 for mAð0,1Þ. Let
DðmÞ ¼ e�ammTDgðmÞ. Then

D0ðmÞ ¼mTsinð2mmpÞeað1�mÞmT ½ða2þO2
þo2ÞQ ð1�mÞþ2aORð1�mÞ�:

Note that Q ð1�mÞ40, we have

ða2þO2
þo2ÞQ ð1�mÞþ2aORð1�mÞ42aO½Q ð1�mÞþRð1�mÞ�40:

Hence D0ðmÞ ¼ 0 if and only if sinð2mmpÞ ¼ 0, i.e. m¼ k=2m for
k¼ 0,1, . . . ,2m. These are all of the extreme points of DðmÞ in [0,1].
It is elementary to prove that Dðk=2mÞ40 for k¼ 1, . . . ,2m�1 and

Dð0Þ ¼Dð1Þ ¼ 0, implying that DgðmÞ40.
The results given in (1) can be obtained by solving Eqs. (2.4a)–(2.4c)

combined with ~ym,A ¼ 0. The expression for ~ym,A given by (2.6) is

used. The details are omitted here for brevity.

(2) We prove the statement by contradiction. If there is a fixed

point ðjm,ymÞAS of P that corresponds to a grazing periodic orbit

of type ðm,1,1,mÞ, then similar to (1), we have

Z�ðmÞ ¼ 0, cm ¼
D�g1ðmÞ
gDgðmÞ

, sm ¼
D�g2ðmÞ
gDgðmÞ

,

ym ¼
D�g3ðmÞ
DgðmÞ

, g¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�g1ðmÞ

2
þD�g2ðmÞ

2
q

DgðmÞ
: ð5:2Þ

Since for tAð0,mTÞ, this grazing orbit reaches the wall x¼�1

after a time mmT with zero approaching velocity and there is no

other contact point of the orbit to the impacting walls x¼71, the

orbit can be described by the solution ðxðjmþt; þ1,�rym,

jmÞ,yðjmþt; þ1,�rym,jmÞÞ ð0rtrmTÞ of Eq. (2.1). Under the

conditions (5.2), we have

xðjmþt; þ1,�rym,jmÞ ¼ 1þ
dðtÞ
DgðmÞ

, ð5:3Þ

where

dðtÞ ¼D�g1ðmÞðcosot�1Þ�D�g2ðmÞsinot�oeaðmmT�tÞð1þcosð2mmpÞÞ

½eatsinhðmTOÞ�eamT sinhðOtÞ�sinhðOðmT�tÞÞ�:

It is elementary to prove that

dðtÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�g1ðmÞ

2
þD�g2ðmÞ

2
q

cmðtÞ�½D�g1ðmÞ�ð1þcosð2mmpÞÞW�ðmÞ�,

where cmðtÞ ¼ cosðojmþcþotÞ. Clearly when m41, or m¼1

and cm ¼ cosðojmþcÞa1, there exists a tc Að0,mTÞ such that

cmðtcÞ ¼ 1. Hence

dðtcÞZ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D�g1ðmÞ

2
þD�g2ðmÞ

2
q

�½D�g1ðmÞ�ð1þcosð2pmmÞÞW�ðmÞ�:

On the other hand, for any mAð0,1Þ, we have

D�g1ðmÞ
2
þD�g2ðmÞ

2
�½D�g1ðmÞ�ð1þcosð2mmpÞÞW�ðmÞ�2

¼ ð1þcosð2mmpÞÞ2VðmÞ2Z0:

Thus dðtcÞZ0. If m¼1 and cm ¼ 1, then by (5.2), D�g2ðmÞ ¼
Z�ðmÞ ¼ 0, implying that m¼ 1

2, which contradicts to the assump-

tion that ma 1
2.

Therefore, for any mZ1 and mAð0,1Þ and ma 1
2, there exists a

tc Að0,mTÞ such that dðtcÞZ0. Since DgðmÞ40 for mA ½0,1� as

shown in (1), by (5.3), we have xðjmþtc; þ1,�rym,jmÞZ1, i.e.

the pendulum touches the wall x¼þ1 for tc Að0,mTÞ. This contra-

dicts to the definition of the ðm,1,1,mÞ orbit, implying that there is

no grazing periodic orbit of type ðm,1,1,mÞ. &

It is easy to see that when m¼1, m¼ 1
2 and b¼ q, there is a

corresponding grazing orbit ðxðt; þ1,0,jmÞ,yðt; þ1,0,jmÞÞ ¼

ðcosðotþcÞ,�osinðotþcÞÞ, but it is not of type ðm,1,1,mÞ.

Remark 5.1. In order to obtain a grazing orbit of type ðm,2,0,mÞ,
we need to verify that Zþ m

� 

¼ 0. Clearly Zþ ðk=mÞ ¼ 0 for any

integer k ð1rkrmÞ. However, we can prove that for m¼ k=m and
ma 1

2, (5.1) is not satisfied, implying that grazing orbit of type
ðm,2,0,k=mÞ does not exist. In fact, we must use numerical
methods to find the zeros of Zþ ðmÞ in order to obtain a grazing
orbit of type ðm,2,0,mÞ.

In Fig. 10, take m¼4, a¼
ffiffiffi
5
p

, r¼ 1
3, o¼ 2p, we simulate a

grazing periodic orbit of type ð4,2,0,mÞ. Substitute these data
into (5.1) we obtain m� 0:7926290493, b� 14:83636873,



Fig. 10. A grazing periodic orbit of type ð4,2,0,mÞ with m¼4, a¼
ffiffiffi
5
p

, o¼ 2p, r¼ 1
3.
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jm � 0:2454859631 and ym � 1:762324933. Hence the grazing
orbit can be easily plotted.
6. Grazing bifurcations

Let ðjm,ymÞAS be a period-2 point of P : S/S that corre-
sponds to a grazing periodic orbit of type ðm,2,0,m0Þ and
x0 ¼ ð1,0,jmþm0mTÞ be the corresponding grazing point. As
explained in [2, pp. 261–262], since the Poincaré section S is
part of the impact surface, the corresponding Poincaré map P :
S/S can only describe orbits that intersect S. Therefore it is not
suitable for analyzing grazing bifurcations. In order to investigate
the dynamics near the grazing point x0, in this section we choose
the so-called normal Poincaré section:

SN :¼ fðx,y,jÞAR�R� S1jy¼ 0g

and construct the normal Poincaré map PN : SN/SN near
x0ASN . Since the orbits near the grazing orbit intersect with SN

transversally, the normal Poincaré map PN is well defined.
Elements in SN are denoted by ðx,jÞAR� S1. Under this coordi-
nate system, x0 ¼ ð1,jmþm0mTÞASN . Then according to [2, p.
282], PNðx,j,mÞ ¼ PDM3 ~PNðx,j,mÞ for ðx,jÞASN near x0ASN and
m near m0, where PDM : SN/SN and ~PN : SN/SN are respec-
tively the Poincaré discontinuity map and the natural Poincaré map

(see [2, Chapter 6] for the definitions of these two maps).
To simplify notations, let

C1ðmÞ ¼
1

ODþg3ðmÞ
ðDgðmÞ�ð1þo2ÞDþg1ðmÞ�2aoDþg2ðmÞÞ,

C2ðmÞ ¼ coshðmmTOÞþ
a
O

sinhðmmTOÞ,

C3ðmÞ ¼oðWþ ðmÞþsinð2mmpÞVðmÞÞ:

Let a0 ¼�1�bcosðojmþ2m0mpÞ, NðmÞ :¼ ðaijðmÞÞ2�2 and
MðmÞ :¼ bðmÞð0,1ÞT , where

a11ðmÞ ¼ e�amT ½ð1þrÞsinhðmmTOÞC1ðmÞC2ð1�mÞ�rC2ð1Þ�,

a12ðmÞ ¼
oVðmÞ
DgðmÞ

½a11ðmÞ�1�½1�cosð2mmpÞ�þ ð1þrÞo
DgðmÞ

e�amT C3ðmÞ
O

�

C1ðmÞsinhðmmTOÞsinhðð1�mÞmTOÞ�
r

1þr
sinhðmTOÞ

� �
þe�ammT

o sinhðmmTOÞ
O

Dþg1ðmÞ�ðC1ðmÞsinhðmmTOÞ�C2ðmÞÞDþg2ðmÞ
� ��

,

a21ðmÞ ¼
e�amT ð1þrÞ

Oa0

�
C1ðmÞ sinhðmmTOÞsinhðð1�mÞmTOÞ

�
þO2C2ð1�2mÞ

i
�

r

1þr
sinhðmTOÞ

�
,

a22ðmÞ ¼ 1þ
oVðmÞ
DgðmÞ

½1�cosð2mmpÞ�a21ðmÞþ
ð1þrÞo
a0DgðmÞ

�
e�amTC3ðmÞ

C1ðmÞC2ð�mÞsinhðð1�mÞmTOÞ�
rC2ð�1ÞþeamT

1þr

� �
þe�ammT

oC2ð�mÞDþg1ðmÞþ
sinhðmmTOÞ

O
�OC1ðmÞC2ð�mÞ

	 

Dþg2ðmÞ

� ��
,

bðmÞ ¼ �mTe�ammT

a0DgðmÞ
sinhðmmTOÞ

O
�2aC2ð�mÞ

	 

oDþg2ðmÞ�rDþg3ðmÞ
� ��

þC2ð�mÞðDgðmÞ�Dþg1ðmÞÞ�oeammTC3ðmÞ
o
�mT:

Then using the method given in Chapter 6 of [2], we obtain the
following result:

Theorem 6.1. For system (1.1), let ðjm,ymÞAS be a period-2 point

of P : S/S that corresponds to a grazing periodic orbit of type

ðm,2,0,m0Þ and x0 ¼ ð1,jmþm0mTÞASN be the corresponding graz-

ing point. For x :¼ ðx,jÞASN near x0 and mAð0,1Þ near m0, let

x ¼ ðx�x0Þ
T :¼ ðx,jÞT and m ¼ m�m0. Then the normal Poincaré map

PN : SN/SN can be written to leading-order in the form

PNðx,mÞ ¼
Nðm0ÞxþMðm0Þm, if kðxÞr0,

Nðm0ÞxþMðm0Þm�ð1þrÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2kðxÞ

a0

r
ð0,1ÞT , if kðxÞ40,

8><
>:

ð6:1Þ

where kðxÞ ¼ a11ðm0Þxþa12ðm0Þj, a0 ¼�1�bcosðojmþ2m0mpÞ.

By the results of [2, p. 284], we have

Theorem 6.2. Let the assumptions be given as Theorem 6.1. Let E be

the2�2 unit matrix, C ¼ ð�1,0ÞT . Suppose that Nðm0Þ has real

eigenvalues l1,2 such that 0ol1o1 and l2ol1. Furthermore,
suppose that dn ¼ CT ðE�Nðm0ÞÞ

�1Mðm0Þa0 and zn ¼ CT Nnðm0Þ

ð0,�1ÞT 40 for all n40. Then as dnðm�m0Þ40 evolves into

dnðm�m0Þo0,

(1) if l1Að23 ,1Þ, there is a chaotic attractor close to the origin for all

small negative values of dnðm�m0Þ;

(2) if l1Að14 , 2
3Þ, for all small negative values of dnðm�m0Þ, there is

an alternating series of chaotic and stable periodic motions, accu-

mulating in a period-adding cascade as m-m0;

(3) if l1Að0, 1
4Þ, the chaotic motion disappears and is replaced by

periodic bands that overlap and increase in period as m-m0.

In general, it is hard to verify that zn40 for all n. In the
following we give a simple criterion.

Proposition 6.1. If Nðm0Þ has real eigenvalues l1 and l2 such that

l14l2, then for all n, zn has the same sign as a12ðm0Þ.

Proof. Let pNðlÞ be the characteristic polynomial of Nðm0Þ. By the
Hamilton–Cayley theorem, we have pNðNðm0ÞÞ ¼ 0. On the other
hand, for any n, there is a polynomial qnðlÞ such that

ln
¼ qnðlÞpNðlÞþ‘1lþ‘2, ð6:2Þ

where

‘1 ¼
ln

1�l
n
2

l1�l2
, ‘2 ¼

l1l2ðl
n�1
1 �l

n�1
2 Þ

l2�l1
:

From (6.2) we get Nnðm0Þ ¼ ‘1Nðm0Þþ‘2E. Thus zn ¼ ‘1a12ðm0Þ has
the same sign as a12ðm0Þ since ‘140. The proof is complete. &
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From the above analysis, it is clear that the matrix Nðm0Þ and the
vector Mðm0Þ are important to the investigation of the dynamics of
system (1.1) near the grazing point x0. But their expressions are very
complicated. In order to observe the grazing bifurcation phenomena
more directly, in the following we use the Monte Carlo numerical

simulation method described in [2, pp. 115–117], to compute the
bifurcation diagrams by varying r, o, and a each in turn.

(1) Take m¼4, a¼
ffiffiffi
5
p

, o¼ 2p and vary r from 0.6 to 1. For
each fixed r, we apply Theorem 5.1 to find m0 and ðjm,ymÞAS that
correspond to a grazing orbit of type ðm,2,0,m0Þ. The results for
each of r¼0.6, 0.8 and 1 are listed in Table 1. The leading
eigenvalue l1 of Nðm0Þ is also listed. Furthermore, we find that
l1 increases as r increases and for each fixed r, a12ðm0Þ40 and
dn40. From the bifurcation diagrams, Fig. 11, we can clearly see
the phenomena described in Theorem 6.2.

(2) Take m¼4, a¼
ffiffiffi
5
p

, r¼ 1
3 and vary o from 4p to 2:8p. Then

for each fixed o, a12ðm0Þ40, dn40 and l1 increases as o
Table 1

m¼4, a¼
ffiffiffi
5
p

and o¼ 2p.

r m0 jm

0.6 0.7998270978 0.2210359996

0.8 0.8048909996 0.2041532252

1.0 0.8096781048 0.1884186203

Fig. 11. Bifurcation diagrams in ðm ,xÞ ¼ ðm�m0 ,x�1Þ space for PN with m¼ 4,a¼
ffiffi
5
p

m0 � 0:8096781048.
increases. In Table 2, for each of o¼ 4p, 3:5p and 2:8p, we list
m0, ðjm,ymÞAS and l1 that correspond to a grazing orbit of type
ðm,2,0,m0Þ. The bifurcation diagrams are shown in Fig. 12.

(3) Take m¼4, o¼ 20
7 p, r¼ 1

3 and vary a from
ffiffiffiffiffiffiffi
3:3
p

to
ffiffiffiffiffiffiffi
5:1
p

.
Then for each fixed a, a12ðm0Þ40, dn40 and l1 decreases as a
increases. For each of a¼

ffiffiffiffiffiffiffi
3:3
p

,
ffiffiffiffiffiffiffi
3:9
p

and
ffiffiffiffiffiffiffi
5:1
p

, the values for m0,
ðjm,ymÞAS and l1 that correspond to a grazing orbit of type
ðm,2,0,m0Þ are listed in Table 3. The bifurcation diagrams are
shown in Fig. 13.
7. Concluding remarks

Two types of double impact periodic orbits for an impact inverted
pendulum have been studied in detail in this paper. Although the
system is piecewise linear, the equations describe the orbits are
transcendental and it is impossible to obtain closed form of the
ym l1

1.582061169 0.1255261463A(0,14)

1.459253484 0.4604937708A(1
4,23)

1.349144215 0.8281814973A(2
3,1)

ffi
,o¼ 2p; (a) r¼ 0:6,m0 � 0:7998270978; (b) r ¼ 0:8,m0 � 0:8048909996; (c) r ¼ 1,



Table 2

m¼ 4,a¼
ffiffiffi
5
p

and r¼ 1
3.

o m0 jm ym l1

4p 0.8160321611 0.1056102995 1.266173452 0.9478542624A(2
3,1)

3:5p 0.8108127352 0.1262727208 1.387390066 0.6097962774A(1
4,23)

2:8p 0.8028005239 0.1671601393 1.577149228 0.1716002945A(0,14)

Fig. 12. Bifurcation diagrams in ðm ,xÞ ¼ ðm�m0 ,x�1Þ space for PN with m¼ 4,a¼
ffiffiffi
5
p

,r¼ 1
3; (a) o¼ 2:8p,m0 � 0:8028005239; (b) o¼ 3:5p,m0 � 0:8108127352;

(c) o¼ 4p,m0 � 0:8160321611.

Table 3

m¼4, o¼ 20
7 p and r¼ 1

3.

a m0 jm ym l1

ffiffiffiffiffiffiffi
3:3
p

0.8130301395 0.1496802316 1.560141371 0.9746621480A(2
3,1)ffiffiffiffiffiffiffi

3:9
p

0.8091313374 0.1553090275 1.561728126 0.6230014590A(1
4,23)ffiffiffiffiffiffiffi

5:1
p

0.8030458715 0.1637033224 1.561107855 0.1771390216A(0,14)
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corresponding Poincaré maps. Thus we cannot give an exact expres-
sions for the orbits and numerical techniques must be used. From
concrete numerical examples, we see that these orbits lose stability
through period doubling or transcritical bifurcations. For the double
impact periodic orbits that impact at only one of the two walls,
grazing bifurcations are also observed. We believe that these results
are also true for systems whose free motions between the walls are
governed by non-linear equations. However, since the solutions
between impacts for non-linear impact systems are generally
unknown, perturbation methods must be used.



Fig. 13. Bifurcation diagrams in ðm ,xÞ ¼ ðm�m0 ,x�1Þ space for PN with m¼ 4,o¼ 20
7 p,r¼ 1

3; (a) a¼
ffiffiffiffiffiffiffi
5:1
p

,m0 � 0:8030458715; (b) a¼
ffiffiffiffiffiffiffi
3:9
p

,m0 � 0:8091313374;

(c) a¼
ffiffiffiffiffiffiffi
3:3
p

,m0 � 0:8130301395.

J. Shen, Z. Du / International Journal of Non-Linear Mechanics 46 (2011) 1177–11901190
References

[1] M.D. Bernardo, C.J. Budd, A.R. Champneys, Normal form maps for grazing
bifurcations in n-dimensional piecewise-smooth dynamical systems, Physica
D 160 (2001) 222–254.

[2] M.D. Bernardo, C.J. Budd, A.R. Champneys, P. Kowalczyk, Piecewise-Smooth
Dynamical Systems: Theory and Applications, Springer-Verlag, London, 2008.

[3] C.J. Budd, A.G. Lee, Double impact orbits of periodically forced impact
oscillators, Proc. R. Soc. London A 452 (1996) 2719–2750.

[4] W. Chin, E. Ott, H.E. Nusse, C. Grebogi, Grazing bifurcations in impact
oscillators, Phys. Rev. E 50 (1994) 4427–4444.

[5] S.-N. Chow, S.W. Shaw, Bifurcations of subharmonics, J. Differ. Equat. 65
(1986) 304–320.

[6] H. Dankowicz, J. Jerrelind, Control of near-grazing dynamics in impact
oscillators, Proc. R. Soc. London Ser. A 461 (2005) 3365–3380.

[7] H. Dankowicz, X. Zhao, Local analysis of co-dimension-one and co-dimension-two
grazing bifurcations in impact microactuators, Physica D 202 (2005) 238–257.

[8] L. Demeio, S. Lenci, Asymptotic analysis of chattering oscillations for an
impacting inverted pendulum, Q. J. Mech. Appl. Math. 59 (3) (2006) 419–434.

[9] Z. Du, Y. Li, W. Zhang, Type I periodic motions for nonlinear impact
oscillators, Nonlinear Anal. Ser. A 67 (2007) 1344–1358.

[10] Z. Du, W. Zhang, Melnikov method for homoclinic bifurcation in nonlinear
impact oscillators, Comput. Math. Appl. 50 (2005) 445–458.

[11] S. Foale, S.R. Bishop, Dynamical complexities of forced impacting systems,
Philos. Trans. R. Soc. London Ser. A 338 (1992) 547–556.

[12] M.H. Friederiksson, A.B. Nordmark, On normal form calculations in impact
oscillators, Proc. R. Soc. London A 456 (2000) 315–329.

[13] J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems and
Bifurcations of Vector Fields, Springer-Verlag, New York, 1983.

[14] F. Hendricks, Bounce and chaotic motion in impact print hammers, IBM J. 27
(1983) 273–280.

[15] S.J. Hogan, On the dynamics of rigid-block motion under harmonic forcing,
Proc. R. Soc. London Ser. A 425 (1989) 441–476.

[16] P. Holmes, R.J. Full, D. Koditschek, J. Guckenheimer, Dynamics of legged
locomotion: models, analysis and challenges, SIAM Rev. 48 (2006) 207–304.

[20] M. Kunze, Non-Smooth Dynamical Systems, Springer-Verlag, Berlin, Heidelberg,
2000.
[21] S. Lenci, On the suppressions of chaos by means of bounded excitations in an
inverted pendulum, SIAM J. Appl. Math. 58 (1998) 1116–1127.

[22] S. Lenci, G. Rega, A procedure for reducing the chaotic response region in an
impact mechanical system, Nonlinear Dyn. 15 (1998) 391–409.

[23] S. Lenci, G. Rega, Periodic solutions and bifurcations in an impact inverted
pendulum under impulsive excitation, Chaos Solitons Fractals 11 (2000)
2453–2472.

[24] S. Lenci, G. Rega, Regular nonlinear dynamics and bifurcations of an impact-
ing system under general periodic excitation, Nonlinear Dyn. 34 (2003)
249–268.

[25] Y. Li, Z. Du, W. Zhang, Asymmetric type II periodic motions for nonlinear
impact oscillators, Nonlinear Anal. Ser. A 68 (2008) 2681–2696.

[26] Y. Ma, J. Ing, S. Banerjee, M. Wiercigroch, E. Pavlovskaia, The nature of the
normal form map for soft impacting systems, Int. J. Non-linear Mech. 43
(2008) 504–513.

[27] J. Molenaar, J.G. de Weger, W. van de Water, Mappings of grazing impact
oscillators, Nonlinearity 14 (2001) 301–321.

[28] A.B. Nordmark, Non-periodic motion caused by grazing incidence in an
impact oscillator, J. Sound Vib. 145 (1991) 279–297.

[29] A.B. Nordmark, Existence of periodic orbits in grazing bifurcations of
impacting mechanical oscillators, Nonlinearity 14 (2001) 1517–1542.

[30] E. Pavlovskaia, M. Wiercigroch, Low-dimensional maps for piecewise smooth
oscillators, J. Sound Vib. 305 (2007) 750–771.

[31] S.W. Shaw, The dynamics of a harmonically excited system having rigid
amplitude constraints, Part 1: subharmonic motions and local bifurcations,
J. Appl. Mech. 52 (1985) 453–458.

[32] S.W. Shaw, A.G. Haddow, S.-R. Hsieh, Properties of cross-well chaos
in an impacting system, Philos. Trans. R. Soc. London A 347 (1994)
391–410.

[33] S.W. Shaw, P.J. Holmes, A periodically forced piecewise linear oscillator,
J. Sound Vib. 90 (1983) 129–155.

[34] S.W. Shaw, R.H. Rand, The transition to chaos in a simple mechanical system,
Int. J. Non-linear Mech. 24 (1989) 41–56.

[35] P. Thota, H. Dankowicz, Continuous and discontinuous grazing bifurcations in
impacting oscillators, Physica D 214 (2006) 187–197.

[36] P. Thota, H. Dankowicz, Analysis of grazing bifurcations of quasiperiodic
system attractors, Physica D 220 (2006) 163–174.


	Double impact periodic orbits for an inverted pendulum
	Introduction
	The existence of double impact periodic orbits
	Some special cases
	Stability and bifurcation analysis
	(m&maccomma;2&maccomma;0&maccomma;mu) orbits
	(m&maccomma;1&maccomma;1&maccomma;mu) orbits

	Existence of grazing periodic orbits
	Grazing bifurcations
	Concluding remarks
	References




